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Precision medicine promises to transform cancer treatment in the next decade through the use of 
high-throughput sequencing and other technologies to identify telltale molecular aberrations that 
reveal therapeutic vulnerabilities of each patient’s tumor [1]. This session will address the 
"panomics" of cancer – the complex combination of patient-specific characteristics that drive the 
development of each person’s tumor and response to therapy [2]. The realization of this vision will 
require novel infrastructure and computational methods to integrate large-scale data effectively 
and query it in real-time for therapy and/or clinical trial selection for each patient. 

The session will explore the computational needs to enable precision oncology from both the 
academic, industrial, and healthcare viewpoints. New methods and infrastructure to integrate 
multiple "omics" datasets (e.g., proteome, genome, exome, transcriptome), as well as existing 
clinical data types to enable precision medicine (e.g., medical literature, electronic medical 
records, clinical trial data, histopathology) will be discussed. The session is particularly interested 
in discussing pathway disruption analysis by combining data from different "omics" sources in 
single patients; joint analysis of "omics" data, literature, clinical trial data, and medical records; 
data structures & systems to enable big-data integrative analysis in patients. A summary of the 
accepted papers in this volume is below. 

One of the most successful bioinformatics applications to cancer diagnosis and prognosis has 
been the identification and development of biomarkers that can distinguish disease subtypes, 
predict mutation status, or predict outcomes or treatment responses. However, the field is still in 
need of strategies that develop robust signatures as current methodologies often fail to translate 
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across studies and platforms (e.g., microarray- to RNA-Sequencing-based signatures). Two 
methods for novel biomarker discovery will be presented including an integrative approach by 
Min et al. as well as a method by Morgan et al. that combines multiple expression studies to 
identify more reliable robust gene expression-based signatures. In addition to the biomarker 
studies, machine-learning models for predicting the sensitivity of a cell to a drug based on its 
omics profile will be discussed including a comparison of methods in a comprehensive cell line 
panel by Jang et al., the description of a new ensemble-based methods called Stream described by 
Chaibub Neto et al., and an integrative method introduced by Mayba et al. 

Interpreting the role of specific mutations in somatic cells is a fundamental problem in the 
individualized treatment of cancer. Identifying driver from passenger events and the assessment of 
the gain- or loss-of-function of specific proteins may offer important clues for drug targeting. Two 
papers investigate omics-derived statistical patterns to assess the functional role of somatic 
variants including connecting such events to the germline by Hu et al. and one that leverages 
protein-protein interactions to identify possibly important driving events by Badea et al. A new 
method for assembling haplotypes that is key for the interpretation of the combined influence of 
multiple variant alleles on the cancer phenotype is described in Aquilar et al. 

Finally, to maximize the benefit of the cancer panomics endeavor, findings in the n=1 setting 
must be distributed in a way to empower the next n=1 analysis. Approaches that can interlink the 
findings of patients, doctors, trials, and researchers in one system would enable a new era of 
integrative approaches. Gitter et al. in this session describe one such strategy for approximating 
the influence of genetic pathways in disease. 

Cancer panomics as applied to the individual patient is an emerging area driven by the 
lowering in cost of sequencing a patient's tumor and germline tissues. There is every expectation 
that the costs will continue their downward spiral once the competitive landscape of the industry 
and the maturity of 3rd or 4th generation sequencing technologies improve. In the very near future 
it will be feasible to sequence the complete cancer tumor genome and transcriptome as a routine 
procedure rather than just a targeted set of genes.  The result of all this sequencing will mean that 
the bottleneck for the treatment of patients will transition from data production to the 
computational analysis of these massive information troves. Thus, it is critical to continue the 
discussion of novel bioinformatics ideas and strategies to empower the development of new cancer 
panomics approaches in the near future. 
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The growing availability of inexpensive high-throughput sequence data is enabling researchers to se-
quence tumor populations within a single individual at high coverage. But, cancer genome sequence
evolution and mutational phenomena like driver mutations and gene fusions are difficult to investi-
gate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual
tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity,
tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While
computational and experimental haplotype phasing of diploid genomes has seen much progress in
recent years, haplotype assembly in cancer genomes remains uncharted territory.

In this work, we describe HapCompass-Tumor a computational modeling and algorithmic
framework for haplotype assembly of copy number variable cancer genomes containing haplo-
types at different frequencies and complex variation. We extend our polyploid haplotype assembly
model and present novel algorithms for (1) complex variations, including copy number changes,
as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies
and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass
graph which constrain the space of haplotype assembly solutions. The model and algorithm are
implemented in the software package HapCompass-Tumor which is available for download from
http://www.brown.edu/Research/Istrail_Lab/.

Keywords: haplotype assembly; haplotype phasing; tumor haplotypes.

1. Introduction

Cancer is the worldwide leading cause of death and the second leading cause of death in
the United States. Despite the tremendous amount of effort and resources spent on cancer
research, our knowledge of the disease pathology is limited and the outlooks for certain types
of cancer are usually dire. The commercialization of high-throughput sequencing platforms in
the last decade has accelerated the growth of cancer genomics research dramatically. Since the
first whole genome tumor sample was sequenced in 2008,1 there have been hundreds of studies
on numerous cancer types.2–5 One of the fundamental computational challenges common to
many of these studies is to separate the true driver mutation signal from the biological noise
(e.g. passenger mutations) and experimental noise (e.g. sequencing errors). While it is possible
to map sequence reads from tumor samples to a reference genome and call genomic variants,
it is exceedingly difficult to determine the parental chromosome of origin for each variant
allele – that is, the variant’s phase. But, the chromosomal sequence of alleles, or haplotype,
is important for elucidating genomic events critical to the understanding of cancer like gene
fusions or driver mutations.

A theory for carcinogenesis formulated by Knudson in 1971 demonstrates the importance
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of haplotype phase in cancer.6 In the two-hit hypothesis, Knudson suggested that in order to
cause cancer, at least two “hits” have to take place. The first “hit” is usually an inherited
mutation, and the second “hit” is a somatic mutation in the same gene or a different gene in the
same pathway occurring later in life and out of phase with the first mutation. Having the ability
to reconstruct tumor haplotypes would enable the discovery of such compound heterozygous
relationships between variants and enhance our ability to identify driver mutations.

The computational problem of haplotype assembly aims to compute the sequence of co-
inherited variant alleles for each chromosome given a set of aligned sequence reads and vari-
ants.7,8 Haplotype assembly of diploid genomes has been addressed by many researchers9,10

and several haplotype assembly algorithms for diploid genomes are available for use.11,12 How-
ever, the methodologies for diploid haplotype assembly are unable to model polyploid genomes
or complex copy number aberrations (CNA). Recently, we developed HapCompass-Polyploidy,
the first modeling and algorithm for haplotype assembly in genomes with more than two sets of
homologous chromosomes (polyploidy).13 The HapCompass-Polyploidy algorithm assembles
pairs of variants in polyploid genomes and then produces a haplotype assembly consistent
with the pairwise variant phasings.

Cancer genomes have many similarities with polyploid genomes but present additional
complexities that current methodologies do not model. Sequencing reads sampled from cancer
patients exhibit a mixture of normal diploid cells and heavily rearranged, aneuploid cells. This
introduces two major complexities into the haplotype assembly model: (1) heavily rearranged
or translocated chromosomes will exhibit changes in copy number and (2) the heterogeneous
nature of tumor samples requires reconstruction of more than two haplotypes each with a
sample frequency which biases sequence read coverage.

Before these complexities can be modeled, the spectrum of variation must be inferred.
While early cancer research was focused on small variants such as single nucleotide variants
(SNV) and indels in a single gene or a small set of genes, advances in technology have enabled
us to study large structural variants such as CNAs and large chromosomal rearrangements in
tumor genomes. Several recent studies on multiple tumor genomes have found the important
role of these large structural variants in tumor development.3,4,14,15 In general, detection of
cancer variation with sequencing data involves detecting those variants that are supported
in the tumor genome but not found in the normal genome. The algorithms can be largely
divided into three categories determined by the variant type they are trying to detect, i.e.
small variants (SNVs and indels), CNAs and complex structural variants (translocations,
duplications, and inversions).

Strelka jointly models the normal sample as a mixture of germline variation with noise, and
the tumor sample as a mixture of the normal sample with somatic mutations, in a Bayesian
framework.16 VarScan 2 also uses the sequence reads from tumor and normal cells simultane-
ously, but uses a one tailed Fisher’s exact test to determine whether the variants are somatic,
normal, or loss of heterozygosity.17 Control-FREEC not only uses the coverage information
but also the read count frequencies to estimate CNAs in tumor samples.18 Control-FREEC
also normalizes the tumor read depths by GC content and mappability and hence a normal
genome is not required, although it could also be used for normalization.
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Detection of large structural variations is often made possible by exploiting the properties
of paired-end sequence reads. For example, the insert sizes of reads that are mapped to both
sides of a large deletion would appear to have much larger insert sizes than the rest of the pop-
ulation. CREST first looks for a cluster of soft-clipped reads that exhibit evidence of a break
point for a structural variant, and then locates the other break point by scanning the location
neighboring the paired read.19 However, the accuracy of these methods can be seriously af-
fected when there is contamination in the samples. Cibulskis et al developed a Bayesian model
to estimate the level of cross-individual contamination in each sample.20 Contamination may
also exist within an individual; tumor tissue can be contaminated with normal DNA and vice
versa. Both incorrect variant calling as well as sequence contamination represent sources of
complexity and errors for haplotype assembly.

Fig. 1. An example
tumor sample
GC with three unique
haplotypes. Vertices
are variants and edges
show pairwise haplo-
type assemblies.

In this work, we leverage the existing literature and tools for can-
cer genome variant inference and build on the polyploid HapCompass
model to construct the first methodology for cancer genome haplo-
type assembly. In Section 2 we provide the necessary details of the
HapCompass polyploid model and extensions for cancer genome hap-
lotype assembly. The modeling section is followed by Section 3 which
describes the HapCompass-Tumor algorithm and Section 4 which eval-
uates the implementation of the algorithm on cancer genome data.
Finally, Sections 5 and 6 present a discussion of alternative models of
cancer genome haplotype assembly, limitations and extensions to our
model, future work, and conclusions.

2. Modeling

Let k be an integer representing the number of unique tumor hap-
lotypes in a sample of tumor tissue. Because the tumor is actively
evolving, this k may vary for independent samples of the same tumor.
We assume that each sequence read is sampled from a single haploid
fragment generated from one of the k haplotypes; this property en-
ables the building of haplotype phase relationships between alleles in
sequence reads that contain two or more heterozygous variants (ho-
mozygous variants do not provide phase information for assembly).
The phase-informative sequence reads and variants are modeled with
two graph structures termed the compass graph, GC , and chain graph,
Gh. These data structures are described in Aguiar et al. 2013 but their
definitions are repeated here in order to present the novel aspects of
the model for tumor genomes.13

The compass graph GC(VC , EC) has v ∈ VC for each variant and (vi, vj) ∈ EC if variants vi
and vj are contained within a sequence read. Edges (vi, vj) are annotated with the most likely
haplotype phasing between variants vi and vj given the set of reads that contain both vi and
vj (Figure 1).
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2.1. Phasing edges of GC

Given the probability of sequencing error, se and a set of reads overlapping the two variants,
r1, ..., rn, the likelihood of a particular phasing, pp from the set of all phasings between the
two variants P can be computed as in Equation 1. Edges of GC are phased by choosing the
pp that maximizes this likelihood.

L(pp|se, r1, r2, ..., rn) =
P (r1|se, pp) · · ·P (rn|se, pp)∑|P |

i=1 P (r1, r2, ..., rn|se, pi)
(1)

Equation 1 models haplotypes that are in equal proportion which may not be true for
heterogeneous tumor samples. Thus the likelihood must be modified to accommodate the
different frequencies of haplotypes. Consider the normal haplotype contamination that is often
present in tumor sequence samples. Contamination may be modeled by jointly assembling the
k tumor haplotypes with two low frequency normal haplotypes. Therefore, the probability
of a haplotype h with frequency fh in the phased haplotypes of a pair of variants can be
expressed as p(h|se, p) =

∑
h∈p fhF (se, p, h) where F is a function that takes the sequencing

error probability se, the set of all haplotypes for the two variant phasing p and the particular
haplotype h and computes the probability of generating a read containing haplotype h.

For example, assume the three haplotypes 00, 00, and 11 exist between two variants and
one of the 00 haplotypes was considered contamination at frequency 10%. If the other two
haplotypes were in equal proportions, then

P (00|se, {00, 00, 11})F (se, {00, 00, 11}, 00) = (1− se)
2 · 0.1 + (1− se)

2 · 0.45 + (se)
2 · 0.45 (2)

The number of unique phasings of an edge depends on the number of unique tumor hap-
lotypes k and the allele content of the variant pair. Let the number of 1 alleles for variants
vi and vj be l(vi) and l(vj) respectively. Then, the number of phasings of an edge is upper

bounded by min
((

k
l(vi)

)
,
(

k
l(vj)

))
. This is a bound and not equality because some phasings may

be repeated in this enumeration.

2.2. Chain graph

Haplotype phasings of the edges of GC can be extended to paths. Because two adjacent edges
share a variant, haplotypes with the same allele can be merged on the shared vertex. If two
paths in GC of length i and j vertices are merged, the new phasing will have i+ j− 1 variants.

For paths or trees in GC , there is exactly (at least) one consistent haplotype phasing,
with respect to the edge phasings along the path or tree, for genomes with k = 2 (k > 2). In
contrast, simple cycles in GC may be either conflicting or non-conflicting depending on how
many phasings are consistent with the cycle. A conflicting cycle does not have a consistent
phasing while a non-conflicting cycle has at least one. The chain graph Gh is constructed for
each simple cycle to determine its conflicting state.13

The chain graph Gh(Vh, Eh) is constructed for a path or simple cycle c =

((v1, v2), ..., (vs−1, vs), (vs, v1)) in the compass graph GC . We introduce k haplotype vertices
corresponding to the phasing for each edge (vi, vj) in the path or cycle. Vertices in Gh created
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from adjacent edges of GC share a variant; edges connect vertices in Gh if they share a variant
and allele. Then, source nodes s1, ..., sk are arbitrarily assigned to vertices at level 1 and sink
nodes t1, ..., tk are assigned to vertices at level s if the level s vertex shares an allele with the
level 1 vertex. Vertices are annotated with ti if there exists at least one si to ti path which is
computed by a depth first from each source. Gh can be described as a trellis graph in which the
vertices can be divided into levels; each level in this case corresponds to an edge of GC . Trel-
lis graphs have a wide range of applications including communication network topology and
survivability, encryption, encoding and decoding, and are a central data structure in Markov
models.

2.3. Disjoint siti paths in the trellis graph Gh

We now present new results on the theoretical properties of this graph and extensions to phas-
ing the entire compass graph. A valid phasing of a path of compass graph edges e1,2, ..., es−1,s
is defined as k vertex-disjoint paths from level 1 to level s in the corresponding Gh. A valid
phasing of a cycle of compass graph edges e1,2, ..., es,1 is defined as k vertex-disjoint paths from
each source si to its corresponding sink ti in the corresponding Gh. There always exists at
least one phasing for paths of GC by definition of Gh; cycles may not exhibit a valid phasing
(Lemma 2.1).

Lemma 2.1. There exists at least one valid phasing of k haplotypes for a cycle c if and only
if there exists a valid matching between sink node annotation and chain graph nodes at each
level of Gc.

Proof. If: Adjacent edges share a variant and thus the number of x alleles at level i must
equal the number of x alleles at level i + 1 where x is any allele of the shared variant. If there
is a matching at level i and i+1, then there must exist an edge between valid haplotype phase
nodes because they share a common allele (adjacent levels). One can extend a valid haplotype
phasing path from level i to i+1 using the edge generated by the shared allele. Only-if: Assume
one level does not have a valid matching; then, either (1) at least two haplotypes share a phased
haplotype node or (2) at least one phased haplotype node contain no sink node annotation.
Case (1): multiple haplotype paths must share a phased haplotype node which breaks the
vertex disjointness condition. Case (2): each level has exactly k nodes each of which must be
taken once. If one or more phased haplotype nodes contain no sink annotation, then at least
one phased haplotype node must be shared by 2 or more haplotype paths which breaks vertex
disjointness.

We will use this property of Gh later in the computation of the tumor haplotype phasing.

2.4. Copy number aberrations and translocations in Gh

The chain graph and disjoint paths framework accommodates modeling the types of variation
typical of tumor genomes (Figure 2). CNAs insert or remove large genomic regions. Genomic
deletions are modeled as an edge connecting the variants flanking the deletion breakpoint. In
this case, the model still expects the computation of k disjoint paths spanning the deletion.
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Large insertions of genetic material can be modeled as the addition of a temporary path in
between or potentially overlapping vertices of Gh. The number of disjoint paths in this case
changes to k+ 1. Translocations may be modeled in Gh by combining deletions and insertions.

Fig. 2. Deletions and insertions are modeled with disjoint paths. The green edge models a deletion which
effectively removes the deleted variants in the chain graph. The blue node insertion adds an extra path in Gh.

2.5. Disjoint subgraphs in the general chain graph

The general chain graph Gg is our final graph structure for representing the overall phasing of
tumor genomes. Because there may be many matchings at each level of Gh, haplotype assembly
of non-conflicting cycles in GC will yield a set of potential phasings. The haplotype phasings
of Gh constrain the haplotype assembly to include one of the k disjoint path solutions.

Gg is built from the conflict-free spanning tree cycle basis of GC . The vertices of Gg are
constructed in a similar manner as Gh; each edge (vi, vj) of GC generates a vertex for each
haplotype in the phasing of (vi, vj). Each Gh constructed from a non-conflicting cycle of GC

defines a set of edge adjacencies; these adjacencies are represented in Gg. Therefore, if two
edges are adjacent in a Gh, then they are also adjacent in Gg. Because of Lemma 2.1, we can
determine the number of disjoint path solutions passing through adjacent levels i and j by
simply computing the valid extensions of matchings from level i to j. We assume each of the l

valid extensions of the sets of matchings at adjacent levels ei and ej are equally likely. Then,
the weight of a particular extension w(ei)w(ej)

l where w(ei) is the score or likelihood of edge ei,
is added to the edges of Gh (and Gg).

However unlike Gh, Gg is not necessarily a trellis graph if the cycles in the basis do not
agree on the ordering of edge adjacencies (Figure 3). If Gg were a tree, finding a phasing could
be modeled as packing disjoint Steiner trees or disjoint spanning trees. Instead, we model
the computation of the tumor haplotype assembly as the k-maximum weight node-disjoint
spanning tree problem. That is, we compute a set of k node-disjoint (within levels) spanning
trees in Gg whose total weight is maximum over all k node-disjoint spanning trees and includes
every vertex in Gg.

3. HapCompass-Tumor Algorithm

HapCompass-Tumor optimizes the minimum weighted edge removal (MWER) problem.
MWER aims to compute a set of edges L of minimum weight, whose removal resolves all
conflicting cycles of GC . After all conflicting cycles have been removed, each non-conflicting
cycle’s Gh is added to Gg. Gg represents the constrained solution space by incorporating the
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Fig. 3. (Left) An example tumor genome GC with three non-conflicting cycles. Dashed lines represent edges
not in the spanning tree of GC . The inclusion of each non-tree edge creates a cycle in the cycle basis of GC .
The two inner cycles ((v0, v1), (v1, v3), (v3, v0)) and ((v0, v2), (v2, v3), (v3, v0)) create the red-edge adjacencies
in Gg (right). Computing the haplotype assembly of a tree (Gg with just the red edges) is simple. However, if
the blue non-tree edge is added, the edge adjacency ((v0, v1), (v0, v2)) is included in Gg creating a cycle.

valid haplotype assemblies on subsets of variants computed from each non-conflicting Gh (Al-
gorithm 1).

input : Sequence reads, variant calls, and number of distinct haplotypes k
output: k haplotypes

GC ← spanning tree cycle basis
CC ← set of conflicting simple cycles with respect to GC

for cC ∈ CC do
Remove edge with smallest likelihood in cC
Reconstruct GC

end
Compute Gg

CN ← set of non-conflicting simple cycles with respect to GC

for cN ∈ CN do
Compute Gh with respect to cN
Compute matchings at each level of Gh

Compute disjoint paths of Gh

Increase the weight of each edge e between levels shared by Gh and Gg in Gg

proportional to the number of disjoint paths using edge e and the likelihood of
each edge (Equations 1 and 2)

end
Compute a maximum weight spanning tree of the adjacencies in Gg

Output the haplotype assembly computed from the spanning tree of Gg

Algorithm 1: HapCompass-Tumor

The final step involves computing k spanning trees in Gg which are node disjoint in re-
spect to haplotype level vertices. Adjacencies between levels in Gg correspond to matchings
between the haplotype nodes (Figure 4 right). So, HapCompass-Tumor computes k disjoint
spanning trees corresponding to the k tumor haplotypes. We have implemented two algo-
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rithms inspired by Kruskal’s and Prim’s algorithms for computing maximum spanning trees.
The principle difference between the two algorithms in the context of HapCompass is the
Kruskal-like algorithm focuses on constructing disjoint trees by including strong phasings on
the same haplotype (edges of Gg) while the Prim-like algorithm phases all haplotypes between
two levels at a time (vertices of Gg).

We illustrate the modeling and algorithm with a series of examples. Let the compass graph
GC of a tumor sample with three unique haplotypes be shown in Figure 1. Then, if (v0, v3),
(v2, v1), and (v3, v2) are the non-tree edges of GC , the chain graphs in Figure 4 (left) are
constructed. Figure 4 (right) shows the Gg updated after the disjoint paths and weights of
edges in Gh are computed and distributed to Gg.

Fig. 4. (Left) chain graphs (Gh) from the compass graph in Figure 1. The level corresponding to edges in
GC are denoted by black (non-tree edges) and blue (spanning tree edges) lettering above the vertices. In this
example, the edge phasing probabilities in GC are all 1. So, an edge connecting level i to level j which is in b
disjoint path solutions will receive a weight of b/d if there are d unique disjoint path solutions from level i to
level j. The weights of edges calculated from disjoint siti paths in each Gh are added to the Gg (right).

4. Results

We implemented HapCompass-Tumor and evaluated its performance on simulated tumor hap-
lotypes. In these experiments we use insert size as a proxy for the computed haplotype length.
It has been shown that the dominant factor in producing long haplotype assemblies is the
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length between the read pairs.13,21 Briefly, if the length between two variants is x and the
insert size is y, then a sequence read can never span the two variants if x > y.

4.1. Dependence on insert size and error rates

Using the sequence for the BRCA1 breast cancer susceptibility gene, we simulated three hyper
variable tumor haplotypes. Distance between variants were distributed normally ∼ N(500, 50).
The following procedure was repeated 250 times for each data point in Figure 5. Given the set
of variants which remained fixed for each experiment, a random phasing is computed that is
consistent with the allele distributions. We then sampled 10000 phase-informative simulated
reads from the true haplotypes and computed the average edit distance between assembled
and true haplotypes. We compared the distance of haplotype assemblies for the randomly
generated triploid BRCA1 genes while varying sequence read insert size, standard deviation
of insert size, and single base substitution error rate.

Figure 5 (left) demonstrates several interesting trends. First, as the insert size is increased
the haplotype assemblies become more accurate. Second, the more variable the insert length,
the more accurate the haplotype assembly. A hyper variable insert length appears to have
a similar effect as increasing the insert size. These findings confirm patterns observed in
conventional diploid haplotype assembly. Finally, while the error rate does affect haplotype
assembly accuracy, as long as the error rate is less than 0.2%, the haplotype assemblies are
similar in quality. This phenomenon is likely caused by the constant coverage coupled with
uncertainty in phasing the edges of GC . When the coverage is fixed and the insert sizes are
short, haplotype assemblies are smaller but more accurate. Conversely, when error rates reach a
threshold where edge phasings are no longer accurately called, the haplotype assembly quality
suffers.

4.2. Cancer genome heterogeneity

We also compared the accuracy of haplotype assembly in terms of tumor genome heterogeneity
(Figure 5 right). Sequencing parameters were fixed to produce insert sizes between 500 and
2500, short insert size standard deviations, 10000 sequence reads, and no errors. Each data
point contains the average of 250 haplotype assembly edit distances. The more unique tumor
haplotypes in the sample the less accurate the solution. The increasing edit distance with 5

unique haplotypes between insert sizes 2000 and 2500 is likely an effect of the rising uncertainty
of edge phasings when coverage is kept fixed and more edges are being generated in GC .

4.3. NA12878

We simulated paired tumor sequence reads and their mappings with Enhanced Artificial
Genome Engine (EAGLE) developed by Illumina Cambridge Ltd (personal communications).
The sequencing parameters were set to model paired-end Illumina data with 101bp read lengths
and a mixture of long (length=N(60000, 1412)) and short (empirical distribution from 2× 101

runs, with median size ∼ 300bp) fragment sizes. The variants simulated include SNV and indels
called in NA12878 by the Genome in a Bottle Consortium22 and the HCC1187 tumor sample
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Fig. 5. (Left) The average edit distance between haplotypes and the simulated true haplotypes is calculated
with a fixed coverage and varying insert sizes, error rates (error), and standard deviations (std). (Right)
Haplotype assembly accuracy is plotted as a function of the number of tumor haplotypes in the sample.

(downloaded from Illumina’s Basespace23). Variants were combined then randomly divided
into two sets for each homologous chromosome, with 30X coverage for the first chromosome
and 15X coverage for the second to simulate tumor genome amplification. Sequence reads were
mapped to their simulated location after single base mismatches were introduced according
to empirical error rates.

We evaluated HapCompass-Tumor on all autosomes of the EAGLE simulated data and
longer reads simulated using HapCompass. The reads simulated from HapCompass include
medium (200bp) and long (2000bp) read lengths with error rates of 2% and 5% respectively to
model the higher error rates associated with long-read high-throughput sequence technologies.
We used the number of allele bit flips required to map the sequence reads to the assembled
haplotypes as the evaluation metric. Table 1 shows the results for HapCompass-Tumor using
the Kruskal-like and Prim-like algorithms for resolving Gg. Additionally, we implemented a
scoring scheme that scores pairs of vertices with more diversity in haplotype sequence higher
(termed Diverse in Table 1). This scheme is designed to limit uninformative pairs of vertices
in the spanning tree of the compass graph GC .

Table 1 demonstrates that the accuracy of the haplotype assembly depends minimally on
the selection of algorithm when using Illumina-like sequencing parameters. However, as the
read length increases, the Kruskal-like algorithm becomes favorable.

5. Discussion

Opportunities exist to extend HapCompass-Tumor to address some of the limitations in the
current model. First, HapCompass-Tumor only computes a single solution when the compass
graph model allows computation of suboptimal solutions. Phase extension in Gg is determin-
istic but many highly probable suboptimal solutions may exist. As long as the number of
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Table 1. The proportion of incorrectly mapped alleles (error) by Gg resolution al-
gorithm. Sequence data was simulated for 1000 Genomes Project individual NA12878
using EAGLE to simulate Illumina reads and HapCompass to simulate reads with
medium (200bp, 2% error rate) and long (2000bp, 5% error rate) read lengths.

Gg resolution error (autosomes, EAGLE) error (chr20, 200bp) error (chr20, 2000bp)

Kruskal 0.002658 0.02079 0.04626
Kruskal Diverse 0.002659 0.02071 0.04679

Prim 0.002659 0.02789 0.05639
Prim Diverse 0.002659 0.02631 0.05867

alternative disjoint paths is bounded by a low degree polynomial, we can carry these partial
solutions to the assembly step and report multiple haplotype assemblies.

Second, incorporating a priori knowledge of haplotype distributions from population sam-
ples or long read lengths would improve the assembly. For example, we assumed each valid
haplotype phasing for a cycle in GC is equally likely. However, this assumption can be easily
modified to accommodate known haplotype likelihoods in the area (e.g. linkage disequilib-
rium). Consider a collection of valid disjoint paths for a cycle in GC ; if the probability of
both phasings is 1 and the edge extension has i distinct matchings, then each matching is
given a weight 1

i . If, however, one of the haplotypes in an extension is never observed in the
population, HapCompass-Tumor could penalize the extension.

A related application of HapCompass-Tumor is in cancer panomics. Much attention in
cancer research has been focused on allelic specific expression (ASE). Studies have shown that
germline ASE is associated with cancer risk;24,25 and somatic ASE is associated with tumor
development.26 ASE in cancer was found not only correlated with CNAs,26 but also with
allelic specific methylation (ASM).27 Existing algorithms for detecting ASE with RNA-seq and
detecting ASM with Bisulfite-Seq do not usually make use of phased genotype information.26,28

We therefore propose using the phased haplotypes from whole genome sequencing of tumor
samples as a reference for RNA-seq and Bisulfite-seq alignment when such data is available.

Finally, the viral quasispecies reconstruction (VQR) problem aims to compute the spec-
trum of viral quasispecies haplotypes from the sequence reads of a heterogeneous viral sample.
The problems of haplotype assembly and VQR are similar but the research literature is largely
independent due to the inability of haplotype assembly algorithms to model more than two
sets of homologous haplotypes. However, it is possible to model VQR with HapCompass-
Tumor by leaving the number of haplotypes in the sample (k) as an unknown parameter. Two
possible approaches include inferring the number of quasispecies a priori and then perform-
ing haplotype assembly with k unique haplotypes or computing assemblies for a number of
different k and comparing the quasispecies solutions. But, using a general haplotype assembly
tool for VQR does not take advantage of two critical properties of most viral genomes: (1)
knowledge of the phylogenetic relationships between mutations is known for well-studied viral
genomes especially those under selective pressures from treatment and (2) the genomes are
many orders of magnitude smaller than eukaryotes.
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6. Conclusions

In this work, we developed algorithms and models for tumor genome assembly building on
our existing haplotype assembly framework HapCompass. We demonstrated how to model
tumor haplotype heterogeneity and haplotypes containing CNAs and translocations. The
HapCompass-Tumor algorithm was presented using the combined evidence of cycles in GC

and disjoint paths in Gh to inform which haplotype assemblies in Gg are probable. Finally, we
evaluated the HapCompass-Tumor algorithm on simulated cancer data showing that, while
the accuracy is a function of many parameters including the level of cancer genome hetero-
geneity, we are still able to produce accurate haplotype assemblies. HapCompass-Tumor is
available for download from http://www.brown.edu/Research/Istrail_Lab/.
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We present a joint analysis method for mutation and gene expression data employing 
information about proteins that are highly interconnected at the level of protein to protein 
(pp) interactions, which we apply to the TCGA Acute Myeloid Leukemia (AML) dataset. 
Given the low incidence of most mutations in virtually all cancer types, as well as the 
significant inter-patient heterogeneity of the mutation landscape, determining the true 
causal mutations in each individual patient remains one of the most important challenges 
for personalized cancer diagnostics and therapy. More automated methods are needed for 
determining these “driver” mutations in each individual patient. For this purpose, we are 
exploiting two types of contextual information: (1) the pp interactions of the mutated 
genes, as well as (2) their potential correlations with gene expression clusters. The use of 
pp interactions is based on our surprising finding that most AML mutations tend to affect 
nontrivial  protein to protein interaction cliques. 

 
1.  Introduction and motivation 

Although various aspects of the cancer genome, such as gene expression, mutations, DNA copy 
number changes, or DNA methylation profiles have been studied (mostly) in isolation for more 
than a decade, their multi-modal, combined analysis has only recently been possible due to large 
scale projects such as The Cancer Genome Atlas (TCGA), as well as to the dwindling costs of 
high-throughput sequencing. 

Landmark studies of the TCGA have for the first time revealed the genomic changes and their 
consequences in several cancer types, such as glioblastoma [1,2,3], ovarian [4], breast [5], 
squamous cell lung cancer [6], colorectal cancer [7] and acute myeloid leukemia [8]. 

Most of these and other integrated studies of the cancer genome use state of the art methods 
for analyzing the separate data types (such as gene expression, mutation, DNA copy number 
changes and DNA methylation profiles), and then try to correlate the separate findings into a 
global integrated picture of the cancer genome (for example by searching for mutation enrichment 
in consensus gene expression clusters, or by comparing miRNA clusters with expression clusters 
[8]). 

Despite numerous attempts at a joint analysis of the various data types (as opposed to separate 
analyses), currently there is no universally accepted approach available. 

                                                 
† Work partially supported by grant PN-II-ID-PCE-2011-3-0198. 
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In this paper, we present a joint analysis method for mutation and gene expression data that 
employs information about proteins that are highly interconnected at the level of protein to protein 
(pp) interactions, which we apply to the Acute Myeloid Leukemia (AML) dataset obtained by 
TCGA [8]. 

Given the low incidence of most mutations in virtually all cancer types, as well as the 
significant inter-patient heterogeneity of the mutation landscape, determining the true causal 
mutations in each individual patient remains one of the most important challenges for personalized 
cancer diagnostics and therapy [18]. 

For example, since in AML only 3 genes have been found mutated with a frequency above 
10% (FLT3, NPM1, and DNMT3A), the state of the art AML study of the TCGA group [8] has 
used the known gene annotations to determine the genes relevant for pathogenesis (based on a few 
categories deemed biologically significant by human investigators).  

Still, annotations are imperfect and many genes have surprisingly heterogeneous functions. 
Moreover, annotations reveal nothing about gene interactions (except maybe pathway annotations, 
which are currently hopelessly incomplete). For example, the NPM1 gene is placed by the TCGA 
study in a category of its own, solely based on its high mutation rate in AML. 

More automated methods are therefore needed for determining the mutations that have caused 
the disease in each individual patient, the so called “driver” mutations. For this purpose, we are 
trying to exploit two types of contextual information: 

(1) the protein-to-protein (pp) interactions of the mutated genes in question, as well as 
(2) their potential correlations with gene expression clusters. 

These two types of contextual information are used in a synergistic manner. 
The use of pp interactions is based on our surprising finding that most AML mutations tend to 

affect complete pp interaction cliques. More precisely, the protein-to-protein interaction network 
between AML mutated genes contains a large number of nontrivial maximal cliques (of size ≥ 3).*  

This is highly surprising given the very low number of somatic mutations in AML, much 
lower than in all other solid cancers analyzed to date [8]. The fact that mutations tend to affect 
cliques in the pp interaction network suggests the disruption of biological processes or protein 
complexes involving the corresponding protein cliques. It is as if such biological processes or 
complexes can be perturbed by mutations in any of their components. This is important since only 
very few mutations in AML (or other cancer types for that matter) have an incidence larger than 
10%. Grouping mutations based on their pp interactions thereby enhances the statistical power of 
detecting correlations between mutations (the causal factors) and their transcriptional 
consequences, such as gene expression subtypes of the disease. 

 
* The nontrivial complete maximal cliques of mutated genes have an average size of ~3. 
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2.  Data and preprocessing 

2.1.  The TCGA AML dataset 

The TCGA Acute Myeloid Leukemia (AML) dataset was downloaded from the TCGA data 
portal†, as well as from the supplementary data of the TCGA landmark publication [8] (in 
preprocessed form). More specifically, we downloaded: 

• gene expression data (RNASeqV2 UNC Illumina HiSeq, level 3 RSEM normalized data), 
• copy number variation data (profiled using Affymetrix SNP6 arrays, level 4 data obtained 

using Gistic2), 
• somatic mutation data (obtained using either whole-genome sequencing, or whole-exome 

sequencing), 
• data regarding gene fusions (obtained from de novo assembly of RNA-sequencing data), as 

well as 
• clinical annotations. 

We retained 163 samples with simultaneous gene expression, copy number, mutation, gene 
fusion and clinical data. 

2.2.  Generalized mutations 

Since somatic mutations, copy number aberrations and gene fusions can all act as drivers of the 
disease in individual patients, we defined “generalized mutations” as either: 

(1) expressed somatic mutations, 
(2) expressed fusion genes, or 
(3) significant copy number aberration events. 

A somatic mutation in a given gene was considered expressed if the expression of the 
corresponding gene exceeded the expression threshold of 6 (on the log2 scale). 

Since gene fusions have been determined from de novo assembly of RNA-seq data, they were 
all considered to be expressed. 

Copy number aberrations were considered significant if  
• the corresponding gene’s expression levels were not uniformly low (below the expression 

threshold of 6, mentioned above), and 
• they were accompanied by concordant gene expression changes with |Z|>2 (i.e. amplifications 

accompanied by gene up-regulation and deletions accompanied by gene down-regulation), and 
• the copy number profile had at least a slight correlation (exceeding 0.3) with the gene’s 

expression profile. 
There were 2142 genes with generalized mutations in at least one sample, with a total number 

of 5865 events, of which 1050 expressed mutations and 202 gene fusions (for more details, see 

 
† tcga-data.nci.nih.gov  
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Table 1). Gene fusions g1-g2 were recorded as separate generalized mutations in g1 and g2 
respectively, to allow their mixing with other generalized mutations in those genes. 

 
Table 1. Generalized mutations in 163 AML samples 
Generalized mutation type Number of generalized mutations 
CN deletions 3008 
CN amplifications 1605 
Somatic mutations 1041 
Somatic mutations + CN deletions 8 
Somatic mutations + CN amplifications 1 
Gene fusions 193 
Gene fusions + CN deletions 7 
Gene fusions + CN amplifications 2 
Total 5865 

2.3.  Protein-to-protein interaction data 

We used the BioGRID protein interaction database‡ (version 3.2.101 for Homo Sapiens), which 
we restricted to the physical interactions. This resulted in 136201 interaction pairs involving 
14791 unique human genes. 

3.  Proteins mutated in AML form pp interaction cliques 

Compared to solid cancers, AML genomes have much lower numbers of mutations [8]. This is to 
be expected, as leukemias do not have to evade the source tissue and metastasize, as solid cancers 
do. (Along these lines, a two-hit model of leukemogenesis has been proposed by Gilliland [9].)  

Interestingly however, restricting the BioGRID pp interaction network to the set of genes 
mutated in AML, we obtain a large number of pp interaction cliques. More precisely, we obtain 
4160 maximal cliques§ involving the 2142 genes with generalized mutations (of which 3564 
nontrivial cliques involving more than one gene). The average nontrivial clique size was 2.96. 
Figure 1 depicts the corresponding distribution of nontrivial maximal clique sizes, showing that 
mutated genes form many large cliques. 

Compared to the complete BioGRID interaction network, the edge density** of the network of 
mutated genes is significantly larger (2.3⋅10-3 versus 5.6⋅10-4), although the average clustering 
coefficient is smaller (0.1002 versus 0.1758). 

                                                 
‡ http://thebiogrid.org/  
§ Although the clique decision problem (testing whether a graph contains a clique larger than a 

given size) is NP-complete, while listing all maximal cliques may require exponential time (as 
there exist graphs with exponentially many maximal cliques [16]), finding all maximal cliques in 
our setting is reasonably fast (running times of the order of minutes on a 3GHz machine using a 
Matlab implementation of the Bron–Kerbosch algorithm [17]). 

** i.e. the number of edges divided by the maximal possible number of edges, i.e. n(n-1)/2, where 
n is the number of nodes of the network. 
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Fig. 1.  The distribution of nontrivial maximal clique sizes of mutated proteins in the 

BioGRID pp interaction network. 
 

Mutations affecting nontrivial protein interaction cliques suggest different ways of perturbing 
certain key biological processes or protein complexes involving the corresponding cliques. 
Therefore, although most individual mutations have a low incidence in the AML patient 
population (thereby masking their possible role in the pathogenesis of the disease), cliques tend to 
be mutated†† in a higher number of patients and thus could be used to order mutations in 
individual patients. The supplementary table ‘sample mutations clique cover.xls’ (online at 
www.ai.ici.ro/ PSB2014/) shows for each patient sample its mutations sorted in descending order 
of the number of samples in which the largest maximal clique containing the corresponding gene 
is mutated. 

More precisely, in the following, by ‘clique’ we always mean ‘maximal clique’. We denote by 
Mms the binary mutation matrix (Mms=1 iff sample s has mutation m) and by Cmc the clique 
membership matrix (Cmc=1 iff mutated protein m is involved in clique c). We define the cover of a 
clique c to be the number of samples with mutations in at least a gene m of that clique: 

clique-cover(c) = | { s | ∃m. Mms=1 and Cmc=1 } |. 

We can also define the largest clique associated to a given mutation m as a clique containing m 
having the largest clique cover‡‡: 

largest-clique(m) = c  iff  Cmc=1 and ∀c' such that Cmc' =1, clique-cover(c') ≤ clique-cover(c). 

Now, for each sample s, we can sort the mutations m in descending order of the cover of the 
largest clique associated to m: clique-cover(largest-clique(m)). The top mutations are likely causal, 

                                                 
†† A clique is said to be mutated in a given sample iff at least one of its genes is mutated in that 

particular sample. 
‡‡ in case there are several such largest cliques, we arbitrarily choose one. 
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as they or their interactors are mutated in large numbers of samples. For example, all acute 
promyelocytic leukemia samples (FAB code ‘M3’) have the PML and RARA fusion proteins at 
the top of the list.  

4.  Joint analysis of gene expression data and mutations using pp interaction data 

Although by using protein-to-protein interaction data we have obtained a reasonable ordering of 
(generalized) mutations w.r.t. their potential causal role in the disease, we still have not made use 
of all available data to the fullest. For example, we have only employed gene expression data for 
filtering out mutations in genes that are not expressed, but we have completely ignored any 
potential similarities in the transcriptomes of samples with different mutations. 

In the following, we describe an approach that simultaneously looks for similarities among 
mutation and gene expression data and, most importantly, is able to extract potentially causal 
sample-specific mutations, despite their low frequency in the dataset.  

By a direct joint clustering of gene expression and mutation data, we may only pick up the 
mutations with the highest incidence. To avoid this, instead of directly clustering mutation data, 
we cluster the pp interactions of the observed mutations with other mutated proteins. Mutated 
proteins with similar interactor sets (among the set of mutated proteins) will likely affect the same 
pathways or protein complexes and produce similar expression changes. 

For example, assume sample s1 is affected by mutation m1, while sample s2 is affected by a 
different mutation, m2. Even with similar gene expression profiles, s1 and s2 may not be grouped 
into a common cluster k, since we wouldn’t know which of the mutations m1 and m2 to associate to 
k. If however, m1 and m2 have similar sets of interactors among the other mutated genes 
p1,p2,p3,…, we could cluster the interactor sets of the mutations instead of the individual 
mutations, thereby merging s1 and s2 despite their different mutations. 

4.1.  The joint clustering of expression and mutation interactor data 

More formally, let s denote samples, g genes, m mutations, k clusters, Xgs the gene expression 
matrix, Mms the binary (generalized) mutations matrix and Ppm the binary protein-to-protein 
interaction matrix involving mutated genes (although the matrix is symmetric, we use distinct p 
and m indices to distinguish the mutations m from their interactors p).  

Now, instead of jointly clustering the gene expression Xgs and mutation data Mms, we cluster 
the gene expression data and the mutation interactor data∑ ⋅

m mspm MP : 

∑ ⋅≈
k

skgkgs SGX  (1) 

∑∑ ⋅≈⋅
k

skpk
m

mspm SAMP  (2) 

where Ggk, Ssk and Apk are gene, sample and respectively mutation interactor cluster matrices. 
Note that the sample cluster matrix Ssk is common to the gene expression and mutation interactor 
data factorizations (1) and (2).  
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Running the nonnegative multirelational decomposition system MNMF§§ [10,11] with a 

relative weight w=0.001 for the mutation interactors (to enable the gene expression data to 
dominate the factorization), we obtain the cluster matrices Ssk, Ggk and Apk for samples, genes and 
mutation interactors respectively.  

The mutation interactor clusters Apk encode the frequently co-occurring mutation interactors p 
in the various clusters k, but do not tell us anything directly about the mutations proper. To obtain 
the sample-specific mutations m that lie behind these cluster-specific mutation interactors p, we 
solve the following nonnegative least squares problem (with M'ms as unknown): 

∑∑ ⋅≈⋅
m

mspm
k

skpk MPSA '  (3) 

using a multiplicative update algorithm that randomly initializes M' and then iteratively applies the 
following update rule until convergence: 

ms
T

ms
T

msms MPP
YPMM

)'(
)(''

⋅⋅
⋅

←  (4) 

where  ∑ ⋅=
k

skpkps SAY .

Finally, we can use MMms=M'ms⋅Mms as a measure of the significance of mutation m for given 
clustering. Mutations with higher MMms are deemed more causally relevant, as they better match 
the given gene expression clustering. Note that frequently occurring mutations tend to have higher 
MM scores, especially if they are not at odds with the gene expression clustering. 

Figure 2 below is a graphical depiction of the decomposition (1)-(3). The system was 
implemented in Matlab. 
 

 
 

Fig. 2. The relational diagram corresponding to the decomposition (1)-(3). Circles correspond to 
entities (g genes, s samples, m mutations, p mutation interactors), while the boxed k represents the 
unknown clusters. Bold edges correspond to the original relations X,M,P, normal edges to inferred 
entity clusters G,S,A, and the dotted edge to the significant sample-specific mutations M'. 

 

                                                 
§§ MNMF is a multirelational generalization of Nonnegative Matrix Factorization (NMF) [13,14] 

and of simultaneous NMF [15]. 

g s m p X M P 

M' 
G S A 

k
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4.2.  The dimensionality of the factorization 

Determining the optimal dimensionality nc of the factorization (1)-(2) is tricky. Similar to Kim and 
Tidor [12], we performed a series of MNMF runs with progressively larger nc, ranging from 2 to 
50. To avoid overfitting, we performed a similar set of runs on randomized entity matrices and 
estimated the signal to noise ratio (SNR) as follows: 

2

22

)(1
)()()(

n
nnnSNR

r

r

ε
εε

−
−

=  

where ε(n) and εr(n) are the relative factorization reconstruction errors for the original and 
respectively the randomized data. The dimensionality nc =22 was chosen to maximize the SNR 
(see Figure 3). Note that the clusters obtained by our nonnegative decompositions should not be 
confused with partitions of the samples into disjoint subgroups. They are rather biclusters 
corresponding to biological processes that may overlap in the various samples (as well as for 
certain genes). 

We also tried the smaller dimensionality nc=7 obtained by optimizing NMF consensus sample 
clustering (a partitional method), as in [8]. 

 

 
Fig. 3. The estimated SNR for the factorizations ranging from nc=2 to 50 clusters.  

 

Pacific Symposium on  Biocomputing 2014

22



  
 

4.3.  Significant sample-specific mutations 

For both nc=7 and 22, the expression clusters were highly associated (using Fisher’s exact test) 
with the French-American-British (FAB) AML subtypes, as noticed in previous studies (see Table 
2 below). In particular, the clustering perfectly distinguishes the Acute Promeylocytic Leukemia 
(M3) samples from the rest (cluster 3). FAB types M6 and M7 are too weakly represented in our 
163 samples (just 1 and respectively 3 samples) to influence the factorization much.  
 
Table 2. Association of clusters with FAB subtypes (nc=7) 

FAB 
subtype 

FAB 
samples 

Best 
associated 
cluster 
(nc=7) 

Cluster 
samples 
(nc=7) 

log2(p) 
(nc=7) 

Best 
associated 
cluster 
(nc=22) 

Cluster 
samples 
(nc=22) 

log2(p) 
(nc=22) 

M0 15 7 33 -8.44 12 23 -24.74    
M1 38 5 30 -13.94 14 16 -6.25    
M2 39 6 32 -6.06    17 14 -13.18    
M3 16 3 16 -41.97    8 16 -41.97    
M4 32 1 28 -11.58    22 27 -12.29    
M5 17 2 25 -16.36    19 11 -27.13    
M6 1 2 25 -2.70    13 14 -3.54    
M7 3 7 33 -7.02    13 14 -5.67    

 
The tables ‘sample-specific mutations 7 clusters.xls’ and ‘sample-specific mutations 22 

clusters.xls’ (online at www.ai.ici.ro/PSB2014) list the sample-specific mutations (in descending 
order of their significance MMms for each sample s) obtained by our approach based on joint 
clustering of expression and mutation interactor data. 

To estimate the concordance of the three mutation significance lists (‘sample mutations clique 
cover.xls’ from section 3, as well the two tables mentioned in this section), we have computed the 
average overlap of the top 5 mutations in each sample for all pairs of lists and depicted the results 
in Figure 4. 

 

 
Fig 4. Average overlap between sample-specific mutation significance lists discussed in 
this paper. 

sample mutations 
clique cover 

sample-specific 
mutations nc=7 

sample-specific 
mutations nc=22 
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Note that the two sample-specific mutation lists overlap best, as expected, and that the list for 

nc=7 is slightly closer to ‘sample mutations clique cover’ than the nc=22 list. The overlap is 
typically lower for the samples with large numbers of mutations (also as expected).  

Careful inspection of the 3 mutation lists shows that we have been able to pick up at least a 
large fraction (if not most) of the mutations with a causal role in the disease. Virtually all 
mutations (such as those in NPM1, FLT3, TP53, DNMT3A, etc.), as well as all gene fusions 
(PML-RARA, MYH11-CBFB, RUNX1-RUNX1T1, etc.) with a known involvement in AML are 
at the top of the lists of the samples harboring them. 

Besides these obvious true positives however, it is difficult to objectively compute accuracy 
figures for  the lists, given the fact that rare individual patient mutations are still largely terra 
incognita. Still, we selected from ‘sample-specific mutations 7 clusters.xls’ the sample entries 
whose top first mutation is not among the known AML mutations – we obtained 18 such samples 
(out of a total of 163), which we list in ‘NOT EXPLAINED sample-specific mutations.xls’ (also 
online). A careful inspection of these samples places them in one of the following 3 categories: 

1. Samples with very few detected mutations.  
2. A known mutation/fusion is not at the top, but close to it (having significance coefficients 

close to the top ones). 
3. Samples with very many mutations for which known mutations/fusions are far from the 

top. 
Subcategory 3.1. The first few top entries may contain generalized mutations 
mentioned in the literature in connection with leukemia. 

Obviously, our algorithm does not err too much in categories 1 and 2. Only category 3 
(including a few outlier samples with very many mutations) could in principle be improved on – 
we suspect that they misbehave because those samples do not fit very well in any expression 
cluster, due to the large numbers of defects accumulated. Table 3 below shows the corresponding 
samples and their category assignments. 

 
Table 3. Samples with rare mutations 

Category Sample Comments 
1 2946 Only two mutations of unknown role. 
1 2995 Only 3 mutations. DDX41(mut) observed by others mutated in AML. 
1 3000 Only 3 mutations of unknown role. 
1 3008 Only two mutations. Possible role of KAT2B. 
2 2832 MLL-MLLT10 fusion close to top. 
2 2855 MLLT10-PICALM fusion close to top. 
2 2874 IDH2(mut) close to top. 
2 2911 MLL-ELL fusion, with MLL significance 3.6⋅10-4 (close to top 

significance 5.9⋅10-4). 
2 2940 MLL3(mut) close to top. 
2 2955 DNMT3A(mut) with significance 10-3 (top 1.2⋅10-3). 
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2 3005 MLL-MLLT10 fusion close to top. 
3/3.1(?) 2817 CBFB(mut), EZH2(mut), BCR-ABL fusion are far from the top, but 

LUC7L2(del) at the top (LUC7L2 mutations mentioned in AML). 
3.1 2849 MLLT10-PICALM fusion far from top, but at the top, KDM3B (a H3K9 

demethylase) is a tumor suppressor linked to leukemia. 
3 2882 U2AF1(mut) far from top (significance 1.1⋅10-3, top 2.3⋅10-3). 
3 2917,2929 KRAS(mut), SETBP1(mut) far from top. 
3/3.1(?) 2920 NF1(mut) far from top, but LUC7L2(del) at the top. 
3/3.1(?) 2939 MTOR-CDH1 fusion far from top, but LUC7L2(del) at the top. 

 

5.  Conclusions 

AML, like other cancer types is a heterogeneous disease. But even with multi-genomic data 
available (related to gene expression, mutations, copy number changes, etc.), finding well-defined 
sub-classifications with prognostic and therapeutic value is still an elusive objective for many 
cancers (although partial encouraging results have been obtained). This is probably due to the 
complexity of the biological processes that are perturbed in the disease and which can be affected 
by a large number of (generalized) mutations. Some of these mutations have a high enough 
incidence for us to be sure of their causal role in the disease, but many (if not the majority) of the 
causal genomic events are rare and patient-specific. 

In this paper we have shown that we can exploit protein-to-protein interaction data to relate 
these possibly rare mutations to one another, thereby enabling a better automated detection of the 
driver mutations in each individual patient. An original feature of our approach is the use of pp 
interactors of the mutations to enable clustering and especially the back-reconstruction of the 
significant mutations from the interactor clusters. 

HotNet [19], used in the original TCGA publication [8], identified only 4 significantly mutated 
subnetworks (which are similar to some of our maximal mutation cliques). However, HotNet does 
not take into consideration the gene expression data, whereas we expect driver mutations affecting 
the same pathway to produce similar expression changes. 

Future work will address the much more difficult problem of finding clinically useful 
prognostic markers. This will likely require looking at the precise mutations and possibly larger 
sample sizes, as different mutations in the same pathway or even in the same gene can have 
significantly different clinical outcomes. 
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Computational efficiency is important for learning algorithms operating in the “large p, small n”
setting. In computational biology, the analysis of data sets containing tens of thousands of features
(“large p”), but only a few hundred samples (“small n”), is nowadays routine, and regularized
regression approaches such as ridge-regression, lasso, and elastic-net are popular choices. In this
paper we propose a novel and highly efficient Bayesian inference method for fitting ridge-regression.
Our method is fully analytical, and bypasses the need for expensive tuning parameter optimization,
via cross-validation, by employing Bayesian model averaging over the grid of tuning parameters.
Additional computational efficiency is achieved by adopting the singular value decomposition re-
parametrization of the ridge-regression model, replacing computationally expensive inversions of
large p×pmatrices by efficient inversions of small and diagonal n×nmatrices. We show in simulation
studies and in the analysis of two large cancer cell line data panels that our algorithm achieves
slightly better predictive performance than cross-validated ridge-regression while requiring only a
fraction of the computation time. Furthermore, in comparisons based on the cell line data sets, our
algorithm systematically out-performs the lasso in both predictive performance and computation
time, and shows equivalent predictive performance, but considerably smaller computation time,
than the elastic-net.

Keywords: ridge-regression, Bayesian model averaging, predictive modeling, machine learning, cancer
cell lines, pharmacogenomic screens

1. Introduction

Analysis of high-throughput “omics” data sets to infer molecular predictors of cancer phe-
notypes is a common type of problem in modern computational biology research. The use of
genomic features such as from gene expression, copy number variation, and sequence data, in
the predictive modeling of anticancer drug response is a particularly relevant example, which
holds the potential to speed up the emergence of “personalized” cancer therapies.1,5 A common
theme of such high-dimensional prediction problems is that the number of genomic features,
p, is usually much larger than the number of available samples, n, and regularized regression
approaches such ridge-regression,2 lasso,3 and elastic-net4 are popular methodological choices
in this context.1,5 Computational efficiency is of key importance for any learning algorithm
operating in this “large p, small n” setting; a method that improves computational efficiency
without sacrificing prediction accuracy could enable such models to be readily applied across
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a large number of phenotype prediction problems, such as inferring genomic predictors for
large panels of anticancer compounds.

In this paper we propose a novel Bayesian formulation of ridge-regression, which executes
in a fraction of the time required by the most efficient current implementations of regularized
regression methods, while achieving comparable prediction accuracy. We refer to our approach
as Stream (Scalable-Time Ridge Estimator by Averaging of Models). First, Stream replaces
cross-validation by Bayesian model averaging6 (BMA) over the grid of tuning parameters.
For each tuning parameter in the grid, we interpret the corresponding ridge-regression fit as
a distinct model, and average all models, weighted by how well each model fits the data.
Second, it replaces the computation of large p × p matrix inversions by efficient inversions of
small and diagonal n × n matrices derived from the singular value decomposition7 (SVD) of
the feature matrix. Note that the use of SVD re-parameterization is a practice to improve the
computational efficiency of ridge-regression model fit.8

We point out that both improvements are allowed by the analytical tractability of the
Bayesian hierarchical formulation of ridge-regression, where the marginal posterior distribution
of the regression coefficients and the prior predictive distribution of the data are readily
available, leading to a fully analytical expression for the BMA estimate of the regression
coefficients. Furthermore, the quantities that need to be evaluated, namely, model specific
posterior expectations and marginal likelihoods, can be efficiently computed under the SVD
re-parametrization.

The rest of the paper is organized as follows. In Section 2.1 we present the Stream algo-
rithm, and, in Section 2.2, we present its re-parametrization in terms of the singular value de-
composition of the feature data matrix. Section 3.1 presents a simulation study comparing the
predictive performance and computation time of Stream against the standard cross-validated
ridge-regression model. Section 3.2 presents real data illustrations using two compound screen-
ing data sets performed on large panels of cancer cell lines. Finally, in Section 4 we discuss
our results, and point out strengths and weaknesses of our proposed algorithm.

2. Statistical model

In the next subsections we present the Stream-regression model and its re-parametrization in
terms of the SVD of the feature data matrix. First, we introduce some notation. Throughout
the text we consider the regression model y = Xβ + ϵ, where y represents the n× 1 vector of
responses, X corresponds to the n× p matrix of features, β corresponds to the p× 1 vector of
regression coefficients, and ϵ represents a n×1 vector of independent and identically distributed
gaussian error terms with expectation 0 and precision τ . The notation Ga(a, b) represents a
gamma distribution with shape and rate parameters a and b, respectively; U(a, b) stands for the
uniform distribution on the interval [a, b]; DU(a, b) represents the discrete uniform distribution
with support in the range {a, . . . , b}; Ber(ϕ) corresponds to the Bernoulli distribution with
success probability ϕ; Nk(µ , Σ) represents a k-dimensional multivariate normal distribution
with mean vector µ and covariance matrix Σ; and Stk(µ , Σ , v) corresponds to a k-dimensional
multivariate t-distribution with mean vector µ, scale matrix Σ, and v degrees of freedom. We
represent the k-dimensional identity matrix by Ik, the indicator function assuming values 0
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or 1 by 11, and the determinant of a matrix A by det(A).

2.1. Stream regression model

Consider the Bayesian hierarchical form representation of ridge-regression (a special case of
the Bayesian formulation for the linear regression model with a normal-gamma prior9):

y | X,β, τ ∼ Nn(Xβ , τ−1In) ,

β | τ, λ ∼ Np(0 , τ
−1λ−1Ip) ,

τ ∼ Ga(aτ , bτ ) ,

where the precision parameter λ plays the role of the tuning parameter in ridge-regression.
Under this analytically tractable model we have that the marginal posterior distribution of
the regression coefficients is

π(β | X,y) = Stp

(
β ; β̂ ,

2 bτ + (y −Xβ̂)ty

2 aτ + n
(XtX + λIp)

−1 , 2 aτ + n

)
,

where the expectation, β̂ = (XtX + λIp)
−1Xty, corresponds to the usual (frequentist) ridge-

regression estimator, and the prior predictive distribution is given by

f(y | X) =

∫
τ

∫
β
Nn(y ; Xβ , τ−1In)Np(β ; 0 , λ−1τ−1Ip)Ga(τ ; aτ , bτ ) dβ dτ

= Stn

(
y ; 0 ,

bτ
aτ

(In −X(XtX + λIp)
−1Xt)−1 , 2 aτ

)
, (1)

Now let λk, k = 1, . . . ,K represent the grid of ridge-regression tuning parameters, and let
Mk represent a ridge-regression model that uses λ = λk. The BMA estimate of β is then

E[β | X, y] =

K∑
k=1

E[β | X, y, Mk] pr(Mk | X, y) , (2)

where

E[β | X, y, Mk] = (XtX + λkIp)
−1Xty

and the posterior distribution of model Mk, given the data, is computed as

pr(Mk | X, y) =
f(y | X, Mk) pr(Mk)∑K
k=1 f(y | X, Mk) pr(Mk)

.

Here, f(y | X,Mk) corresponds to the prior predictive distribution in (1) with λ replaced by
λk, and we adopt a discrete uniform prior for the models, so that pr(Mk) = K−1, k = 1, . . . ,K.

In regression based predictive modeling, one is generally interested in making a prediction,
ŷ = Xtest β̂train, of the response vector ytest, where Xtest represents the feature data on the
testing set, and β̂train represents the regression coefficients estimate learned from the training
set. In our Bayesian model, we are interested on the the expectation of the response’s posterior
predictive distribution,

E[ytest | Xtest , Xtrain , ytrain] = Xtest E[β | Xtrain , ytrain] ,

where E[β | Xtrain , ytrain] is given by equation (2).
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2.2. SVD re-parametrization

Consider the SVD of the n× p feature data matrix X of rank n. One possible representation
of X is given by X = UDV t, where U is a n × n orthogonal matrix of left singular vectors;
D is a n × n diagonal matrix of singular values dj; and V is a p × n matrix of right singular
vectors. An alternative representation is X = U∗D∗V

t
∗ where U∗ is a n × p matrix obtained

by augmenting U with p − n extra columns of zeros, U∗ = (U ,0); D∗ is a p × p diagonal
matrix with the first n diagonal entries given by the singular values and the remaining p− n

diagonal entries set to zero; and V ∗ is a p × p orthogonal matrix obtained by augmenting V

with p−n additional right singular vectors. Exploring these re-parametrizations we can, after
some algebra, re-express β̂ in the computationally more efficient form,

E[β | X, y, Mk] = V ∗ (D
2
∗ + λkIp)

−1D∗U
t
∗y = V (D2 + λkIn)

−1DU ty .

In addition to the efficient computation of β̂, we can also explore the SVD reparame-
terization for efficient computation of the prior predictive distribution, which involves two
computationally expensive steps; namely, evaluation of the quadratic form yt(In −X(XtX +

λkIp)
−1Xt)y, and of det

(
(In − X(XtX + λkIp)

−1Xt)−1
)
. Starting with the quadratic form,

observe that

In −X(XtX + λkIp)
−1Xt = In −U∗D∗(D∗ + λkIp)

−1D∗U
t
∗ = In −U(In + λkD

−2)−1U t ,

so that we replace a p × p matrix inversion by a n × n diagonal matrix inversion in the
computation of the quadratic form. Next, consider the determinant. From the application of
the Woodbury matrix inversion formula10 we have that

In −U(In + λkD
−2)−1U t = (In + λ−1

k UD2U t)−1 ,

and from standard properties of the determinant and the orthogonality of the U matrix we
have that

det
(
(In −X(XtX + λkIp)

−1Xt)−1
)
= det(In + λ−1

k UD2U t) =

n∏
j=1

(
1 +

d2j
λk

)
.

Hence, the prior predictive distribution can be efficiently computed as

f(y | U , D, Mk) = C

(
1 +

yt(In −U(In + λkD
−2)−1U t)y

2 bτ

)−
2 aτ + n

2

with the normalization constant, C, given by

C =

Γ

(
2 aτ + n

2

)
Γ

(
2 aτ
2

)
(2 aτ π)

n

2

(
bτ
aτ

)−
n

2

 n∏
j=1

(
1 +

d2j
λk

)−
1

2
.
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3. Illustrations

Before we present our simulation study and real data illustrations, we provide a few model
fitting details relevant to the next subsections. Throughout this paper we evaluate predictive
performance using the RMSE statistic,

√
(ytest − ŷ)t(ytest − ŷ)/ntest, where ŷ = Xtestβ̂train.

For ridge-regression, lasso, and elastic-net, we adopted 10 fold cross validation. We adopted
a data-driven approach, described in detail in the appendix, for the determination of the
tuning parameter grid for ridge-regression and Stream. Each simulated or real data set used
a different grid, composed of K = 100 values. For each data set we used the same grid in the
ridge-regression and Stream model fits. For the lasso and elastic-net algorithms, we adopted
the tuning parameter grids generated by default by the glmnet R package.11 Both response
and feature data are scaled prior to analysis. In both simulation studies and real data analysis
illustrations we tested whether the difference in RMSE between two methods is statistically
significant using the Wilcoxon paired-sample test.12

3.1. Simulation study

We performed a simulation study illustrating how Stream achieves slightly better predictive
performance than ridge-regression (when we adopt non-informative priors for the residual
precision parameter τ), while requiring only a fraction of the computation time.

In order to evaluate the method’s performance under widely heterogenous conditions, we
simulated 5,000 distinct data sets, each one generated with a unique and random combination
of sample size (n), number of features (p), model sparsity (ϕ), residual noise (σ), and strength
of feature correlation (ρ), sampled according to: n ∼ DU(100 , 500); p ∼ DU(501 , 10000); ϕ ∼
U(0.1 , 0.9), σ ∼ U(0.1 , 5); and ρ ∼ U(0.1 , 0.9).

Each simulated data set was generated as follows: (i) we first draw a single value of n, p, ϕ,
σ, and ρ, from their respective uniform distributions; (ii) given the sampled values of n, p, and
ρ, we simulate the feature data matrix, Xn×p = (Xn×p1

, . . . ,Xn×pL
), as L separate matrices,

Xn×pl
, generated independently from Npl

(0 , Σl) distributions, where Σij,l = 1, for i = j, and
Σij,l = ρ|i−j|, for i ̸= j. The number of features, pl, in each of these matrices were randomly
chosen between 20 and 100 under the constraint that p =

∑L
k=1 pl; (iii) given the sampled

values of p and ϕ, we computed each regression coefficient, βj, j = 1, . . . , p, as βj = β∗j 11βj
,

where β∗j ∼ N(0, 1), and 11βj
∼ Ber(ϕ) (note that, by defining βj as above, we have that, on

average, ϕ p regression coefficients will be non-zero); and (iv) given the sampled value of σ and
the computed feature matrix and regression coefficients vector, we computed the response
vector as y = Xβ + σ ϵ, where ϵ is a vector of standard gaussian error variables. We note
that for each simulated data set we actually generated 2n data samples, and used the first n
samples as the training set, and the second half as the test set. Figure 1 present the results.

Panel (a) in Figure 1 shows that the predictive performance of Stream is quite similar to
ridge-regression when the RMSE values are small, but Stream tends to slightly outperform
ridge when RMSE values are larger, as suggested by the increased number of points below the
diagonal for RMSE values closer to 1. Application of the Wilcoxon paired-sample test shows
that, overall, Stream achieves statistically significant increased performance over ridge (p-value
= 2.501 × 10−5). We note that the results in Figure 1 were computed using an uninformative
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Fig. 1. Simulation results: comparison of Stream and ridge-regression in terms of predictive performance and
computation time.

gamma prior distribution (hyper-parameters aτ = bτ = 0.001). As expected, the adoption of
informative gamma priors led to decreased predictive accuracy (results not shown).

Panel (b) in Figure 1 shows the comparison of computation times between Stream and
ridge-regression. Overall, Stream was approximately 10 times faster than ridge. In general,
Stream is approximately f times faster than ridge-regression, where f represents the number
of cross-validation folds used by ridge.

3.2. Cancer cell line panels

In this section we compare the predictive performance and computation time of the Stream,
ridge-regression, lasso, and elastic-net algorithms in inferring molecular predictors of com-
pound sensitivity based on the Sanger5 and CCLE1 data sets, which contain compound screen-
ing data performed on large panels of molecularly characterized cancer cell lines.

In Sanger we have 535 cell lines and a total of 30,765 features comprised of 4 distinct
feature data types, including gene expression measurements on 12,024 genes, copy number
variation measurements on 18,601 genes, cell line tumor type classifications according to 93
distinct tumor lineages, and mutation profiling on 47 genes. In CCLE we have 411 cell lines and
41,911 features comprised of 5 distinct feature types, including gene expression measurements
on 18,897 genes, copy number measurements on 21,217 genes, cell line tumor type classifica-
tions on 97 tumor lineages, mutation profiling on 33 genes using the oncomap 3.0 plataform,13

and mutation profiling of 1,667 genes using hybrid capture sequencing. Mutation data was
summarized to gene-level binary calls, with 1 representing a somatic mutation observed at any
base pair within the gene. Gene expression, copy number, and mutation data were summa-
rized to gene-level features. The Sanger dataset tested 138 compounds and summarized the
sensitivity of each cell line based on IC50 values. The CCLE dataset tested 24 compounds and
summarized the sensitivity of each cell line based on the area over the dose response curve
(where response values at each compound dose are scaled with -100 representing complete
growth inhibition and 0 representing no growth inhibition).

In the present analysis we discarded samples and features with missing data, and we filtered
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out genomic features with variance smaller than 0.01, and with non-significant correlation
with the response (p-value > 0.1). After filtering we obtained, on average, 5,588.80 ± 2,046.48
genomic features in Sanger, and 12,512.12 ± 3,345.16 in CCLE. We evaluated predictive
performance by splitting the data into five parts, using four parts as the training set and
the left out part as the testing set. In each of the 5 splits, we trained the ridge, lasso, and
elastic-net models using 10 fold cross validation and adopted aτ = bτ = 0.01 for the Stream
model. At each split we obtained a prediction vector ŷj, j = 1, . . . , 5, and we computed a single
RMSE using the concatenated vector of predictions, ŷt = (ŷt

1, . . . , ŷ
t
5), and the full observed

response data, y, as
√

(y − ŷ)t(y − ŷ)/n.
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Fig. 2. Predictive performance and computation time for the Sanger cell line panel. Results for each com-
pound.

Figures 2 and 3 depict the results for the Sanger data. Figure 2(a) shows the RMSE scores
across the 138 drugs sorted according to the elastic-net RMSE. Overall, Stream seems to
perform slightly better than ridge and elastic-net, especially for compounds with high RMSE,
consistent with results on the simulated data. Figure 3(a) confirms this result, showing that
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the median RMSE of Stream (horizontal blue line) is in fact slightly smaller than those of
ridge and elastic-net. Furthermore, application of the Wilcoxon paired-sample test shows that
the slight advantage of Stream is statistically significant (p-values equal to 0.004611 and
0.02147 for the comparisons of Stream against elastic-net and ridge, respectively). The lasso
performance, on the other hand, is considerably worse than all other methods. Figures 2(b)
and 3(b) show considerably smaller computation times for Stream than the other methods.
The elastic-net is the most expensive, followed by ridge and then the lasso. Note that the
results are shown in the log10 scale. In the original scale, Stream was, on average, 2.46± 0.74,
9.06± 0.09, and 47.30± 14.23 times faster than the lasso, ridge, and elastic-net, respectively.
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Fig. 3. Predictive performance and computation time for the Sanger cell line panel. Overall results.

Figure 4 depicts the results for the CCLE data. Panels (a) and (c) show that Stream
performs slightly better than ridge and similarly to elastic-net, although, in both cases, the
differences are not statistically significant (p-values equal to 0.16 and 0.1074, respectively).
Once again, the lasso performance is considerably worse than the other methods. Panels (b)
and (d) show, again, smaller computation times for Stream than the other methods. Stream
was, on average, 1.9± 0.2, 9.16± 0.08, and 38.04± 4.54 times faster than the lasso, ridge, and
elastic-net, respectively.

A particularly attractive feature of Stream is the ability to perform feature selection by
estimating the posterior distribution of regression coefficients. In the context of compound
sensitivity prediction, previous studies have demonstrated that such feature selection may
provide the basis for identifying functional biomarkers underlying compound sensitivity or
resistance.1,5 We compiled a list of known biomarkers of sensitivity (gold standards) for 8
compounds represented in both the Sanger and CCLE panels (first column of Table 1) and
evaluated the rank of each biomarker (based on the absolute value of the regression coeffi-
cients) in the model generated by Stream, ridge, lasso, and elastic-net for the corresponding
compound.

Table 1 present the results. Overall, the relative performance of all four methods tended
to be similar in the sense that the gold standard biomarkers tended to be either well ranked
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Fig. 4. Predictive performance and computation time for the CCLE cell line panel. Results for each compound
(top panels) and overall (bottom panels).

Table 1. Genomic feature ranks. Entries present the rank position followed by the feature
type: copy number variation (C), expression (E), mutation from the oncomap platform (Mo),
and mutation from hybrid capture sequencing (Mh). Missing entries (-) represent features
that had ranks higher than 1,000, were not represented in the data, or were filtered-out from
the analysis.

CCLE Sanger

Drug Gold Stream Ridge Lasso Elastic-net Stream Ridge Lasso Elastic-net

17-AGG NQO1 2-E 2-E 1-E 2-E 1-E 1-E 1-E 1-E

AZD-0530 EGFR 1-Mo 1-Mo 1-Mo 1-Mo - - - -

Erlotinib EGFR 1-Mo 1-Mo 1-Mo 1-Mo - - 863-E -
10-Mh 9-Mh 73-Mh 38-Mh - - - -
36-C 39-C 347-E 258-C - - - -

Lapatinib ERBB2 8-E 8-E 1-E 5-E 6-E 2-E 1-E 2-E
1-C 1-C 2-C 2-C - - - -

PD-325901 BRAF 94-Mo 67-Mo 191-Mo 235-Mo 3-Mo 1-Mo 2-Mo 1-Mo

2-Mh 2-Mh 3-Mh 3-Mh 180-E 181-E 252-E 214-E

PF-2341066 MET 9-C 3-C 19-C 45-C - - - -
HGF 3-E 1-E 1-E 7-E - - - -

PHA-665752 MET - - - - - - - -
HGF 104-E 212-E 540-E 480-E - - - -

PLX4720 BRAF 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo 1-Mo

2-Mh 2-Mh 6-Mh 3-Mh - - - -
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by all methods or poorly ranked by all methods. For instance, in the CCLE panel, the gold
standard features usually showed up among the top ranking features for all methods for most
of the drugs. In the Sanger panel, on the other hand, we see that for several of the drugs, all
algorithms failed to rank the gold standards among their top ranking features.

4. Discussion

In this paper, we proposed a novel and highly efficient Bayesian version of ridge-
regression, which explores Bayesian model averaging and the singular value decomposition
re-parametrization for computational efficiency. Our analysis of two large cancer cell line
panels showed that the predictive performance of the Stream algorithm tends to be slightly
better than ridge-regression in terms of RMSE, suggesting that BMA might be slightly more
effective than cross-validation in noisy data sets. This finding was corroborated by our large-
scale simulation study, where Stream tended to slightly outperform ridge-regression in the
cases were both methods produced high RMSE scores, and showed quite similar performance
otherwise. This competitive predictive performance, combined with the considerably higher
computational efficiency of the Stream algorithm, suggests that this novel method should be
the preferred choice, over standard ridge-regression, in high-dimensional regularized regression
applications.

Furthermore, the analysis of cell line panels showed that the predictive performance of the
Stream algorithm is also competitive with the elastic-net algorithm, showing slightly better
average performance in the Sanger data, and similar performance on the CCLE data. In terms
of feature selection ability, Stream showed similar performance to the elastic-net, the current
state-of-the-art algorithm employed for the identification of functional biomarkers underlying
compound sensitivity or resistance in cancer cell lines.1 Most importantly, this competitive
performance of the Stream algorithm is achieved while requiring only a small fraction of the
computation time required by the elastic-net.

Even though, the application of elastic-net, the most time consuming algorithm in this
study, is still computationally feasible for the two data sets investigated in this work, we point
out that increased computational efficiency opens possibilities for much broader exploration
of pharmacogenomic modeling. For instance, in large scale exploration of modeling choices14,15

such as type of input data (e.g. gene expression, copy number variation, mutation) or method
of summarizing sensitivity values (e.g. IC50, ActArea), we need to build models for a large
number of possible combinations of input/output data. Additionally, the pharmacogenomic
data sets that computational biologists will need to analyze in the near future will only grow
bigger, and the use of highly efficient algorithms will likely become a practical necessity in
the near future. Efficient algorithms make it easier to infer models for much larger compound
screening collections, or even infer models for each of over 10,000 genes from genome wide
RNAi screens. The increased efficiency could even allow models to be applied both the whole
data set and different subsets of data (e.g. tumors from different tissue types).

In the cancer cell line panels investigated in this work, the lasso performed significantly
worse than the other methods. Possible explanations include: (i) that the drug sensitivity
phenotype might behave as a complex trait, associated with a large number of predictors,
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so that the sparseness assumption made by the lasso is violated in our applications; and (ii)
because many features tend to be clustered into highly correlated groups of predictors, the
lasso might be effectively selecting one feature randomly from each group, while methods
using L2 regularization can select more than a single feature from a group of highly correlated
predictors.

The feasibility of the Stream algorithm is due to the analytical tractability of the Bayesian
hierarchical formulation of ridge-regression. Even though Bayesian hierarchical formulations
for the lasso and elastic-net models have been proposed in the literature,16,17 they do not lead
to closed analytical forms for the marginal posterior distributions of the regression coefficients
and for the marginal likelihoods, so that BMA-based versions of these models are not readily
available. The development of model averaging approaches for these methods represents an
interesting topic for future research.

We note that, compared to frequentist implementations of penalized regression models,
the Bayesian formulation provides several advantages and opportunities for future extensions.
For instance, Bayesian approaches provide valid quantifications of the uncertainty associated
with the estimates of regression coefficients in the form of probability intervals, whereas even
the estimation of standard errors associated with the frequentist versions of penalized regres-
sion models is a non-trivial and often problematic task.17 Furthermore, Bayesian approaches
represent a natural framework for the incorporation of additional sources of prior informa-
tion, such as pathway-based relationships between genes, or prior knowledge of the functional
importance of a given gene. Such extensions are topics of active research.

In summary, Stream provides a Bayesian ridge-regression framework with significantly
increased computational efficiency without a trade-off of prediction accuracy or feature se-
lection ability. Thus we believe that Stream advances current state-of-the art approaches for
inferring molecular predictors of compound sensitivity, with natural extensions to other phe-
notype prediction problems or general predictive modeling applications in the “large p, small
n” setting.

5. Availability of code and data

We implemented the Stream algorithm in R,18 and the source code is available in
GitHub (https://gist.github.com/echaibub/6117763). The data and code necessary to re-
produce the simulation study and analysis of the cancer cell line panels presented
in this paper are available in Synapse (www.synapse.org) under the Stream project
(https://www.synapse.org/#!Synapse:syn2010337).
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Appendix A. Computation of the tuning parameter grid

In this section we describe the rationale behind the automatic/data-driven determination
of the tuning parameter grid for ridge-regression. It is a simple adaptation of the approach
adopted in the glmnet R package11 for the default determination of the λ grid in the lasso
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and elastic-net algorithms. The basic idea is to: (i) determine λmax, as the λ value such that
the largest regression coefficient is equal in absolute value to a certain small constant κ; (ii)
determine the smallest λ value in the grid as λmin = ϵ λmax, where ϵ is another small constant;
and (iii) determine the λ grid as a sequence of K values of λ decreasing from λmax to λmin on
the log scale. Explicitly, we set the lambda grid as follows: (a) create a decreasing sequence of
K equally spaced values in the interval

[
log (λmax) , log (λmin)

]
; and (b) take the exponential

of each of value in the sequence.
Next, we describe the derivation of λmax. Considering the singular value decomposition

of X = UDV t, we can re-express the ridge estimator as β̂ = V (D2 + λIn)
−1DU ty, or

β̂j =
dj

d2j + λ
V j U

t y ,

for j = 1, . . . , n (and zero for i = n+ 1, . . . , p) where V j represents the jth row of V . Our goal
then is to find λ such that maxj(|β̂j |) = κ. Since

|β̂j | =
dj

d2j + λ
|V j U

t y| ≤ dj
λ
|V j U

t y|

for all dj, it follows that

κ = max
j

(
dj

d2j + λ
|V j U

t y|

)
≤ 1

λ
max

j

(
dj |V j U

t y|
)

so that λ ≤ maxj
(
dj |V j U

t y|
)
/κ and we take λmax = maxj

(
dj |V j U

t y|
)
/κ. In our simula-

tions and real data analysis we adopted κ = 10−3, ϵ = 10−6, and K = 100.
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Advances in experimental techniques resulted in abundant genomic, transcriptomic, epigenomic,
and proteomic data that have the potential to reveal critical drivers of human diseases. Complemen-
tary algorithmic developments enable researchers to map these data onto protein-protein interaction
networks and infer which signaling pathways are perturbed by a disease. Despite this progress, inte-
grating data across different biological samples or patients remains a substantial challenge because
samples from the same disease can be extremely heterogeneous. Somatic mutations in cancer are an
infamous example of this heterogeneity. Although the same signaling pathways may be disrupted in
a cancer patient cohort, the distribution of mutations is long-tailed, and many driver mutations may
only be detected in a small fraction of patients. We developed a computational approach to account
for heterogeneous data when inferring signaling pathways by sharing information across the sam-
ples. Our technique builds upon the prize-collecting Steiner forest problem, a network optimization
algorithm that extracts pathways from a protein-protein interaction network. We recover signaling
pathways that are similar across all samples yet still reflect the unique characteristics of each bio-
logical sample. Leveraging data from related tumors improves our ability to recover the disrupted
pathways and reveals patient-specific pathway perturbations in breast cancer.

Keywords: Prize-collecting Steiner forest, breast cancer, protein-protein interactions

1. Introduction

Cancer is caused by mutations or other alterations that perturb normal biological processes
in a manner that confers a selective growth advantage to the mutated cell. Massive efforts to
sequence the DNA of thousands of tumors have detected hundreds of thousands of mutations
[1]. However, due to the heterogeneity of tumors, very few genes are mutated frequently enough
to be identified as driver genes [1] — those that yield a growth advantage — and generally the
significantly mutated genes are already known cancer genes [2]. Fortunately, although even
tumors within a specific subtype of cancer may be genetically diverse, the perturbed pathways
are similar [1]. A promising direction is therefore combining genomic data with complementary
data types to focus on these signaling pathways [2] and computationally searching for ‘driver
pathways’ instead of individual driver genes.

Existing algorithms for analyzing cancer are unable to learn patient-specific driver path-
ways. Many algorithms find modules or subnetworks of altered genes [3–8] but produce a single
set of modules for all tumors instead of tumor-specific predictions, limiting the potential for
individualized therapies. PARADIGM [9] addresses this issue by combining multiple types of
data to learn protein and pathway activity for each individual tumor. However, it relies on
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fixed collections of pathways from pathway databases, which are inconsistent and incomplete
even in model organisms like yeast [10] and can be altered by gain-of-function mutations [11].

De novo pathway discovery has been successful in other biological settings [10, 12–18],
but previous approaches are not suitable for analyzing genomic alterations in cancer patients.
Most pathway inference algorithms operate on a single set of input. In the cancer setting, this
input is data from a single tumor, which makes it very difficult to determine which meaningful
genes should compose the driver pathway amid the more numerous passenger mutations.

To overcome the noisiness of the input, we propose to discover tumor-specific driver path-
ways by leveraging the wealth of data that is available for other tumors of the same cancer
subtype. Instead of learning pathways independently for all tumor samples we study all tu-
mors simultaneously, constraining the predicted pathways to be similar. This idea is similar
to what is known as multitask learning in other domains [19]. As we demonstrate in simulated
settings and with real data from basal-like breast cancer tumors, such an approach can recover
individualized driver pathways that contain common core elements that are relevant to the
disease even though they may not be mutated in each tumor.

2. Methods

2.1. Prize-collecting Steiner forest

The prize-collecting Steiner forest (PCSF) algorithm [16] is a computational technique for
de novo signaling pathway discovery. Given a biological network, such as a protein-protein
interaction (PPI) network, and a set of proteins in the network that are believed to be relevant
to a disease or condition of interest, PCSF returns a small subnetwork that connects a subset of
the disease-related proteins with high-confidence paths. These paths typically reveal additional
proteins termed ‘Steiner nodes’ that were not initially implicated as disease proteins but are
useful in forming concise, trusted connections among the disease proteins. The discovered
subnetwork is a forest, a collection of trees.

Formally, the PPI network is represented as a weighted graph G(V,E) where V is the set
of proteins and E is the set of interactions between those proteins. A cost function assigns a
cost c(e) > 0 ∀e ∈ E and a prize function P assigns prizes p(v) ∈ R ∀ v ∈ V . Prizes are
derived from biological data such as gene expression or quantitative proteomic data. p(v) > 0

indicates that the protein is biologically altered and should be included in the Steiner forest,
if possible, with the magnitude indicating the degree of relevance to the disease or condition.
p(v) = 0 denotes that there is no observed data for vertex v or no prior reason to believe it is
relevant to the disease, and such vertices compose the potential Steiner nodes. The original
PCSF optimization problem [16] is defined as argmin

F
o(F ) where

o(F ) = β
∑
v/∈VF

p(v) +
∑
e∈EF

c(e) + ωκ (1)

where VF and EF are the vertices and edges of the forest F and κ is the number of trees in
the forest. β is a parameter that controls the tradeoff between including prizes and avoiding
expensive edges, and ω is a parameter that controls how many distinct trees are in the forest.

A PCSF instance can be transformed into a prize-collecting Steiner tree (PCST) instance
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by adding an artificial vertex v0 that must be included in the Steiner tree and artificial edges
E0 = V × {v0} with c(e) = ω ∀e ∈ E0 [16]. Without loss of generality we can instead connect
v0 only to prize nodes, vertices for which p(v) > 0, because in an optimal solution any tree
connected to v0 must contain at least one prize. PCST is NP-hard so we recover an approx-
imate solution using an efficient message-passing algorithm [13] that performs very well on
benchmarks [20] and has been shown to be optimal in certain cases [20]. From the approximate
PCST solution, we solve the original PCSF instance by deleting v0 and its incident edges. In
all analyses here, we set ω = 1.0 to bias toward solutions with few connected components.

2.2. Multi-sample prize-collecting Steiner forest

The original PCSF formulation is designed for a single set of prizes from a single sample,
condition, or patient. However, in many settings there are multiple samples that are expected
to have some common properties even though the prizes may be very heterogeneous across
the samples. This is particularly the case when the data are derived from patients who suffer
from the same disease. In these cases, we would like to find a middle ground between two
extremes. On the one hand, treating each patient in isolation ignores valuable data that can
more accurately identify the common disease pathway. On the other, if we merge all the patient
data, we miss patient-specific aspects of the disease. To address this challenge, we introduce
the multi-sample prize-collecting Steiner forest (Multi-PCSF) problem.

We define ‘artificial prizes’ φ (described below) that are derived from the frequency at
which a node is included in forests for all the samples. By adding φ to the sample-specific
prizes, we introduce a link that constrains the forests to be similar but not identical. Below
we introduce two alternative definitions for φ, one that tends to increase precision and one
that promotes recall, and provide an algorithm to solve the Multi-PCSF problem.

Without loss of generality we assume that PCSF instances are transformed to PCST
instances as described above. We further assume that β does not change during the execution
of the algorithm, which allows us to redefine p(v) = βp̂(v) before execution, where p̂(v) are the
original prizes from the biological data. We can then simplify Equation 1 to

o(F ) =
∑
v/∈VF

p(v) +
∑
e∈EF

c(e) (2)

which is a PCST instance whose solution can be transformed into a PCSF solution.
In the Multi-PCSF setting we have N samples and each sample i ∈ {1, . . . , N} has its

own prize function Pi. The goal is to learn a collection of forests F = {F1, . . . , FN} that are
constrained to be similar to one another yet still reflect the diversity of the prizes in each
sample. We expand the objective to create a joint objective function over the collection of
forests F and solve argmin

F
o(F) where

o(F) =

N∑
i=1

o(Fi) + λ

N∑
i=1

∑
v/∈VFi

φ (α, v, pi(v),F \ {Fi}) (3)

The term o(Fi) refers to the single forest objective function (Equation 2). The function φ is
a new term that promotes similarity among all Fi ∈ F by introducing artificial prizes. The
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parameter λ controls the tradeoff between Fi that is similar to the other forests versus Fi that
concisely explains the observed data for tumor sample i. The role of λ is similar to how β

controls the tradeoff between prizes and edge costs in the original PCST formulation.
The first of the two definitions of φ uses positive artificial prizes

φ (α, v, p(v),F) =


(∑|F|

i=1 1(v ∈ VFi
)

|F|

)α
, if p(v) = 0

0, otherwise

(4)

The positive artificial prizes provide rewards for including nodes that are common to many
other forests. 1(v ∈ VFi

) is an indicator function that has the value 1 if forest Fi contains vertex
v. The artificial prize on v is therefore determined by the fraction of other forests that contain
v. The parameter α allows for non-linear relationships between the fraction and the artificial
prize. As α grows, the vertices that are in many other forests will have larger artificial prizes
relative to the vertices in few other forests.

To optimize Equation 3 we iteratively refine our estimates of the optimal forest for each
sample given all other samples’ current forests for a fixed number of iterations (five here) or
until F converges. At the first iteration we set λ = 0 so that each optimal Fi is independent
of Fj ∀i 6= j because there is no similarity constraint imposed. At all subsequent iterations,
we update each Fi individually in a sequential random order using the fixed current estimate
of all F \ {Fi}. Below we show how to update Fi by formulating a new PCST instance with
modified prizes. To derive the modified prizes we consider only the ith term of each summation
in Equation 3 to approximately solve argmin

Fi

oi(F).

oi(F) = o(Fi) + λ
∑
v/∈VFi

φ (α, v, pi(v),F \ {Fi}) (5)

=
∑
v/∈VFi

pi(v) +
∑
e∈EFi

c(e) + λ
∑
v/∈VFi

φ (α, v, pi(v),F \ {Fi})

=
∑
v/∈VFi

(pi(v) + λφ (α, v, pi(v),F \ {Fi})) +
∑
e∈EFi

c(e)

By substituting the definition of o(Fi) from Equation 2 into Equation 5 and rearranging the
terms we can define a new prize function P ′

i that adds artificial prizes to the original Pi

p′i(v) = pi(v) + λφ (α, v, pi(v),F \ {Fi}) (6)

=


λ

(∑|F\{Fi}|
i=1 1(v ∈ VFi

)

|F \ {Fi}|

)α
, if pi(v) = 0

pi(v), otherwise

We obtain the new PCST instance that can be solved as described in Section 2.1.

oi(F) =
∑
v/∈VF

p′(v) +
∑
e∈EF

c(e) (7)
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The alternative definition of φ uses negative artificial prizes, which encourage the algorithm
to exclude potential Steiner nodes that appear in few other forests. We define

φ (α, v, p(v),F) =


−

(∑|F|
i=1 1(v /∈ VFi

)

|F|

)α
, if p(v) = 0

0, otherwise

(8)

The algorithm is otherwise identical except the updated prize function P ′
i becomes

p′i(v) = pi(v) + λφ (α, v, pi(v),F \ {Fi}) (9)

=


−λ

(∑|F\{Fi}|
i=1 1(v /∈ VFi

)

|F \ {Fi}|

)α
, if pi(v) = 0

pi(v), otherwise

2.3. Simulated data

In our first analysis, we generated a synthetic scale-free PPI network using the Barabási-Albert
preferential attachment model [21] with 1000 total nodes, 10 initial nodes, and 10 edges per
new node attached (9900 total edges). We created artificial pathways by initiating a depth-
first search from a randomly selected root node in the graph. The search visited at most
two children per node up to a maximum depth of five. Given a pathway with m nodes and
parameters f (pathway fraction) and n (noise level), we simulated patients by selecting dfme
prizes from the pathway and dndfmee noisy prizes (nodes that are not on the pathway) as
mutated genes. For example, if we have a 1000 node network, m = 25, f = 0.25, and n = 2.0,
we would randomly select 7 pathway members as true prizes and another 14 nodes from the
975 that are not pathway members as noisy prizes for each patient. All edges had a cost of
0.1, and we assigned a prize of 1.0 to all mutated genes.

We tested our Multi-PCSF algorithm under a variety of parameter configurations and for
various f and n (Section 3.1). We varied one parameter at a time and set all others to their
default value (Table 1). For all configurations we tested positive and negative artificial prizes.
In each Multi-PCSF run, we simulated 25 patients per pathway and calculated the precision
and recall (Equation 10) for each forest.

Table 1. Multi-PCSF parameters

Parameter Values tested Default

α 1, 2, 3 2
β 0.25, 0.5, 1.0 0.5
λ 0.5, 1.0, 2.0 1.0
f 0.1, 0.25, 0.5, 1.0 0.25
n 0, 0.5, 1.0, 2.0 0.5
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precision =
correct predictions
total predictions

recall =
correct predictions
pathway members

(10)

2.4. Human data

We evaluated Multi-PCSF using two types of human data: canonical pathways and breast
cancer data from 98 patients. For both human analyses we used physical PPI from STRING
(version 9.0) [22]. Using the edge scores s(e) from STRING, we removed low confidence in-
teractions with s(e) < 0.5 and defined edge costs as max(0.01, 1 − s(e)). We downloaded the
‘Epidermal Growth Factor Receptor Pathway’ (EGFR) from the Science Signaling Database
of Cell Signaling [23], translating all pathway node names into gene symbols. Three non-
protein nodes could not be mapped and retained their original names. We selected only a
single gene symbol per gene family to maintain the original pathway topology. We down-
loaded National Cancer Institute-Nature Pathway Interaction Database (PID) pathways [24]
and mapped UniProt ids to gene symbols. To calculate P -values for PID pathway enrichment,
we used the right-tailed Fisher’s exact test. All P -values were corrected for multiple hypothesis
testing by multiplying them by the number of hypotheses tested (Bonferroni correction).

We obtained The Cancer Genome Atlas (TCGA) breast cancer data from the Broad In-
stitute’s Genome Data Analysis Center Firehose (April 21, 2013 analysis run). We considered
only the 98 basal-like tumors defined in [25]. For each tumor i, we defined the prize on a
gene to be pi(g) = pmi (g) + ppi (g) where pmi (g) is the number of non-silent mutations or indels
in gene g and ppi (g) denotes proteomic changes in the reverse phase protein array data. If an
antibody exhibited a log2 scale fold change with magnitude of at least 1.0, we set ppi (g) to be
that magnitude and took the maximum magnitude when multiple antibodies mapped to a
single gene. To simulate 100 patients in the EGFR pathway, we set f = 0.25 and n = 10.0 and
generated noisy prizes as described above. We used α = 2, β = 1.0, and λ ∈ {0.5, 1.0, 2.0, 5.0}.
For the breast cancer analysis we set α = 2, β = 0.5, and λ = 1.0.

2.5. HotNet analysis

We ran generalized HotNet (version 1.0.0) [5, 26], which takes a gene-gene influence matrix
and a score on genes as input. We used the influence matrix packaged with HotNet, which
is derived from the Human Protein Reference Database (HPRD) PPI network [27], and set
the gene score to be

∑N
i=1 pi(g) where N is the number of basal-like breast cancer tumors. We

allowed HotNet to choose the optimal δ parameter, which it selected as δ = 0.05, and used
all other default parameters (1000 permutations, smin of three, and smax of ten). We defined
‘HotNet PID pathways’ as the five PID pathways that most significantly overlapped a HotNet
subnetwork, which happened to be the same 864-gene HotNet subnetwork for all five.

3. Results

We tested Multi-PCSF in three increasingly challenging settings to demonstrate how sharing
information across samples improves pathway recovery for each individual sample. In the first
two test cases, we generated prizes from a known reference pathway and quantified how well
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the pathway was recovered. In the third, we analyzed data from 98 patients with basal-like
breast cancer tumors and showed that Multi-PCSF produces individualized representations
of the signaling pathways that are perturbed in this breast cancer subtype.

3.1. Recovering simulated pathways

In order to quantitatively evaluate whether Multi-PCSF improves pathway recovery, we first
simulated prizes for cancer samples with a common driver pathway. We simulated a 1000 node
scale-free network, which reflects the topology of real PPI networks [28] and allowed us to run
Multi-PCSF under a wide range of parameter configurations (solving 32500 PCST instances)
to ensure its advantages are not limited to specific settings. We generated a driver pathway
that would be altered in each tumor. We then randomly assigned prizes in each synthetic
tumor sample to a fraction of the pathway members as well as a fraction of other proteins
that are not on the pathway, which represent noisy passenger mutations. We ran baseline
PCSF (which does not share information across samples) and Multi-PCSF and calculated
precision and recall (Equation 10) for the nodes and edges of each forest. We assessed the
average performance over ten synthetic pathways (Figure 1).

With very few exceptions, Multi-PCSF improves both the precision and recall under all
tested parameter configurations. The improvements in recall, how much of the reference path-

Fig. 1. Node and edge precision and recall for Multi-PCSF versus PCSF on simulated pathways. Positive
and negative refer to the Multi-PCSF artificial prizes. Points above the red diagonal indicate instances where
Multi-PCSF outperforms PCSF.

Pacific Symposium on  Biocomputing 2014

45



way is recovered, are especially notable. In the best case Multi-PCSF node recall is 3.5 times
greater than PCSF and edge recall is 4.6 times greater. On this instance PCSF node recall is
0.28 signifying that for most synthetic tumors the prize nodes are the only pathway members
that could be recovered. Multi-PCSF node recall is 0.98 — in most cases the entire pathway
could be recovered. Positive artificial prizes yield greater improvements in recall than negative
artificial prizes. With positive prizes, Multi-PCSF includes proteins that are shared by many
other forests even if they are not needed to connect additional prize nodes. Conversely, with
negative prizes Multi-PCSF is more likely to use such nodes as Steiner nodes but will not
include them in a forest unless they help connect prize nodes.

3.2. Recovering the EGFR signaling pathway

Having established that Multi-PCSF can substantially improve pathway recovery in a simu-
lated setting, we assessed its performance in a human PPI network. We selected the human
EGFR pathway as the hypothetical driver pathway that was perturbed in a cohort of simu-
lated tumors and applied both Steiner forest algorithms. The randomly generated prizes in
this setting were much noisier than in the simulated pathway setting to better reflect the large
number of passenger alterations per driver mutation in real cancer datasets. For every func-
tional prize selected from the EGFR pathway, we added ten noisy prizes from elsewhere in the
PPI network. We simulated 100 tumor samples, ran PCSF and Multi-PCSF, and calculated
precision and recall (Figure 2). For Multi-PCSF we varied λ, which controls the strength of
the constraint that requires forests to be similar to one another.

Fig. 2. Precision-recall graphs for Multi-PCSF with positive and negative artificial prizes and baseline PCSF
on the human EGFR pathway. The four Multi-PCSF points correspond to different values of λ.

In the EGFR setting, PCSF node precision is only 0.065 and edge precision is 0.022 because
even the noisy prizes could often be connected to the EGFR pathway members. By sharing
information across samples, Multi-PCSF is better able to discern which prizes are spurious
and which potential Steiner nodes are preferable because they are perturbed in other samples.
With positive artificial prizes, proteins that are members of other forests (as either prize nodes

Pacific Symposium on  Biocomputing 2014

46



or Steiner nodes) are introduced as Steiner nodes. This enhances recall, which increases with
λ, culminating in a 2.0 times improvement in node recall and 1.9-fold edge recall improvement
when λ = 5.0. The maximum node recall attained is 0.90. Even in this difficult setting, nearly
all proteins on the pathway can be extracted from the PPI network at the expense of a decrease
in precision. Parallel paths in the EGFR pathway cannot be captured by our inferred forests,
which suggests that edge recall could potentially be further improved by applying perturbation
techniques that merge multiple forests and produce more general topologies [16].

With negative artificial prizes, Multi-PCSF excludes proteins that are not useful in other
forests, which boosts precision. When λ = 5.0 and negative prizes are used, Multi-PCSF node
precision is 2.1 times greater than PCSF and edge precision is 5.4 times greater. In addition,
when using a weaker similarity constraint (λ = 0.5), Multi-PCSF exhibits superior precision
as well as a small improvement in edge recall.

3.3. Pathways in breast cancer

To assess Multi-PCSF’s ability to interpret and suggest mechanistic hypotheses about real
clinical data we applied it to TCGA breast cancer data [25], inferring the pathways perturbed
in these tumors and their common and unique components. Because cancer subtypes defined
by mRNA expression similarity are likely to share common driver pathways, we focus on
only the basal-like breast cancer subtype (98 tumors). We calculated prizes using the TCGA
non-silent mutations and proteomic data. Other data types such as copy number alterations
can easily be integrated into our analysis, and we have previously shown how to combine
epigenomic features and mRNA expression to place prizes on transcription factors [17]. Some
of the tumors had sparse prizes so we used positive artificial prizes in Multi-PCSF to leverage
its ability to construct more complete pathways based on alterations in other tumors.

Multi-PCSF achieves our goal of discovering pathways that have a common core structure
and many individual characteristics connected to the core that reflect the diverse manners in
which the driver pathways are affected in each tumor (Figure 3). The shared core is composed
of 198 nodes (8.30% of all nodes appearing in any forest) that are present in all 98 forests.
This core likely contains pathways that are altered in all patients despite their heterogeneous
mutations. For example, we recover basal-like breast cancer-related proteins such as ATM,
BRCA1, BRCA2, MYC, RB1, and TP53 [25]. In addition, we find HIF1A in the common
core, consistent with the fact that high HIF1A pathway activity is a key feature of basal-like
breast cancers [25]. By jointly analyzing all patients we find potential therapeutic targets that
would have been missed in individual analyses. Two genes, ARHGDIA and SMAD2, do not
appear in any forests when PCSF is run independently on each sample but appear in the
Multi-PCSF common core. ARHGDIA encodes the protein RhoGDI-1, which is overexpressed
in breast cancer and blocks chemotherapy drug-induced apoptosis in cancer cells [29]. SMAD2
knockdowns in breast cancer cells suggest it is a tumor suppressor [30].

Although many nodes are identical across the forests, the edges used to connect those
nodes to each other vary as only 39 edges (1.36%) are common to all forests. Beyond the
shared core, 1411 nodes (59.14%) and 1712 edges (59.55%) appear in only one forest. 917 nodes
are Steiner nodes in at least one forest, including all nodes in the common core and 435 nodes
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Fig. 3. The heat map summarizes all 98 Multi-PCSF forests. Each row represents the forest for a particular
tumor sample and depicts which nodes are collected prizes (red), Steiner nodes (blue), and absent (white).

that are present in multiple but not all forests. The variation among the forests demonstrates
that even tumors within a single subtype cannot be represented by a single pathway structure.

HotNet [5, 26] is an algorithm for discovering PPI subnetworks that are significantly
affected in a cancer dataset. We applied generalized HotNet to the basal-like tumor data,
providing HotNet’s HPRD-derived gene-gene influence matrix and the same mutation- and
proteomic-based prizes as input. HotNet returned 109 subnetworks. One large subnetwork
contained 864 proteins and the other subnetworks had two to seven members. HotNet’s sub-
networks significantly overlap PID pathways (Table 2), which we refer to as HotNet PID
pathways (Section 2.5), demonstrating that HotNet can reveal which reference pathways are
relevant in a cancer subtype. However, because it produces a single list of subnetworks for the
entire subtype and does not reveal hidden pathway members (the equivalent of Steiner nodes
in PCSF), it is difficult to use HotNet to generate mechanistic hypotheses or guide individu-
alized treatment. Although HotNet would produce different results if we tune its parameters
to generate smaller subnetworks or use an influence matrix derived from the STRING PPI
network, these fundamental differences between HotNet and Multi-PCSF would remain.

Multi-PCSF not only recovers forests that capture the same annotated pathways as Hot-
Net, but it also presents custom versions of those pathways for each tumor, which better

Table 2. HotNet PID pathways and whether they significantly overlap Multi-PCSF forests, PCSF forests,
or both (corrected P ≤ 0.05). If both, the table shows whether the overlap is better or worse for Multi-PCSF.

HotNet PID pathway HotNet subnetwork
overlap corrected P

Only
Multi-
PCSF

Better
Multi-
PCSF

Worse
Multi-
PCSF

Only
PCSF

SHP2 signaling 9.36 E-10 65 33 0 0
IL2-mediated signaling events 2.97 E-9 36 62 0 0
Signaling events mediated by Stem cell
factor receptor (c-Kit)

3.08 E-9 29 69 0 0

Integrins in angiogenesis 7.80 E-9 60 38 0 0
GMCSF-mediated signaling events 4.23 E-8 45 53 0 0
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enables follow-up biological analysis. In many cases standard PCSF does not recover the ref-
erence pathways affected in the basal-like subtype because it does not leverage data from
related tumors. For all tumors where the PCSF forest is significantly enriched with a PID
pathway, the enrichment is stronger after sharing information with Multi-PCSF (Table 2).
Individualized representations of the PID pathways, such as ‘Signaling events mediated by
Stem cell factor receptor (c-Kit)’, could potentially lead to new therapeutic strategies for
subsets of the basal-like breast cancer cases. KIT abnormalities have been implicated in sev-
eral other cancers [31], and KIT-positive gastrointestinal stromal tumors have been approved
for Gleevec (imatinib) treatment [32]. Post-processing procedures for prioritizing Steiner tree
members have shown that highly-ranked Steiner nodes validate in vitro [17] and can be applied
here to guide subsequent analysis of the individual pathway predictions.

4. Discussion

The prize-collecting Steiner forest algorithm is a powerful approach for integrating genomic,
proteomic, transcriptional, and epigenomic data to reconstruct signaling pathways. Our multi-
sample extension enables PCSF to analyze heterogeneous data, where prizes vary greatly
across a collection of samples, and to exploit information from related samples despite the
prize-level dissimilarities. Multi-PCSF is an especially pertinent tool for large-scale cancer
profiling studies because the most frequently recurring alterations have already been identified
(leaving the non-recurrent abnormalities for further interpretation) and we seek to understand
the unique causes of oncogenesis in each tumor. The artificial prizes introduced in Multi-
PCSF facilitate constructing accurate patient-specific driver pathways despite the presence of
numerous passenger mutations by promoting genes that are driver pathway members in other
tumors. Algorithms like HotNet can reveal which processes are affected in a patient cohort but
do not guide individualized treatment (although recent diffusion-based algorithms [33] aim to
lift this limitation). Multi-PCSF is also widely applicable beyond cancer and can model data
from noisy biological replicates without initially aggregating all replicates, study responses to
a collection of stimuli [34], or compare the immune responses to related viruses [15].
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The two-hit model of carcinogenesis provides a valuable framework for understanding the 
role of DNA repair and tumor suppressor genes in cancer development and progression. 
Under this model, tumor development can initiate from a single somatic mutation in 
individuals that inherit an inactivating germline variant. Although the two-hit model can be 
an overgeneralization, the tendency for the pattern of somatic mutations to differ in cancer 
patients that inherit predisposition alleles is a signal that can be used to identify and 
validate germline susceptibility variants. Here, we present the Somatic-Germline 
Interaction (SGI) tool, which is designed to identify statistical interaction between 
germline variants and somatic mutational events from next-generation sequence data. SGI 
interfaces with rare-variant association tests and variant classifiers to identify candidate 
germline susceptibility variants from case-control sequencing data. SGI then analyzes 
tumor-normal pair next-generation sequence data to evaluate evidence for somatic-
germline interaction in each gene or pathway using two tests: the Allelic Imbalance Rank 
Sum (AIRS) test and the Somatic Mutation Interaction Test (SMIT). AIRS tests for 
preferential allelic imbalance to evaluate whether somatic mutational events tend to 
amplify candidate germline variants. SMIT evaluates whether somatic point mutations and 
small indels occur more or less frequently than expected in the presence of candidate 
germline variants. Both AIRS and SMIT control for heterogeneity in the mutational 
process resulting from regional variation in mutation rates and inter-sample variation in 
background mutation rates. The SGI test combines AIRS and SMIT to provide a single, 
unified measure of statistical interaction between somatic mutational events and germline 
variation. We show that the tests implemented in SGI have high power with relatively 
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modest sample sizes in a wide variety of scenarios. We demonstrate the utility of SGI to 
increase the power of rare variant association studies in cancer and to validate the potential 
role in cancer causation of germline susceptibility variants. 

 
1.  Introduction 

In 1971, Alfred Knudson proposed the two-hit hypothesis for retinoblastoma, demonstrating 
that the distribution of age-of-onset for familial retinoblastoma cases was consistent with 
inheritance of a germline variant followed by a somatic mutation, while age-of-onset for sporadic 
cases was consistent with two independent somatic mutations1. The gene responsible for this 
process was identified 15 years later as RB1, the first tumor suppressor gene2,3. The two-hit 
hypothesis is now the classic model for DNA repair and tumor suppressor genes, which follow a 
dominant mode of inheritance but are typically recessive at the cellular level. This model provides 
a useful framework for understanding cancer predisposition, although DNA repair and tumor 
suppressor genes can be either dominant or recessive at the cellular level, depending on the 
context. Germline mutations in the tumor suppressor gene TP53 follow both one- and two-hit 
models in Li-Fraumeni syndrome, with some inherited genetic causes resulting from cellular 
recessive loss-of-function nonsense variants and others resulting from dominant gain-of-function 
missense variants4. The DNA repair genes BRCA1 and BRCA2 variants are also either recessive or 
dominant at the cellular level depending on the type of cancer, with complete loss of the wild type 
allele in ovarian cancer but occasional haplo-insufficiency in breast cancer5. In general, inherited 
variants in the tumor suppressor gene APC are recessive at the cellular level in colorectal cancer6, 
but can exert dominant effects that can lead to chromosomal instability7. In contrast to DNA repair 
and tumor suppressor genes, oncogenes are generally dominant at both the germline and cellular 
levels, and thus tend to follow a one-hit model. Nonetheless, there are a number of examples of 
oncogenes that follow a two-hit model8. Thus, although one- and two-hit models are sometimes 
overgeneralizations, many genes display a pattern of somatic mutational events in tumors that 
occur more or less frequently than expected among individuals that carry particular germline 
susceptibility variants. 

Next-generation sequencing now provides efficient, high-coverage interrogation of nearly the 
entire genome and is revolutionizing our understanding of somatic mutational events that drive 
tumorigenesis9-11. The use of next-generation sequencing to identify rare germline variants that 
influence cancer risk also holds great promise but is fundamentally a more difficult problem given 
that purifying selection ensures that intermediate-penetrance germline variants are usually very 
rare. A number of rare variant association tests have been developed recently to identify disease-
susceptibility genes from case-control next-generation sequence data. The primary advantage of 
these methods over traditional approaches is that they aggregate rare variants to perform a single 
statistical test for each gene, which greatly increases power while reducing the multiple testing 
burden. However, as we have previously shown, although rare variant association tests greatly 
improve statistical power, studies involving thousands of cases and controls will likely be needed 
to identify novel gene associations for common cancers12-14. The tendency for somatic mutational 
events to occur more or less frequently than expected given the presence of a germline 
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susceptibility variant is an additional piece of evidence that can aid in the search for novel gene-
cancer susceptibility associations or in the validation and characterization of candidate germline 
susceptibility variants. The primary motivation of this work is to provide a framework for 
identifying these statistical interactions between somatic and germline variation in a high-
throughput manner that takes advantage of available bioinformatic tools and existing next-
generation sequencing capacity. The methods we present are implemented in the Somatic 
Germline Interaction (SGI) tool.  

SGI analyzes next-generation sequencing data from tumor-normal tissue pairs and normal 
tissue in matched controls to determine whether germline variation in a gene or pathway 
statistically interacts with the occurrence of somatic events. The two-hit model describes one 
process that can result in statistical interaction, in which two damaged copies of a gene are 
required to initiate tumorigenesis. If the two-hits model holds, then the tumors of cancer patients 
with a deleterious germline variant in a driver gene are likely to have a second somatic mutation 
event in the same gene. Another process that can result in statistical interaction involves cis-acting 
germline variants that can greatly increase the somatic mutation rate in the local genomic  
region15-18. SGI identifies candidate germline susceptibility variants by interfacing with the 
Variant Annotation, Analysis and Search Tool (VAAST)19. The rare variant association test in 
VAAST incorporates amino acid substitution severities, phylogenetic conservation, and the 
distribution of allele frequencies in cases and controls to variants and genes that are likely to 
influence disease susceptibility12. After identifying individuals in the study with candidate 
germline variants, SGI then analyzes tumor-normal pair sequence data to evaluate whether 
somatic mutational events occur more or less frequently than expected by testing the null 
hypothesis that the occurrence of somatic events is independent of the presence or absence of 
germline variation.  

We divide somatic mutational events into two categories: somatic mutations and preferential 
allelic imbalance. SGI implements the Allelic Imbalance Rank Sum (AIRS) test to evaluate 
evidence for preferential allelic imbalance. Specifically, within each gene or pathway, AIRS tests 
whether the chromosomes harboring putatively deleterious germline mutations are preferentially 
amplified in tumor tissues. Allelic imbalance is an important signal of somatic mutations resulting 
from copy number variants (CNVs) or loss-of-heterozygosity (LOH) that has been used to identify 
and validate modest penetrance germline-cancer associations in both humans15,20,21 and mice22-24. 
In addition to allelic imbalance, SGI also evaluates whether somatic mutations occur more or less 
frequently than expected in the tumors of individuals that harbor putatively deleterious germline 
mutations using the Somatic Mutation Interaction Test (SMIT). SMIT only considers single 
nucleotide and small indel somatic mutations that do not result in LOH or CNVs in a large 
genomic region, as these larger somatic events are evaluated by allelic imbalance evidence. SGI 
also combines AIRS and SMIT to provide a single unified framework to detect statistical 
interaction between germline and somatic variation.  

SGI has a number of potential applications. For known germline-susceptibility genes, SGI can 
validate germline variants of unknown significance. For genes that are known to be significantly 
mutated in tumors but not known to play a role in cancer predisposition, SGI can search for novel 
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germline variant associations. SGI can also identify novel cancer-associated genes that would be 
much more difficult to detect than germline case-control studies or somatic mutational analysis 
alone due to rarity and/or effect size. Here, we present the methods implemented in SGI and 
evaluate the performance of the tool in a wide variety of scenarios.  

2.  Methods 

2.1.  Identifying candidate germline variants 

SGI processes VAAST output files to identify individuals with candidate germline 
susceptibility variants. For each gene, any variant that has a VAAST score of greater than 0 is 
identified as a candidate. SGI then performs the AIRS and SMIT tests based on the binary 
classification of individuals with and without candidate germline susceptibility variants. The 
VAAST score threshold is a tunable parameter. Other association tests can be supported, but 
require combining the association test results with a variant classifier – such as SIFT25,26, 
PolyPhen-226, Align-GVGD27,28, or VAAST 2.012 – to identify candidate susceptibility variants. 
For the AIRS and SMIT tests below, set A contains the affected individuals with candidate 
germline susceptibility variants, and set B contains all other affected individuals.  

2.2.  AIRS  

AIRS evaluates candidate germline susceptibility variants to test for preferential allelic 
imbalance. For each individual i at site j, we use the raw somatic read counts for the reference and 
non-reference allele for each germline heterozygous to calculate the binomial one-tail probability, 
pij, that the allele frequency of the non-reference allele is greater than 0.5. To control for inter-
sample variation in the distribution of allelic imbalance throughout the genome, we transform pij 
to the percentile rank, fij, using the empirical distribution function of binomial p-values among all 
variant sites throughout the genome for each individual. This transformation does not necessarily 
require whole-genome data and should effectively control for inter-sample variation in genome-
wide levels of allelic imbalance in targeted gene panels that include as few as 50 genes. To control 
for differences in the level and distribution of allelic imbalance throughout the genome, we restrict 
the test to variants in or around the gene of interest (by default, all variants between the beginning 
of the first and the end of the last exon). Let G equal the set of variants around the gene, and let C 
equal the subset of candidate germline susceptibility variants. Our test statistic is a Wilcoxon-
Mann-Whitney U that compares values of fij for candidate variants to all other variants in the gene 
among individuals that do not carry a candidate germline variant: 

 

 
where vA is the total number of candidate alleles.  When the sample size of either group is 
under 20, the exact one-tail null probability is calculated. Otherwise, a normal 
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approximation is assumed. 
Although we include only candidate germline alleles from individuals in set A, we include all 

heterozygous germline alleles from individuals in set B. Including multiple variants from an 
individual is a violation of the independence assumption in the U test, given that the observation 
of allelic imbalance in one variant would alter the expected distribution of read counts for other 
variants in the region. However, in our tests, we observed a modest increase in power and no 
inflation in Type I error by including all variants from B for sample sizes as small as 40. The 
inclusion of all heterozygous germline alleles is designed to detect subtle signals of allelic 
imbalance resulting from low levels of tumor purity or multiclonality. If the allelic imbalance 
signals are infrequent yet unambiguous, a more powerful alternative is to only include alleles in 
the rank sum test that are on the tails of the binomial distribution (e.g., pij less than 0.05 or greater 
than 0.95). These thresholds can be set as optional parameters.  

We evaluated two allelic imbalance metrics other than the binomial, the proportion of non-
reference alleles and a one-sided Fisher’s exact test comparing read counts between normal and 
somatic tissue. The proportion of non-reference alleles suffered from an inability to account for 
differences in coverage depth. The Fisher’s exact test had the advantage of controlling for allele-
specific read count biases that are present in both the normal and somatic data, but this was offset 
by a modest reduction in power. More sophisticated methods that incorporate haplotype 
information to test for allelic imbalance, such as Haplotype Amplification in Tumor Sequences 
(HATS)29 or Haplotype LOH (hapLOH)30, may provide a replacement to the binomial in the 
future. In all cases, the raw allelic imbalance metric should be transformed using the empirical 
distribution function for each individual to control for inter-sample variation in the level of allelic 
imbalance throughout the genome.  

2.3.  SMIT  

SMIT is designed to evaluate whether somatic mutations occur more or less frequently than 
expected for individuals with a candidate germline susceptibility variant in a gene or pathway of 
interest. More generally, SMIT tests for statistical interaction between somatic mutation 
frequencies and any binary classifier in a defined genomic feature. SMIT addresses the same 
general question as the Clinical Correlation Test (CCT) in the Mutational Significance of Cancer 
package (MuSiC)31, but provides the additional advantage of controlling for inter-sample variation 
in the somatic background mutation rate. Because the same genomic regions are evaluated in the 
two sample groups, the method is robust to heterogeneity in the mutational process between 
genomic regions, which is a major potential source of false-positives when searching for cancer-
associated genes10. 

Let M equal the set of individuals with at least one somatic mutation observed in the genomic 
feature (typically gene). Let ti equal the total number of somatic mutations throughout the genome 
for sample i, and let l equal the proportional length of the gene in base pairs relative to the total 
sequenced region of the genome. For each sample i, we estimate the background mutation rate at 
the gene by the approximation ri = ti×l. Let sA and sB equal the probability for sets A (affected 
individuals with candidate germline susceptibility variants) and B (all other individuals), 

Pacific Symposium on  Biocomputing 2014

55



 
 

 

respectively, that a somatic mutation occurs in the gene through a process that is unrelated to the 
background mutation rate, which approximates the somatic driver mutation rate. SMIT tests the 
null hypothesis that sA = sB against the alternative hypothesis that sA ≠ sB using a likelihood ratio 
test:  
 

 
We estimate the maximum likelihood of s, sA, and sB using a grid search. Note that when ri 
does not vary between samples and the maximum likelihood of s, sA, and sB are all greater than 0, 
Eq. 2 collapses to a multinomial likelihood ratio test. We estimate the significance level of the 
two-tailed test using a chi-square approximation (-2lnΛ ~ χ2

1).  We also implement one-sided tests 
by applying the appropriate transformations to the significance levels of the two-sided test.  The 
one-tailed test. sA > sB evaluates a cellular recessive (or partially recessive) two-hit hypothesis and 
the one-tailed test. sB > sA evaluates a cellular dominant (or partially dominant) one-hit hypothesis. 

2.4.  Somatic-Germline Interaction (SGI) Tool 

SGI implements both AIRS and SMIT, and also combines the two tests to evaluate two- and 
three-hit hypotheses using a Fishers Combined Probability Test (FCPT). We refer to the combined 
AIRS-SMIT test as the SGI test. We also use the FCPT to perform the VAAST-AIRS, VAAST-
SMIT, and VAAST-SGI tests in Figure 4. 

2.5.  Datasets 

The breast cancer samples used in Figures 1 and 3 are from Complete Genomics (CG) whole-
genome sequence data of a tumor-normal pair32. This sample exhibited high levels of allelic 
imbalance throughout the genome, with 77% of heterozygous germline SNPs having a somatic 
allele frequency significantly different from 0.5 at the 0.05 level. In Figures 1 and 4, we used the 
breast cancer sequence data to establish a distribution of read counts to represent next-generation 
sequence data in tumors. For individuals without candidate germline susceptibility alleles (group 
B), we sampled 50 Kb segments with replacement from the breast cancer whole-genome data. To 
represent the marker density of whole-exome data (approximately 2% of the genome), we 
performed rejection sampling on each heterozygous germline variant, rejecting each variant with 
probability 0.98. The top half of Figure 1 was based on the tumor tissue data and represents loci 
with relatively high levels of allelic imbalance in group B. The bottom half of Figure 1 was based 
on the normal tissue data and represents loci with very low levels of allelic imbalance in group B. 
For candidate germline susceptibility alleles in Figure 1 (group A), we simulated the distribution 
of read counts using the following procedure: For each candidate germline variant in each 
individual, we first designated it as preferentially amplified with probability q (between 0.1 and 1). 
Note that the proportion of samples with higher frequency of the preferred allele is approximately 
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q+(1-q)b, where b is the proportion of variants with a higher frequency for the preferred allele in 
group B (Figure 1). The read counts of alleles not designated as preferentially amplified were 
randomly sampled from breast cancer whole-genome data. For the remaining variants, we set the 
total number of reads to a Poisson random variate, t, with mean equal to 52 to match the mean 
read count in the normal tissue whole-genome data. We then set the expected proportion of the 
preferred allele, w, to between 0.6 and 1 and the number of non-reference to a binomial random 
variate with parameters t and w. In Figure 4, the breast cancer ATM case-control sequence data in 
Figure 4 is from a meta-analysis described in13. The genomic variants in group B were simulated 
by sampling 50 Kb segments from the breast cancer whole-genome data, and the variants in group 
A were simulated using the same protocol as Figure 1, with w equal to 1. 

3.  Results 

We evaluated the performance of AIRS, SMIT, and SGI across a range of parameter values 
using a combination of simulated data and bootstrapped next-generation sequencing datasets (see 
Methods). In each comparison, we divide the cases into two groups, the normal group and the 
candidate germline group, representing individuals with and without candidate germline 
susceptibility variants, respectively. 

To benchmark AIRS, we simulated the distribution of read counts according to the parameters 
in Figure 1 for the candidate germline group. For the normal group, we sampled whole-genome 
sequence data from the breast cancer tumor-normal pair. We evaluated two scenarios for the 
normal group, one with very low rates of allelic imbalance and one with relatively high levels of 
imbalance (see Figure 1). When the level of allelic imbalance in the normal group is low, 
preferential allelic imbalance in the candidate germline group is easier to detect, but AIRS 
performs well in both scenarios when 40 or more individuals are included in the candidate 
germline group or when the proportion imbalanced reads for the preferred allele is high. For 
example, with complete amplification of the preferred allele, AIRS has approximately 99% power 
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at the significance level (α) of 0.05 with a sample size of only two individuals in the candidate 
germline group for both scenarios. Because AIRS is designed to detect preferential allelic 
imbalance, it cannot be used to search for genes that tend to follow a one-hit model.  

The performance of SMIT depends heavily on the frequency of somatic mutations in the gene. 
When the mutation frequency is high in the normal group (e.g. 0.5 for APC and colorectal 
cancer)11, SMIT can detect both relative increases and decreases in the candidate germline group 
(Figure 2). In contrast, when the mutation frequency is very low in the normal group, SMIT can 
only detect mutation frequency increases in the candidate germline group. Thus, genes that follow 
a one-hit model can only be detected if somatic mutations are common or if the sample sizes are 
large. In contrast, genes that strictly follow a 2-hit model can be detected with nearly 100% power 
at α = 0.05 with sample sizes of just 10 individuals in the candidate germline group, although the 
detection of subtle increases in mutation frequency require substantially larger sample sizes.  

SMIT is designed to control for inter-sample variation in background mutation rates between 
samples, which can vary by three orders of magnitude10. Systematic differences in background 
mutation rates between the candidate germline group and control group can result from random 
sampling or differences in sample collection strategies. To investigate this problem, we performed 
simulations with identical somatic driver mutation rates but highly differentiated background 
somatic mutation rates between the candidate germline group and the control group. We found 
SMIT properly controlled for Type I error (Figure 3A). In comparison, a Fisher exact test (e.g. 
CCT in MuSiC31) exhibited a highly inflated Type I error rate (Figure 3B).  

SGI is designed to interface with VAAST to increase the power of a rare variant association 
study by combining case-control and tumor-normal pair sequence data. To demonstrate the utility 
of this approach, we analyzed a breast cancer case-control sequencing dataset of the gene ATM in 
VAAST, and then applied SGI to evaluate the potential change in performance. We set the number 
of individuals in the candidate germline group equal to the number of individual variants that had 
a positive VAAST score from the ATM results. We set the frequency of somatic mutations in the 
normal group to 5%, which is the reported frequency of ATM mutations in basal-like breast 
cancer9. For the candidate germline group, we varied the frequency of somatic mutations in the 
candidate germline group from 0 to 0.5 and set the frequency of preferential allelic imbalance 
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Figure 2. Power of SMIT to detect statistical interaction between germline variation and somatic small indel and 
point mutations at α = 0.05. A) Sample size of group A is 10 individuals, and B) sample size of group A is 100 
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equal to the somatic mutation frequency. For each individual, preferential allelic imbalance and 
somatic mutation were mutually exclusive events. Figure 4 reports the sample size needed to 
achieve 80% power using SGI alone (4A-4B) and in combined VAAST-SGI analyses (4C). When 
somatic mutational events are common, combining VAAST with SGI can result in dramatic 
reductions in required sample sizes. 

4.  Discussion 

SGI incorporates several measures to avoid artifactual findings that can result from studies of 
somatic mutational events due to heterogeneity in the mutational process10. Because all 
comparisons are restricted to the same genomic regions, we avoid issues resulting from regional 
variation in mutation rates across the genome, which is the most critical source of mutational 
heterogeneity10. The transformation of binomial probabilities to empirical probabilities for each 
individual in the AIRS test allows subtle signals from low purity tumor samples to be combined 
with stronger signals from pure tumor samples while preserving power and controlling for inter-
sample variation in genome-wide levels of allelic imbalance. AIRS is comparable to the 
Amplification Distortion Test (ADT) in that both tests are designed to detect preferential allelic 
imbalance, with AIRS designed for next-generation sequence data and ADT designed for high-
density SNP microarray data33. SMIT tests for differences in the frequency of somatic mutational 
events between two groups at the same locus. SMIT performs the same role as the CCT test in 
MuSiC31, but additionally controls for inter-sample variation by incorporating sample-specific 
background mutation rates.  

The tests we present here are well powered for a broad range of realistic scenarios. Studies of 
preferential allelic imbalance have reported the proportion of samples with higher frequency of the 
preferred allele of over 60% in colorectal cancer for a common susceptibility SNP at 8q24.2121, 
70% in colorectal cancer tumors for a familial susceptibility variant in AURKA20, over 80% in 
glioblastoma for common susceptibility SNPs in the LHFPL3 gene15, and 80%, 90%, and 100%, 
respectively, for skin tumor susceptibility haplotypes in Skts6, Skts1, and Skts2 in mice22-24. Figure 

Figure 3. Observed versus expected p-values of two tests of germline-somatic interaction: A) SMIT and B) Fisher 
exact test (e.g. CCT31). Expected background mutation rate was 0.01 in the control group and 0.1 in the candidate 
germline group. Somatic driver mutation rate was 0.1 in both groups. Results generated from 100,000 simulations. 
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1 demonstrates that the sample sizes needed for AIRS to detect such signals are generally modest. 
For example, when 70% of samples have a higher frequency of the preferred allele, AIRS can 
detect preferential allelic imbalance with over 85% power from a sample of 20 individuals with 
germline susceptibility variants and a comparison group of 200 individuals. Unlike allelic 
imbalance, which can be detected from SNP microarray data, most somatic mutations can only be 
detected with sequence data, and thus, fewer studies of somatic mutation-germline interaction 
have been conducted. However, promising examples include a 10-fold increase in somatic 
mutations (from approximately 5% to approximately 50%) in a specific region of APC among 
carriers of a particular germline susceptibility variant in human colorectal cancer34, and an 88% 
somatic mutation rate in carriers of the Skts2 susceptibility haplotype in mice23. Both scenarios 
could be detected by SMIT with greater than 80% power with a sample of only 10 individuals 
with candidate germline variants an a comparison group of 200 individuals (Figure 2).  

The example of ATM and breast cancer in Figure 4 provides an illustration of how SGI can be 
combined with VAAST to identify novel cancer-gene associations and to yield new insights for 
known associations. ATM is not a classic two-hit tumor suppressor gene. Some rare missense 
germline variants have a dominant gain-of-function effect, and nonsense germline variants are 
reported to primarily increase the risk of breast cancer via haplo-insufficiency13,35. However, 
reports of rare ATM germline mutations and loss of the wild-type allele in tumors35 is suggestive 
of potential germline-somatic interaction with ATM and breast cancer36. Figure 4 illustrates the 
sample size needed to conclusively detect a somatic-germline interaction effect using AIRS, 
SMIT, or SGI given a range of possible effect sizes. Figure 4 also demonstrates how SGI can be 
combined with VAAST to reduce the sample size needed to identify novel cancer-gene 
associations from next-generation sequence data for genes that have patterns of variation similar to 
ATM in breast cancer.  

In a number of reported scenarios, preferential amplification tends to occur in conjunction with 
somatic mutations in a three-hit model, involving a germline susceptibility variant, a somatic point 
mutation on the same haplotype, and a subsequent CNV or LOH event that amplifies both the 
germline and somatic variants16-18,23. JAK2 and myeloproliferative neoplasms provides one such 
example. Somatic mutations preferentially occur on haplotypes with germline risk variants in 
JAK2 80% of the time, and frequent third-hit somatic events result in homozygosity for both the 
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germline risk allele and the somatic mutation16-18. One potential explanation for this three-hit 
model is that cis-acting germline variants create a hypermutable region of the gene and that the 
subsequent somatic mutations are then amplified by the second somatic event, after which the 
somatic mutation (driver) and germline variant (passenger) increase in frequency together by 
selection15-18. This mechanism has been demonstrated experimentally in mice23, and the T->A 
germline variant at APC nucleotide position 3920 has been reported as an example of a cis-acting 
hypermutable phenotype that leads to colorectal cancer in humans34. A second explanation for this 
three-hit model is that somatic mutations functionally interact in cis with specific germline 
variants and require the presence of a germline variant to promote tumorigenesis15-18. By 
combining evidence for preferential allelic imbalance and the occurrence of somatic mutations, 
SGI is well suited for detecting genes that follow a three-hit model.  

SGI is designed to detect statistical interaction between somatic mutational events and 
germline variation from next-generation sequence data. SGI is compatible with existing variant 
call formats (vcf and CG tsv) and interfaces with VAAST and other variant classifiers to identify 
candidate germline susceptibility variants in a high-throughput manner. The AIRS test evaluates 
evidence for preferential allelic imbalance from next-generation sequence data and allows for 
combined testing of multiple variants in a gene while controlling for inter-sample variation in 
tumor purity and genome-wide levels of allelic imbalance. SMIT evaluates evidence for statistical 
interaction between candidate germline susceptibility variants and somatic SNVs and small indels 
while controlling for inter-sample variation in background mutation rates. SGI combines AIRS 
and SMIT to provide a unified measure of statistical interaction between candidate germline 
susceptibility variants and the occurrence of somatic mutational events. SGI can be used to help 
demonstrate a causal role for candidate germline susceptibility variants or can be combined with 
rare-variant association tests to increase the power to identify cancer-gene associations. 

5.  Software 

SGI can be found at www.hufflab.org/software/#sgi and is freely available for academic use. 
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Large-scale pharmacogenomic screens of cancer cell lines have emerged as an attractive pre-clinical system for 
identifying tumor genetic subtypes with selective sensitivity to targeted therapeutic strategies. Application of modern 
machine learning approaches to pharmacogenomic datasets have demonstrated the ability to infer genomic predictors 
of compound sensitivity. Such modeling approaches entail many analytical design choices; however, a systematic 
study evaluating the relative performance attributable to each design choice is not yet available. In this work, we 
evaluated over 110,000 different models, based on a multifactorial experimental design testing systematic 
combinations of modeling factors within several categories of modeling choices, including: type of algorithm, type of 
molecular feature data, compound being predicted, method of summarizing compound sensitivity values, and whether 
predictions are based on discretized or continuous response values. Our results suggest that model input data (type of 
molecular features and choice of compound) are the primary factors explaining model performance, followed by 
choice of algorithm. Our results also provide a statistically principled set of recommended modeling guidelines, 
including: using elastic net or ridge regression with input features from all genomic profiling platforms, most 
importantly, gene expression features, to predict continuous-valued sensitivity scores summarized using the area under 
the dose response curve, with pathway targeted compounds most likely to yield the most accurate predictors. In 
addition, our study provides a publicly available resource of all modeling results, an open source code base, and 
experimental design for researchers throughout the community to build on our results and assess novel methodologies 
or applications in related predictive modeling problems. 
 
Keywords: Cancer cell lines, pharmacogenomics, machine learning, predictive modeling. 
 
1.  Introduction 

Molecular analysis of cancer has revealed that tumor subtypes differ in pathway activity, 
progression, and chemotherapeutic response, leading to the development of therapeutic approaches 
with demonstrated efficacy in molecularly defined cancer subtypes [1-4]. Human cancer cell lines 
represent an attractive pre-clinical system for identifying molecular characteristics of tumors 
predictive of therapeutic response.  

Recently, two ambitious initiatives, named the cancer cell line encyclopedia [5, 6] and the 
genomics of drug sensitivity projects [7] have performed large-scale small molecule screens on 
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panels of hundreds of molecularly characterized cancer cell lines. Both studies also demonstrated 
that employing modern machine learning algorithms to develop predictors of drug response based 
on molecular profiling measurements of each tumor could effectively identify known 
pharmacogenomic predictive biomarkers. These proof-of-concept studies have established cell 
line-based screens as a viable pre-clinical system for identifying functional biomarkers underlying 
drug sensitivity or resistance and for suggesting patient selection strategies for clinical trial design. 

As computational approaches for modeling therapeutic response become increasingly common 
in research and translational applications, a study is warranted to systematically assess different 
modeling approaches, and recommend best practices for future applications. To address this 
question, we defined important categories of modeling choices, such as the predictive algorithm 
and genomic features for model inclusion (among others), and performed a large multifactorial 
experiment with crossed factors, where the modeling choices represent the experimental factors, 
and the predictive performance measures (derived from model fits, and spanning all possible 
combinations of modeling choices) represent the response data. This experimental design allows 
for formal statistical testing and quantification of the relative importance of the modeling choices. 

Our results provide statistically principled, data-driven guidelines for best-in-class modeling 
practices. Our findings suggest the use of elastic net or ridge regression applied to continuous 
valued response data, summarized using the area under the fitted dose response curve, and using 
all molecular features (in particular, gene expression data). Moreover, our results suggest that 
pathway targeted compounds lead to more accurate predictors than classical broadly cytotoxic 
chemotherapies. In addition, we performed detailed analysis comparing models based on 
continuous versus discretized response measurements, suggesting that discretizing data (e.g. into 
sensitive and resistant calls) causes decreased model accuracy. Finally, we report a discordance in 
reported values across the 2 datasets for the same compounds and suggest that raw dose-response 
data should be made publicly available to facilitate comparison of the 2 datasets based on the same 
procedures for processing and summarizing dose-response values. 

Our study provides a publicly available interactive resource of modeling results and an open 
source analysis package. The results for all >110,000 models are available at 
(https://www.synapse.org/#!Synapse:syn2009053), providing a resource for other researchers to 
interactively browse the results of all models and perform additional downstream analyses. 
Moreover, we are releasing the open source “predictiveModeling” R package 
(https://github.com/Sage-Bionetworks/PredictiveModel_pipeline and https://github.com/Sage-
Bionetworks/predictiveModeling), containing all code used to infer models in this study, and 
providing a modular API that may be extended by the community and used to conduct similar 
research studies. 

 
2. Material and Methods 
 
2.1 Data Sets 

The CCLE and Sanger datasets contain compound screening data performed on large panels of 
molecularly characterized cancer cell lines. Both datasets contain genome-wide gene expression 
and copy number profiling, as well as sequencing data on a subset of genes (described in the next 
section). Gene expression, copy number, and mutation data were summarized to gene-level 
features. The Sanger panel is composed of 30,672 genomic features and 138 compounds profiled 
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on 714 cell lines (535 cell lines contain all measurement types). The CCLE panel is composed of 
41,814 genomic features and 24 compounds profiled on 504 cell lines (411 cell lines contain all 
measurement types). All data was normalized as described in the original papers [5-9]. Mutation 
data was summarized to binary gene-level variables represented as 0 (wild type) and 1 (mutation). 
We also annotated each cell line with a representative “tumor type” label, derived by manually 
curating the provided meta-data annotations. Each tumor type was then included as a binary 
feature variable. 

 

Figure 1 – Summary of evaluation of regression models. (A) Results for CCLE. (B) Results for Sanger. The 
left panel displays the percent variance of predictive accuracy (COR) explained by each category of modeling choice 
after fitting our 4-way ANOVA model. The panels labeled Compound, ResponseSummary, Algorithm, and 
GenomicFeatures correspond to each of our tested categories of modeling choices, and display the distribution of 
predictive performance (COR) scores for each modeling choice (factor levels) within the category. For the CCLE 
Compound panel, compounds classified as “BroadlyCytotoxic” are displayed as shaded boxes and bold text, and 
compounds classified as “PathwayTargeted” are displayed as white boxes and non-bold text. The panel titled 
Compound Class displays the distribution of predictive performance scores for the BroadlyCytoxic vs. 
PathwayTargeted compound classes. 
 

Both studies provide multiple statistics used to summarize dose-response curves to compound 
sensitivity values for each cell line (described in the next section). We used the summarized 
sensitivity values reported in each dataset, as raw dose-response values were not available to 
process both datasets using the same procedures. 

 
2.2 Definition of modeling choices 
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Our goal was to systematically assess the effect of modeling choices on predictive 
performance given a drug response vector and a molecular feature matrix. We enumerated the 
following 5 categories of modeling choices, as well as the possible choices of modeling factors 
within each category 

 
Figure 2 – Summary of evaluation of classification methods. (A) Results for CCLE. (B) Results for Sanger. 

Results are presented as described in Figure 1, based on evaluation of classification models using the AUC predictive 
performance statistic. 
 

GenomicFeatures: Represent the distinct data types used as features in the predictive 
algorithms. In Sanger we have 4 distinct types: gene expression measurements (E) on 12,024 
genes; copy number variation measurements (C) on 18,601 genes; cell line tumor type 
classifications (L) according to 93 distinct tumor lineages; and mutation profiling (Mo) on 47 
genes. We tested 12 distinct data type combinations as shown in the GenomicFeatures panels in 
Figure 1B and Figure 2B (specifically, we tested all combinations other than those corresponding to 
small feature sets, such as L+Mo). For the CCLE panel we have 5 distinct data types: gene 
expression measurements (E) on 18,897 genes; copy number measurements (C) on 21,217 genes; 
cell line tumor type classifications (L) of 97 tumor lineages; mutation profiling (Mo) on 33 genes 
using the oncomap 3.0 platform [10]; and mutation profiling of 1,667 genes using hybrid capture 
sequencing (Mh). We tested 20 distinct data type combinations shown in the GenomicFeatures 
panels in Figure 1A and Figure 2A. 

Compound: Represents the anti-cancer compounds screened by the cell line projects. There 
are 138 compounds in Sanger and 24 in CCLE. 
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ResponseSummary: Represents the statistic used to summarize the dose response curves to a 
single number, corresponding to the degree of sensitivity of a given cell line to a given compound. 
For Sanger, the choices are: AUC – the area under the fitted dose response curve; IC50 – the 
concentration at which the compound reaches 50% reduction in cell viability. For CCLE, the 
choices are: ActArea – the area above the fitted dose response curve (inverse measure of AUC in 
Sanger); IC50 – the same as in Sanger; EC50 – the concentration at which the compound reaches 
50% of its maximum reduction in cell viability. We note that although they use the same 
terminology, both studies used different procedures for fitting dose response curves and generating 
summary statistics. 

Continuous vs. categorical models: Whether predictions are made based on continuous or 
discretized ResponseSummary measurements. We tested multiple discretization schemes, 
including: mean and median based deviation statistics; Gaussian mixture models; and upper/lower 
third quartile thresholds. We report results based on upper/lower third quartile thresholds, which 
was the discretization scheme that achieved the highest average classification accuracy (AUC). 

Algorithm: Represents the predictive algorithms compared in this study. In the analysis of 
continuous response variables, we compared: principal component regression (PCR); partial least 
square regression (PLS); least squares support vector machine regression with linear kernels 
(SVM); random forests (RF); least absolute shrinkage and selection operator (LASSO); ridge 
regression (RIDGE); and elastic net regression (ENet) [11-19, 27]. For the analysis of binary 
response variables, we considered: least squares support vector machine classification with linear 
kernels (SVM); random forests (RF); binomial least absolute shrinkage and selection operator 
(LASSO); ridge binomial regression (RIDGE); and elastic-net binomial regression (ENet) [8, 11, 
12, 14, 15, 20].  
 
2.3  Model fitting procedures 

We employed a multifactorial experimental design and tested all combinations of modeling 
choices (e.g. the cross product of all choices of ResponseSummary × Compound ×  
GenomicFeatures ×  Algorithm ×  Discretization, excluding application PCR and PLS to discrete 
data). This resulted in testing a total of 114,048 models. 

For Sanger and CCLE the input dataset was divided into five non-overlapping sample groups, 
used as cross-validation folds for training and testing data. For each cross-validation fold, each 
model was trained on 4/5ths of the samples, and used to make predictions of sensitivity for the held 
out 1/5th of samples. Within each training step, a separate 5-fold cross-validation procedure was 
employed for parameter tuning of each model. 

Predicted vs. observed response vectors were compared to assess the performance of each 
algorithm. The predicted response vector was computed by concatenating the prediction vectors 
for each cross-validation fold. For continuous models we computed the Pearson correlation 
coefficient (COR). For discrete models we computed area under the receiver operating 
characteristics curves (AUC). 
 
2.4 Statistical Analysis 

We evaluated the effect of modeling choices on predictive performance using multiway-
ANOVA with crossed factors. For instance, in the analysis of continuous models in the CCLE 
panel, we adopted COR as the response variable, and performed ANOVA using 4 factors: 
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GenomicFeatures, composed of 20 levels representing distinct data type combinations; 
Compound, composed of 24 levels, each representing one of the anti-cancer compounds tested in 
the CCLE panel; ResponseSummary, represented by levels ActArea, EC50, and IC50; and 
Algorithm represented by levels ENet, RIDGE, PLS, SVM, PCR, LASSO, and RF. For each one 
of the possible 20 × 24 × 3 × 7 = 10,080 modeling choice combinations, we fit a predictive model 
and recorded the correlation between the observed and predicted outcome as the response variable. 
Since we only have a single observation per modeling choice combination, our design corresponds 
to a multiway-ANOVA with 4 crossed factors and a single observation per cell. Hence, we cannot 
fit a complete model (i.e., with all interaction terms up to order 4) and we restrict our analysis to 
interactions of order up to 3. In addition to the analysis described above, we also performed 
analogous ANOVA analyses for the evaluation of continuous models in Sanger, discrete models in 
CCLE, and discrete models in Sanger. 

 
3. Results 
 
Modeling factors influencing predictive performance 
In order to assess the individual contributions of each category of modeling choices (and their 
interactions) to explaining the total variability of the predictive performance statistic (COR or 
AUC), we examined the decomposition of the total sum of squares of the predictive performance 
variable into residual sum of squares plus sum of squares terms for each one of the factors and 
factor interactions in our 4way-ANOVAs, including all possible interactions of order up to 3. We 
first describe results for continuous models. The left panels in Figure 1A and B present barplots in 
which each bar represents the sum of squares of the respective term divided by the total sum of 
squares. 

For both the CCLE and Sanger datasets, most of the variance of predictive accuracy is 
explained by the modeling factors considered in our study, as indicated by the small percent of 
variance attributable to residuals. For both CCLE and Sanger the modeling factors explaining the 
highest percent variance are: 1) the type of molecular features used to build the model; and 2) the 
compound being predicted by the model. The third most important modeling factor is the type of 
algorithm, although this factor is considerably less important than the first 2.  This result is 
consistent with previous studies [21], suggesting that input data is the dominant factor related to 
model performance, whereas the specific modeling strategies are of secondary importance. 

The CCLE dataset contains a strong interaction term between Compound and 
ResponseSummary, suggesting that model performance depends both on the compound being 
modeled, and the ability to summarize the compound’s dose response measurements. By contrast, 
ResponseSummary has negligible effect in the Sanger dataset. We point out that, although Sanger 
and CCLE both report response data in terms of IC50 and AUC (referred to as ActArea in CCLE) 
summarizations, the 2 studies use quite different procedures for fitting dose response curve and 
summarizing them to IC50 of AUC statistics. The discordant importance of the ResponseSummary 
factor between the 2 studies, compared with the highly concordant importance of all other factors, 
suggests that the procedures for summarizing dose response curves to summary statistics may be 
inconsistent between the 2 studies. Indeed, comparison of IC50 and AUC values for compounds 
profiled in both datasets suggests a relatively high degree of inconsistency (Figure 3). 
Unfortunately, raw dose response data used for curve fitting it not available in either study, 
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limiting our ability to investigate this issue further. This result highlights the importance of 
making raw forms of data publicly available, in addition to computed summary statistics, such that 
the community may more transparently analyze and improve the value of the data resource. 

 

Figure 3 – Comparison of IC50 and AUC summary statistics for 14 compounds and 283 cell lines in 
common between the Sanger and CCLE datasets. (A) Distribution of IC50 and AUC/ActArea values in Sanger and 
CCLE. Note that the AUC value reported in Sanger corresponds to the area under the dose response curve in which 
values of 0 correspond to complete reduction in cell viability and values of 1 correspond to no reduction in cell 
viability. The ActArea value reported in CCLE corresponds to the area over the dose response curve in which values 
of -100 correspond to complete reduction in cell viability and values of 0 correspond to no reduction in cell viability. 
Therefore a negative correlation is expected between AUC and ActArea values. (B) Scatter plots comparing 
AUC/ActArea values (top) and IC50 values (bottom) across the 2 studies. (C) Histograms of the distribution of 
correlations across the 2 studies for the 14 common compounds based on ActArea/AUC (top) and IC50 (bottom). 
 
Assessment of best performing modeling strategies 
The ANOVA analysis detected highly significant interaction and main effects in explaining 
predictive performance, indicating the importance of some modeling choices over others. Figure 1 
and Figure 2 depict boxplot panels for each one of the modeling choice factors in our analyses, 
showing the distribution of predictive performance as a function of the modeling factor levels. For 
both datasets, expression data was the most informative molecular feature type, as all of the best 
performing models included use of expression data. Models using other molecular features types 
in addition to expression data performed slightly better than using expression data alone, although 
performance improvements were modest. For both datasets, elastic net and ridge regression were 
the top performing algorithms. For the CCLE dataset, summarizing dose response values based on 
ActArea achieved the highest performance. For Sanger, response summarization had little effect 
on model performance, warranting closer investigation starting from raw dose response data. 

For both datasets, some compounds were easier to predict than others, as clearly shown by the 
Compound panels in Figure 1. Inspection of predictability scores for CCLE compounds suggested a 
general trend. Compounds with low predictability scores tended to be more classical 
chemotherapeutics that disrupt broad cellular processes (e.g. topoisomerase inhibitors). 
Compounds with high predictability scores tended to target proteins in specific pathways, 
primarily related to mitogen signaling (e.g. MEK inhibitors). To test this hypothesis, we manually 
annotated each compound in one of these 2 classes, which we called “BroadlyCytotoxic (BC)” and 
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“PathwayTargeted (PT)”. Indeed, PT compounds displayed significantly higher predictability 
scores compared to BC (P=0.003529 by Wilcoxon rank sum test, as shown in the top-right panel 
of Figure 1). 
 
Assessment of categorical models 
An alternative strategy to modeling the drug response as a continuous-valued variable is to 
discretize the response vector into a binarized “sensitive” and “resistant” vector. To evaluate this 
strategy, we implemented the categorical analogues of lasso, ridge, elastic net, random forests, and 
support vector machines, and discretized each response summarization (IC50, EC50, AUC or 
ActArea) base on the upper and lower third quartiles.  

Results from this analysis were highly consistent with results from our continuous models 
(Figure 2). For both CCLE and Sanger, the relative importance of model factors was consistent with 
results for continuous models (e.g. GenomicFeatures and Compound being most important, 
followed by Algorithm). The relative performance of modeling choices was also consistent 
between categorical and continuous models (e.g. the order of predictive performance of algorithms 
is fully consistent). 

One advantage of categorical models is the ability to interpret AUC values as the probability 
of correctly classifying a new sample as sensitive or resistant. For example, analysis of the 
distribution of AUC scores suggests that sensitive vs. resistant samples can be classified with 
>70% accuracy for 22 of 24 (91.7%) compounds in CCLE and 83 of 138 (60.1%) compounds in 
Sanger. More specific analysis of the AUC curves can be used to determine the expected trade-
offs between false positives and false negatives. We suggest that such analysis may be useful in 
assessing the potential clinical utility of a predictive model, for example, by applying criteria such 
as requiring less than a 5% false positive rate (e.g. correctly prescribing a drug to 95% of patients 
who might benefit) at the expense of a less than 20% false negative rate (e.g. failing to prescribe 
the drug to 20% of the patients who will benefit from it). Of course, such statistics derived from 
cell line studies are unlikely to directly translate in a clinical context, but may be useful to identify 
predictive models that should be prioritized for further clinical studies. 

 
Comparison of continuous vs. categorical models 
In order to directly compare the performance of continuous vs. categorical models, we computed 
the AUC scores of the rank-ordered predictions in comparison to the discretized response data. 
That is, we calculated the sensitivity and specificity at each threshold of the rank-ordered 
predictions in order to compute an ROC curve for each model. We based our comparison on the 
best performing regression and classification methods, which was elastic net in both cases (results 
were similar for other methods). In general, regression models, trained using continuous 
ResponseSummary values, outperformed classification models, trained using discretized 
ResponseSummary values (P<< 2.2e-16 for Sanger, based on AUC; P<< 2.2e-16 for Sanger, based 
on IC50; P<< 2.2e-16 for CCLE, based on ActArea; P=0.1587 for CCLE, based on IC50. See 
Figure 4. Classification methods outperformed regression methods only when using the CCLE IC50 
values, as explained by the fact that these values are inherently discretized. Sanger IC50 values 
utilized extrapolations of the curve fits beyond the tested concentration range. By contrast, out of 
11,670 IC50 values reported in CCLE (426 excluding NA values), 6,499 (55.69%) were set to a 
value of 8, corresponding to the maximum tested compound dose of 8µM (Figure 3A). 
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Figure 4 – Comparison of predictive performance of continuous (regression) vs. categorical (classification) 
models. Results were compared for the continuous and categorical versions of elastic net, which were the best 
performing continuous and categorical models. (A) CCLE data with ActArea, (B) CCLE data with IC50, (C) Sanger 
data with AUC, and  (D) Sanger data with IC50. 
 
4. Discussion 

As large-scale complex genomic resources become increasingly available, there is a pressing 
need to develop community standards and robust assessment methods to determine the best 
performing approaches for analyzing such data. Pharmacogenomic screens performed on 
genomically characterized cancer cell lines provide rich data resources, and application of 
machine learning methodologies to such data have demonstrated evidence of uncovering genomic 
mechanisms underlying drug response. 

From an analytical perspective, such pharmacogenomic data resources are particularly well 
suited to application of statistical learning methods by representing genomic and compound 
sensitivity data, respectively, as predictive features and response variables in a supervised learning 
scheme. In this study, we performed a controlled analysis of many modeling choices that may be 
used in this application. We believe this work contributes to the community in 3 ways: 1) by 
providing a set of recommended best practices for inferring pharmacogenomic predictive models, 
and a study on the relative importance of each; 2) by establishing a resource of over 110,000 
modeling results, providing a baseline set of scores that researchers may use in future studies to 
demonstrate improved performance of novel methodologies; 3) by providing an experimental 
design template, and open source modeling package, that can be extended for use in other 
predictive modeling applications. 

Our study suggests a statistically principled set of recommended best modeling practices: 
using elastic net or ridge regression with input features from all genomic profiling platforms, 
most importantly, gene expression features, to predict continuous-valued sensitivity scores 
summarized using the area under/over the dose response curve, with pathway targeted 
compounds will most likely yield the most accurate predictors. 

The use of elastic net regression is consistent with modeling choices reported in previous 
studies [14][16], and is a particularly attractive option due to the ability to perform feature 
selection based on inferred feature weights. We investigated several methods that have previously 
been shown to achieve superior predictive accuracy, but lead to less interpretable models, such as 
support vector machines, random forests, and principal components regression [22, 23]. 
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Nonetheless elastic net regression achieves the highest predictive accuracy without requiring a 
trade-off of model interpretability. Moreover, elastic net is designed to seek the optimal trade-off 
of model complexity penalties imposed by lasso and ridge regression. While the sparse feature 
selection encouraged by lasso indeed leads to inferior predictive performance, elastic net performs 
as well as ridge regression based on predictive accuracy, suggesting that elastic net effectively 
balances the strengths of the two methods by encouraging sparser models without compromising 
predictive accuracy. We note that although we employed standard and well-accepted cross-
validation schemes for parameter tuning of all models, it is possible that alternative methods could 
improve the performance of some models. 

The observation that gene expression features provide the most informative predictors might 
be explained by the increased “information content” of gene expression data. In particular, copy 
number values are highly correlated with each other and the mutation data profiles only a small 
subset of genes. Although gene expression data provides advantages in predictive accuracy, 
genomic (e.g. somatic mutation and copy number) data possess advantages in potential translation 
to clinical biomarkers. From a technical standpoint, the increased molecular stability of DNA 
compared to RNA facilitates easier development of clinical assays, even from archival samples. 
Perhaps more importantly, features derived from genomic data are more likely to correspond to 
functional driver events related to drug sensitivity, whereas features derived from gene expression 
may be correlative, rather than causal, biomarkers. Thus genomic features are more likely 
amenable to functional validation experiments, such as testing if knockdown or overexpression of 
predicted functional biomarkers confers the predicted suppression or enhancement of sensitivity. 
By extension, genomic predictors of drug resistance may suggest targets for combination therapies 
[24]. 

 

 
Figure 5 – Illustration of differences in dose response curves not captured by IC50 or EC50 statistics. (A) 

The red curve and black curve achieve 50% reduction in cell viability at the same compound concentration, but the 
black curve achieves increased reduction in cell viability at higher compound concentrations. Both curves correspond 
to the same IC50 value (vertical dotted green line), while the area under the dose response curve (AUC) captures the 
increased sensitivity shown in the black curve. The blue curve illustrates a sample with limited maximal reduction in 
cell viability at high compound concentrations. The EC50 statistic would be the same for the blue and black curves 
(vertical dotted green line), while the AUC statistic captures the increased response of the black curve. (B) The red 
and blue curves fail to reach 50% reduction in viability within the tested concentration range. The IC50 statistic would 
be set to the maximum tested concentration in both cases (or extrapolated outside the tested range), while the AUC 
statistic naturally captures the increased sensitivity displayed in the blue curve. 
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We also investigated alternative methods of assigning a summary statistic representing the 
sensitivity of a given cell line to a given compound. Predictive accuracy was improved by 
computing the area under/over the dose response curve (AUC/ActArea), as opposed to the more 
traditional metric of IC50. Following the theme described above, we suggest that AUC/ActArea 
captures more information from the experiment than IC50. Specifically, IC50 assumes a canonical 
sigmoidal shape of dose response curves, with zero growth inhibition in the absence of compound 
and 100% growth inhibition at high compound doses. This assumption fails to differentiate 
samples that achieve 50% growth inhibition at the same dose, even if one of the samples achieves 
far higher growth inhibition at higher doses (Figure 5A). An alternative statistic, EC50, is designed 
to account for this situation by computing the concentration at which a sample achieves 50% of its 
maximal growth inhibition; but this statistic suffers from additional degeneracies. Moreover, many 
samples do not achieve 50% growth inhibition within the tested dose range (Figure 5B). Therefore, 
IC50 calculations must set all such cases to a single threshold value (e.g. the highest tested dose, 
as reported for CCLE), or attempt to extrapolate based on fitted curves (as reported for Sanger). 
By contrast, the AUC/ActArea statistic is able to discriminate the examples listed above, and 
captures additional information contained in the dose response curves related to differential 
sensitivity (see Figure 5). 

Our observation that continuous regression models, in general, outperform discrete 
classification models also follows the general theme of using data with the maximal amount of 
information as model inputs. Discretization of sensitivity data reduces the amount of information 
contained in the continuous valued data. Such a trade-off may be desirable if discretization 
reduces noise in the data (e.g. by only modeling the tails of the data, which are more likely to 
correspond to true differences in sensitivity and resistance, while ignoring the noisy intermediate 
values). Although this argument may apply in selective cases, it is highly dependent on choosing 
an accurate discretization scheme. We investigated several alternatives, including mixture models 
and mean and median-based deviation statistics (not shown). We observed that each scheme 
worked in some cases but not others; e.g. deviation-based statistics may classify no samples as 
sensitive or resistant for some compounds, while quartile-based statistics do not capture variable 
numbers of samples that may be sensitive to different compounds. 

In addition to assessing the performance of modeling choices within our evaluated categories, 
we also assessed the relative importance of the categories themselves. Consistent with previous 
studies [21], our general conclusion is that the choice of input data (which molecular features are 
used and which compound is being predicted) dominates in explaining the high or low accuracy of 
a model. The choice of modeling algorithm also matters, but far less than the input data. While 
this conclusion may be sobering for data analysts (such as ourselves) in pursuit of the next great 
algorithm, we point out that our study was limited to machine learning methods designed to 
operate on specified feature and response data. Thus we suggest that optimization of 
methodologies in this context are unlikely to achieve dramatic improvements over current state-of-
the-art methods; however, methodologies that incorporate additional information sources, such as 
other large-scale genomic datasets or information from pathway databases, were not tested in our 
study and may yield such improvements. This intuition is consistent with our observation that the 
quality and information content of input data dominates predictive performance, as such strategies 
augment the amount of information used to build a predictor. Indeed, in a recent community-based 
assessment of genomic predictors of breast cancer survival, the best performing method integrated 
information from all of TCGA in addition to the dataset directly used to build predictors [25, 26]. 
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We note that our study does not assess all possible modeling choices. For example, we utilized 
the normalized genomic data provided by the CCLE and Sanger resources and did not assess the 
impact of alternative normalization or data processing procedures. We invite researchers 
throughout the community to build on and improve our work to investigate the myriad of 
additional approaches. Indeed, we hope the resource released by our study serves as initial input to 
a community effort promoting critical assessment of modeling methodologies. Innovative 
approaches developed by any researcher may be assessed in comparison to our results, thus 
providing a pre-defined set of performance criteria and baseline model scores against which novel 
approaches may objectively demonstrate their value. 
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Cancer cells derived from different stages of tumor progression may exhibit distinct biological 
properties, as exemplified by the paired lung cancer cell lines H1993 and H2073. While H1993 was derived 
from chemo-naive metastasized tumor, H2073 originated from the chemo-resistant primary tumor from the 
same patient and exhibits strikingly different drug response profile. To understand the underlying genetic and 
epigenetic bases for their biological properties, we investigated these cells using a wide range of large-scale 
methods including whole genome sequencing, RNA sequencing, SNP array, DNA methylation array, and de 
novo genome assembly. We conducted an integrative analysis of both cell lines to distinguish between 
potential driver and passenger alterations. Although many genes are mutated in these cell lines, the 
combination of DNA- and RNA-based variant information strongly implicates a small number of genes 
including TP53 and STK11 as likely drivers. Likewise, we found a diverse set of genes differentially 
expressed between these cell lines, but only a fraction can be attributed to changes in DNA copy number or 
methylation. This set included the ABC transporter ABCC4, implicated in drug resistance, and the metastasis 
associated MET oncogene. While the rich data content allowed us to reduce the space of hypotheses that 
could explain most of the observed biological properties, we also caution there is a lack of statistical power 
and inherent limitations in such single patient case studies. 

1.  Introduction 

Cancer arises as a result of genomic or epigenomic alterations that change a wide range of cellular 
processes, leading to uncontrolled tumor cell proliferation and other tumor-specific characteristics 
(1). Cytotoxic agents and targeted therapies have been developed to treat cancer patients. 
However, one major challenge during treatment is the potential development of drug resistance 
(2). Lung cancer, the leading cause of cancer-related death (3), is one of the most heterogeneous of 
cancer types in terms of underlying molecular characteristics and therapy response. It is 
biologically and clinically important to understand the underlying genetic lesions influencing 
cancer cell behaviors such as differential drug response. Recent advances in high-throughput 
sequencing allow the elucidation of genomewide patient-specific molecular profiles that reveal 
individual tumor drivers and form the basis for personalized treatments (4). However, most 

Pacific Symposium on  Biocomputing 2014

75



 
 

 

identified genetic variation is usually 
difficult to interpret, as the vast 
majority of alterations are passenger 
mutations. In addition, not all genomic 
features can be obtained by a single 
technology. Integrative approaches 
have the potential to capture the 
combination of patient-specific 
characteristics on various levels for a 
better understanding and targeting of 
the molecular basis of specific cancers 
– a rising field termed “panomics”. It is 
however not clear if comprehensive 
and deep analyses of a small number of 
patients, or single patients, might 
reveal new insights of the genetic basis 
of patient phenotype.  

In this study, we performed a wide 
spectrum of genomic analyses to study 
a lung cancer patient, who underwent 
chemotherapy but relapsed with tumor 
regrowth at the primary site. Two cell lines were derived from this patient: one from a lymph node 
metastasis isolated prior to chemotherapy, and the other from the lung tumor regrowth months 
after chemotherapy. Although derived from the same individual, these two cell lines have distinct 
drug response profiles. To understand the underlying genetic basis for their phenotypic 
differences, we performed whole genome sequencing, transcriptome sequencing, SNP array, DNA 
methylation array, and de novo whole genome assembly to thoroughly interrogate genetic and 
epigenetic events. We conducted an integrative analysis of both cell lines and constructed a model 
that might explain the development of the patient’s cancer and drug resistance after chemotherapy. 

2.  Sample Description, Drug Response and Screening Overview 

Cell line H1993 was derived from the lymph nodes of a 47 year old female Caucasian with history 
of smoking and diagnosed with non-small cell lung cancer in 1988 (Figure 1A). After treatment 
with cisplatin and etoposide, H2073 was derived from the resected lung tumor of the same patient. 
We performed drug response studies as previously described (5). As expected, H2073 shows 
resistance to etoposide (Figure 1B). Interestingly, the spectrum of drug resistance of H2073 cells 
encompasses a broader range of therapeutics including paclitaxel and vinorelbine (Figures 1C-D), 
which target mitotic division.  

Figure 1. Sample description and cytotoxic drug resistance of 
H2073  

A) Cell line H1993 was derived from a metastatic site in patient’s 
lymph nodes, while H2073 originated from the primary lung 
tumor after treatment with cisplatin and etoposide. BL1993 was 
derived from lymphoblastoid cells of the same patient, thus 
representing the matched normal blood sample. (B-D) In 
comparison to H1993, H2073 cells show higher viability upon 
treatment with etoposide, paclitaxel and vinorelbine. Error bars 
indicate standard deviation. 
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To elucidate the development of the patient’s cancer and to understand the drug resistance 
after chemotherapy, we applied an integrated analysis of somatic exonic mutations, messenger 
RNA sequencing, DNA copy number, and promoter DNA methylation (Figure 2A).  

Whole genome sequencing (WGS) of both cell lines was conducted on two independent 
platforms: Complete Genomics (CG) and Illumina, to a minimum depth of 30x (Figure 2B). In 
addition, we constructed DNA libraries with variable insert sizes for both cell lines, performed 
Illumina-based paired-end sequencing, and used the resulting reads for de novo genome assembly, 
in order to identify genomic features missed by reference-based approaches. We also carried out 
Illumina WGS on DNA isolated from BL1993, a lymphoblastoid cell line from the same patient, 
representing the matched normal blood sample. 

 To identify genes differentially expressed between H1993 and H2073, we collected RNA-Seq 
data in 3 replicates. DNA methylation was measured by Illumina Infinium array, and copy number 
analysis with the Illumina OMNI 2.5M SNP array, processed by a modified version of the PICNIC 
algorithm, as previously described (6, 7). Results are summarized in Figure 2C. 

 

Figure 2. Integrative analysis of H1993 and H2037: a panomics approach 

A) We applied an integrative analysis of H1993 and H2073 based on whole genome sequencing, RNA sequencing, 
DNA methylation quantification and copy number investigation. B) The genome of each cell line was sequenced at 
minimum 30x coverage. C) The panomics approach allowed us to analyze the landscape of single nucleotide variants, 
indels, differential gene expression, copy number changes, and structural variations. The numbers of detected 
aberrations are shown for these two cell lines. 
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3.  Mutation Landscapes and the Identification of Expressed Variants 

Somatic mutations were identified 
by comparing the variant calls in 
H1993 and H2073 with BL1993. 
We selected non-synonymous 
mutations with a minimum support 
of five reads and excluded known 
germline variants from a variety of 
sources (see Methods). Any 
variants listed in COSMIC 
database of somatic mutations in 
cancer (8) were retained. This 
resulted in 313 somatic non-
synonymous single-base 
substitutions in common between 
H1993 and H2073, of which 290 
were missense mutations, 21 
resulted in stop gain, and 2 resulted 
in stop loss. Consistent with the 
patient’s smoking history, we 
observed an enriched fraction of 
C:G > A:T transversions, the 
smoking-related mutation 
signature, in the tumor-specific 
variants (data not shown).  

Both cell lines harbor non-
synonymous mutations in genes 
known to be altered in lung cancer, 
including TP53, STK11, EPHB2, 
LRP1B, INHBA, ZNF458, and 
PRDM14 (Figure 3A). Other 
somatically mutated cancer genes, 
which are listed in the Cancer 
Gene Census (CGC) (9), include NOTCH2, BIRC3, PTCH1, ETV1, ROS1, SDHD and NCOA2. To 
prioritize these putative drivers, we used RNA-Seq to eliminate genes with little or no expression 
(RPKM<0.5). This expression based filtering reduced the number of common mutations from 313 
to 106 (96 missense, 10 stop gain), eliminating a large fraction of candidate genes at the risk of 
possibly discarding low expressed drivers (Figure 3B). 

We further hypothesized that the mutant alleles for driver mutations should be selected for, 
leading to higher mutant allele frequencies for driver genes. We then assessed mutant allele 
frequencies in DNA and RNA data and grouped the mutations into three frequency classes (Figure 

Figure 3. Genomic landscapes and pathway alterations of H1993 
and H2073  

A) Multiple cancer related genes were somatically mutated in both cell 
lines (upper panel) or differentially expressed between the cell lines 
(lower panel). B) Integrating gene expression and focusing on instances 
of high mutant allele frequency enabled us to substantially reduce the set 
of candidate drivers. Known cancer related genes are highlighted. Genes 
with low expression (<0.5 RPKM) in both cell lines are shown in blue, 
while genes with low expression in one cell line are shown in green.  
Triangles indicate cell line-specific mutations, while circles correspond 
to common mutations. 
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3B): high (>0.9, class 1), medium (0.3 to 0.9, class 2), and low/inconsistent (class 3). Mutations at 
loci with a total DNA or RNA read coverage < 10 were also assigned to class 3. Class 1 comprised 
only 10 genes, 8 of which had stop gain or missense mutations that were predicted to be 
deleterious (10) based on Polyphen2 (11) and SIFT (12) calculations. In this reduced set of 
candidate drivers were tumor protein 53 (TP53) and serine/threonine kinase 11 (STK11, also 
known as LKB1), the two most significantly mutated tumor suppressors in lung cancer (13). Both 
mutations were observed in regions with loss of heterozygosity. The homozygous TP53 missense 
mutation C242W was also observed in other cancer types including breast (14) and stomach (15) 
cancer, while the homozygous stop gain mutation on position 199 within the kinase domain of 
STK11 has been previously reported in other lung cancer samples (16). Thus, integrating WGS 
and RNA-Seq data on the two cell lines allowed us to reduce a set of non-synonymous mutations 
to two likely drivers of oncogenesis in this patient. 

While 106 non-synonymous mutations in expressed genes were common to both cell lines, 20 
and 22 were specific to H1993 and H2073, respectively. These included Cancer Gene Census 
genes SETD2 (class 2) in H2073, and BRCA1 (class 2) in H1993. Inactivation of BRCA1 is 
associated with tumor aggressiveness and invasion (17), consistent with the metastatic state of 
H1993. None of the cell line specific mutations was assigned to class 1. Overall, the limited 
difference between H1993 and H2073 mutation profiles indicates that unique point mutations are 
unlikely to explain the phenotypical variations between them. 

Among 138 somatic coding indels detected in either cell line, 7 affected Cancer Gene Census 
genes.  All of these were cell line-specific, with frame-shifting indels observed in genes SF3B1, 
BMPR1A, and GPHN in H1993, and in genes JUN, MLL3, NR4A3 in H2073. We also observed an 
in-frame insertion in gene MLL2 in H2073. It is unclear what role, if any, these mutations may 
play in the observed phenotypic differences between the two cell lines. While histone 
methyltransferases MLL2 and MLL3 have been linked to TP53-mediated DNA damage response 
pathway (18, 19), our cell lines exhibited lack of a functional copy of TP53, rendering any 
additional mutations to this pathway inconsequential. 

4.  Differentially Expressed Genes and the Relationship with DNA Changes 

Our RNA-Seq analysis identified 2,523 differentially expressed genes between H1993 and H2073 
(Figure 4A), of which 1,668 (67%) were over-expressed in H2073. Classical markers for 
epithelial/mesenchymal status, including CDH1, CDH2, VIM and FN1, were not consistently 
differentially expressed between the two cell lines, suggesting that the observed differences 
between the primary and the metastatic cell line were not due to epithelial-to-mesenchymal 
transition. 

The large number of differentially expressed genes also suggests that most of these expression 
changes are downstream effects of the causal events. We hypothesized that the primary expression 
differences should have certain degree of genetic or epigenetic basis. We therefore focused on 
differentially expressed genes that can be directly attributed to changes in copy number or DNA 
methylation state. We found that 39 out of 1,668 (2.3%) genes overexpressed in H2073 are in 
regions amplified in H2073 relative to H1993 (ploidy adjusted CN fold change >=2). Ploidy 
adjustment was carried out because H1993 is mostly tetraploid, while H2073 has average ploidy 
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between 2 and 3, consistent with cytogenetic results (data not shown). Similarly, we observed that 
46 out of 885 (5.4%) genes overexpressed in H1993 are in genomic regions amplified in H1993 
relative to H2073 (Figure 4B). 

Overall, regions amplified in H1993 and H2073 contained 100 and 114 expressed genes, 
respectively, out of which 46 (46%) and 39 (34%) were overexpressed according to our cutoffs, 
exhibiting higher rate of overexpression events than non-amplified regions (Figure 4C, Fisher 
exact test p-value <7x10-9 for both cell lines). In total, we identified seven amplified regions in 
either cell line longer than 1 Mb, six of which (three in each cell line) accounted for 82 out of 85 
differentially expressed genes with underlying CN changes. One of the H2073 amplicons included 
transporter gene ABCC4, previously implicated in drug resistance and showing 3-fold 
overexpression in H2073. The 
region on chromosome 7, highly 
amplified (>10 copies) in H1993, 
contained oncogene MET (Figure 
5A), which is known to be 
involved in tumor cell invasion 
and metastasis (20). We found 
MET to be 7-fold overexpressed 
in H1993, consistent with the 
metastatic character of H1993. 
The dependence of H1993 on 
MET is confirmed by its low 
viability in the presence of MET 
inhibitors (Figure 4D). Another 
highly amplified genomic region 
was located on chromosome 11 
and contained the oncogene ATM 
(4-fold overexpression in H1933), 
which was also reported to 
promote metastasis (21).  

 Comparing the two cell lines 
further, we found that 427 genes 
expressed in at least one cell line 
showed differentially methylated 
regions (DMRs) within 2kb of 
their transcription start site (TSS). 
Out of 1,668 genes overexpressed 
in H2073, 166 (9.9%) contained 
DMRs (Figure 4B). In 146 cases 
(82%), the extent of methylation 
was higher in H1993, consistent 
with down-regulation of 

Figure 4. Differential gene expression analysis between H1993 and 
H2073  

A) Volcano plot illustrating fold changes and false discovery rates for all 
human genes as calculated by differential gene expression analysis. B) 
Percentage of overexpressed genes with significant copy number gain or 
DNA hypomethylation. C) The sets of expressed genes with copy number 
amplification or promoter DNA hypomethylation were enriched for 
overexpressed genes. D) Treating both cell lines with an EGFR inhibitor 
Cetuximab reveals lower viability of H2073 in comparison to H1993. 
Treating the two cell lines with a MET inhibitor Criozotinib reveals lower 
viability in H1993.  Error bars indicate standard deviation. 
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expression by hypermethylation. In comparison, 61 out of 885 (6.9%) genes overexpressed in 
H1993 contained DMRs within 2kb of TSS, with 43 (70%) exhibiting higher methylation in 
H2073. In total, hypomethylated DMRs were associated with 68 and 325 genes in H1993 and 
H2073, respectively, out of which 43 (63.2%) and 146 (44.9%) showed overexpression, exhibiting 
higher rate of overexpression events than hypermethylated or non-differentially methylated 
regions (Figure 4C, Fisher exact test p-values < 2x10-32 for both cell lines). Several of the genes 
with overexpression and promoter DNA hypomethylation in H2073 have been implicated in 
apoptosis evasion and drug resistance, including PLAU (Figure 5B), SNCG, BNIP3, GSTP1, 
ETS1, and MSLN. Interestingly, we found the binding partners PLAU and PLAUR to be 
overexpressed in H2073, suggesting co-regulation of their expression. Binding of PLAU to 
PLAUR can activate the ERK pathway and contribute to cancer development (22). 

Genes overexpressed and hypomethylated in H1993 included the metastasis effectors RAB25, 
TSPAN8, and CPE, as well as CLDN1, whose up-regulation has been associated with cisplatin 
sensitivity (23), consistent with cisplatin 
resistance in H2073. Overall, 10.8% of 
genes overexpressed in H2073 and 
10.3% of genes overexpressed in H1993 
are associated with either differential 
DNA methylation or copy number re-
arrangements. Thus, the integration of 
these two additional data types allowed 
us to substantially reduce the number of 
candidate drivers, while possibly 
omitting driver genes activated via 
alternative mechanisms.  

Guided by our discovery of the 
amplification of transporter gene ABCC4 
in the drug-resistant cell line H2073, we 
tested for differential expression of other 
transporter genes. While one transporter 
gene, ABCB10, showed overexpression 
in H1993, several others were 
overexpressed in H2073 and are known 
to play a role in drug resistance. We 
found that the multi-drug resistance 
transporter MDR1/ABCB1 was expressed 
in H2073 but almost absent from H1993. 
Both ABCC4 and ABCC1, also implicated in drug resistance, were also at least 3-fold 
overexpressed in H2073 (24, 25). Furthermore we found 9-fold higher expression of FGFR4 in 
H2073. A recent study reported that inhibition of FGFR reverses ABCB1-mediated drug resistance 
in cancer (26). Overall, these results suggest an efflux-based drug resistance mechanism developed 

Figure 5. Overexpression of MET in H1993 is associated 
with copy number gain (A), while overexpression of PLAU 
in H2073 is associated with decreased promoter methylation 
(B).   

The panels show gene structure (top, individual transcript 
isoforms), expression normalized by sequencing depth (H1993: 
second from the top, H2073: third from the top), difference in 
DNA methylation (second from bottom, dashed lines 
correspond to differences of 0.5,0, and -0.5), and raw copy 
number (bottom, green line: H1993, yellow line : H2073, 
dashed black like: CN=2 (baseline)). 
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by H2073, which involves ABCC4, ABCB1, and possibly other transporter proteins that were not 
over-expressed in H2073 based on our 
cutoffs.  

Integrating information on changes in 
DNA copy number and methylation 
allowed us to reduce a large set of 
differentially expressed genes 10-fold to 
candidate drivers with clear underlying 
mechanism of differential expression.  
Close examination of these candidate 
drivers revealed a number of genes 
overexpressed in H1993 and known to be 
involved in metastasis.  This allowed us to 
construct a drug resistance model for 
H2073. However, this reductionist 
approach has its limitations, as not all 
meaningful differential expression can be 
attributed to a change in either DNA copy 
number or methylation. As an example, the 
expression of the well-known cancer gene 
EGFR is 8-fold higher in H2073 than in 
H1993, and the dependence of H2073 on 
EGFR for survival and proliferation is 
strongly suggested by its higher sensitivity 
to EGFR inhibitors (Figure 4D). However, 
the observed overexpression of EGFR was not associated with either a copy number change or 
differential promoter DNA methylation in this study. It is likely that other types of genetic or 
epigenetic alterations, such as histone mark changes, are responsible for the observed EGFR 
expression change but are not captured by our existing assays. 

5.  Structural Variation Analysis 

Based on WGS by the Complete Genomics platform, we observed 164 large deletions (50bp-
100kb), 219 inversions, and 123 translocations in H1993, supported by at least 5 reads (Figure 6A-
B). H2073 showed substantially more structural variants, with 237 large deletions, 13680 
inversions, and 1186 translocations. This significant increase in the number of structural variants, 
in particular short inversions (Figure 6C), might be due to the stress imposed on the cell by the 
chemotherapy (27). This is consistent with the fact that H1993 was derived from tumor cells prior 
to chemo-treatment, while H2073 was derived afterward and therefore is chemo-resistant. 

6.  De Novo Genome Assembly Reveals Additional Variant Information 

To discover genomic alterations that might be missed by standard WGS analysis, we performed de 
novo assembly of H1993 and H2073 genomes, based on paired-end Illumina sequences. The insert 

Figure 6. Structural variations in H1993 and H2073 

A) Illustration of genomic alterations in H1993 and H2073 
using Circos plots. Candidate interchromosomal structural 
variations identified by the Complete Genomics Platform are 
shown as red lines. Copy number changes detected by 
Illumina SNP arrays are illustrated as bar plots. Loss of 
heterozygosity regions are shown in green. B) Structural 
variations, in particular smaller inversions (C), were more 
frequent in the cell line derived after chemotherapy (H2073) 
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size ranged from 200bp to 40kb, in order to aid longer range DNA assembly. The resulting 
assembled sequences span 2.96 (H1993) and 2.89 (H2073) Gb, including 2.29 and 2.48 Gb of 
fully resolved (non-gapped) sequence. The N50 values were 1.9 Mb and 1.26 Mb, respectively, 
reflecting a large portion of the sequence in scaffolds of substantial (>1Mb) size. 

We aligned the assembled sequences to the reference genome to identify insertions or 
deletions, which may have been missed by resequencing-based approaches. We identified 2 
insertions and 3 deletions that were exclusively detected by the assembly approach and that 
affected exons (Table 1). These indels ranged in size from 51 to 123 bp, indicating the utility of 
the assembly approach in detecting medium size indels, that are not short enough to be detected by 
most resequencing-based indel callers, but are not long enough to be detected by the copy number 
or structural variation analyses. We note that the observed frame-shifting deletion in TSPAN8 in 
H2073 may have contributed to its lower expression in that cell line, alongside the 
hypermethylation component, described above. 

7.  Conclusions 

The expansion of high-throughput assays for analyzing cellular states has provided new 
opportunities for integrative analyses.  Here we used several genome-scale analyses of 2 cancer 
cell lines to ask whether we could better explain their observed biological similarities and 
differences. Perhaps the most significant challenge in interpreting genomic data is to pinpoint the 
most relevant genomic changes from a large collection of data points, and the panomics approach 
by definition epitomizes this problem. While it might be practically impossible to achieve 
statistical significance for such panomics approaches, we believe that prior knowledge and logical 
combination of different data could dramatically reduce the search space and propose biologically 
meaningful models. 

In this study, while variant analysis revealed more than 300 non-synonymous mutations, 
combining this analysis with expression data  reduced the number of candidate drivers 3-fold. 
Integrating allele frequencies on both DNA and RNA levels further reduced the focal set to 8 
homozygously mutated genes, including likely drivers TP53 and STK11. Similarly, while 
expression analysis alone revealed thousands of differentially expressed genes between the two 
cell lines, only a small fraction of such genes were associated with the underlying genetic and 
epigenetic changes. Among these small number of genes, MET was present in a highly amplified 
region and showed 7-fold overexpression in H1993, and ABCC4 was amplified and overexpressed 
in the drug resistant cell line H2073. Although we could not exclude other genomic changes that 

Table 1.  Assembly-specific exonic indels. 

Indel Type Coordinate Length (bp) Affected gene Cell line 
Deletion Chr1:7,889,973-7,890.026 54 PER3 Both 
Deletion Chr2:27,324,254-27,324,304 51 CGREF1 H2073 
Insertion Chr12:71,523,133-71,523,134 109 TSPAN8 H2073 
Deletion Chr14:104,645,583-104,645,705 123 KIF26A H2073 
Insertion Chr20:62,196,017-62,196,018 57 PRIC285 H2073 
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might also explain the phenotypic differences between these two cell lines, our integrated analyses 
readily produced a working model that is consistent with our knowledge of the samples.  

It is worth noting that although H1993 and H2073 have been independently cultured ex vivo 
for decades, they show remarkable similarity and display largely overlapping point mutations.  
This shows that any new mutations acquired during the cell culturing steps are at the minimum if 
they exist. This finding boosts the validity of these cell lines as stable model systems for cancer 
studies. From the technology point of view, our de novo assembly of both cell lines revealed a 
number of additional insertions and deletions, missed by the reference-based assembly. Only 5 of 
these altered protein coding regions, indicating that reference-based assembly captures most of the 
actionable variants.   

It should also be noted that this study is exploratory by nature. With such small sample size, 
the statistical power is nonexistent, so it is currently impossible to draw any causal relationships 
with any confidence. This approach should be viewed as a hypothesis generating method. 
Alternatively, this approach can be viewed as a “hypothesis-supporting method”. Our current 
knowledge of lung cancer and drug resistance has led us to propose genes like EGFR, MET, and 
ABCC4 as functionally relevant culprits in these cell lines, but an improved knowledge in the field 
might implicate a different set of genes. It is therefore necessary to view the panomics data with a 
grain of salt, as the interpretation of these data can be influenced by the current biological 
knowledge. Nevertheless, the maturation of this field will enhance our ability to better analyze 
panomics data, as no single assay can provide a full picture of the cell state or to point in the 
direction of possible therapeutic actions. 

8.  Materials and Methods 

8.1.  Whole Genome Sequencing and Variant Calling 

Whole genome sequencing (WGS) of H1993 and H2073 was performed by Complete Genomics, 
as described (7).  Independently, WGS of H1993, H2073, and BL1993 was performed by Illumina 
sequencing (100bp paired-end reads), using libraries with insert sizes of 200, 500, 2000, 5000, 
10000, 20000, and 40000 bp.  Reads where aligned to reference human genome (hg19) using 
BWA (28). Single nucleotide variants (SNV) and indels were called by the Complete Genomics 
WGS processing pipeline.  Several variant callers were applied to Illumina WGS data.  We used 
SOAPsnp (29) to identify germline SNVs in all 3 cell lines, and VarScan (30) to identify cell line-
specific SNVs in every possible 2-cell line comparison.  Only variants supported by 5 or more 
reads and separated by 10 or more base pairs from the nearest variant were retained. Somatic 
mutations were identified by requiring that no variant-supporting reads be detected in BL1993 
WGS. Unless the variant was listed in COSMIC database of cancer mutations, we further required 
that it was covered by 10 or more reads in BL1993, and not present in dbSNP (v.132) (31) or 
among variants from 1000 Genomes Project (32), 6515 normal exomes published by NHLBI (33), 
or 69 normal genomes sequenced by Complete Genomics and made available to the public (34). 
We used Dindel (35) to identify germline indels and GATK (36) to identify cell line-specific 
indels.  Indels were declared somatic if no compatible indel was detected in BL1993 by Dindel, 
and if the indel was not part of a set of known normal indels obtained from 1000 Genomes Project 
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and 69 publicly available Complete Genomics sequenced normal genomes.  Structural variants 
were obtained from the Complete Genomics pipeline. 

8.2.  Copy Number Analysis 

H1993 and H2073 cell lines were assayed with Illumina OMNI 2.5M SNP array and processed 
with a modified version of PICNIC (7). When calculating copy number fold change between the 
two cell lines, adjustment was made for average cell line ploidy. This was calculated as the 
average copy number per base pair, and was 3.9 for H1993 and 2.4 for H2073. 

8.3.  Messenger RNA Sequencing 

Three temporally separate, standard RNA-seq library preparations and subsequent sequencing data 
were collected for each of the two cell lines. One of the libraries for each cell line was sequenced 
on an Illumina GAII, while the remaining libraries were sequenced on an Illumina HiSeq machine. 
The resulting RNA-seq data was filtered for read quality, ribosomal RNA contamination, and then 
aligned to the human reference genome (NCBI Build 37) using the GSNAP alignment tool (37). 
Alignments were permitted a maximum of 3 mismatches per 75 base pair sequence and used the 
following GSNAP parameters: “-M 2 -n 10 -B 2 -i 1 -N 1 -w 200000 -E 1 --pairmax-rna=200000”. 
These steps, and the downstream processing of the resulting alignments to obtain read counts and 
RPKMs per gene (over coding exons of RefSeq gene models) per replicate are implemented in the 
Bioconductor package, HTSeqGenie (v 3.10.0) (38). 

We compared the gene expression profiles of the two cell lines using the gene count data 
described above, and the Bioconductor package edgeR (39). Each of the three temporally separate 
RNA-seq libraries per cell line was used as biological replicates for dispersion estimates within 
edgeR. Genewise exact tests for differential gene expression were performed, and resulting 
summary statistics reported. We used the cutoffs of FDR<0.001, fold change > 2, and RPKM 
>=0.5 (in cell line with overexpression) to declare differential expression. 

8.4.  DNA Methylation Analysis 

DNA methylation was measured by Illumina Infinium Human Methylation 450K BeadChips and 
preprocessed using the Bioconductor lumi package (40). Methylation status was measured in beta-
values ranging from 0 (unmethylated) to 1 (methylated). A probe was considered to show 
significant methylation change, if the difference between H1993 and H2073 beta-values was 
larger than 0.5. Nearby (less than 2kb) differentially methylated probes were merged into 
differentially methylated regions (DMR). Final differential methylation calls were based on DMRs 
near gene transcription starting site (TSS) (2kb upstream of TSS or overlapping with the first exon 
of the gene) with a minimum of two supporting probes. 

8.5.  Data Access 

The results of Complete Genomics WGS and copy number SNP array assays have been previously 
published (7).  The remaining data will be made available to the public and the repository location 
and accession information can be obtained from the authors. 
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Disrupted or abnormal biological processes responsible for cancers often quantitatively manifest
as disrupted additive and multiplicative interactions of gene/protein expressions correlating with
cancer progression. However, the examination of all possible combinatorial interactions between gene
features in most case-control studies with limited training data is computationally infeasible. In this
paper, we propose a practically feasible data integration approach, QUIRE (QUadratic Interactions
among infoRmative fEatures), to identify discriminative complex interactions among informative
gene features for cancer diagnosis and biomarker discovery directly based on patient blood samples.
QUIRE works in two stages, where it first identifies functionally relevant gene groups for the disease
with the help of gene functional annotations and available physical protein interactions, then it
explores the combinatorial relationships among the genes from the selected informative groups. Based
on our private experimentally generated data from patient blood samples using a novel SOMAmer
(Slow Off-rate Modified Aptamer) technology, we apply QUIRE to cancer diagnosis and biomarker
discovery for Renal Cell Carcinoma (RCC) and Ovarian Cancer (OVC). To further demonstrate the
general applicability of our approach, we also apply QUIRE to a publicly available Colorectal Cancer
(CRC) dataset that can be used to prioritize our SOMAmer design. Our experimental results show
that QUIRE identifies gene-gene interactions that can better identify the different cancer stages of
samples, as compared to other state-of-the-art feature selection methods. A literature survey shows
that many of the interactions identified by QUIRE play important roles in the development of cancer.

Keywords: Blood-based Cancer Diagnosis; Biomarker Discovery; Feature Interactions; Sparse Learn-
ing; Aptamer; SOMAmer Prioritization.

1. Introduction

In this paper, we focus on the task of biomarker discovery and cancer diagnosis directly based
on patient blood samples in the setting of limited training data. Although cancer diagnosis
based on microarray datasets has been extensively studied, blood-based cancer status predic-
tion is still a challenging problem, because complex diseases like cancers are the results of
multiple genetic and epigenetic factors and their manifestation in blood samples is even more
complicated than in tumor samples. It is very difficult to identify these complicated factors
solely based on limited information provided by training data. Previous studies on single gene
markers can provide valuable information about disease status prediction, but they offer lim-
ited insight into the complex interplay among the molecular factors responsible for progression
of complicated diseases such as cancers. So, recently, research in complex diseases shifts to-
wards the identification of multiple genes that interact directly or indirectly in contributing
their association to the target disease. Several complex interactive partners from previous

∗To whom correspondence should be addressed.
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studies have been shown to give important insight into the mechanism of breast cancer1 and
colorectal cancer,2 but none of these approaches addressed the problem of disease diagnosis
based on blood samples or considered the multiplicative effect of gene/protein expressions.

The identification of groups of genes that show differential behavior in the manifestation of
complex diseases is computationally infeasible due to the combinatorial nature of the problem.
Several recent methods propose to reduce the search space using orthogonal prior knowledge
about connections amongst the genes, such as interactions collected from protein-protein in-
teraction (PPI) network3 or grouping information from functional annotations of proteins.
One notable computational method named Group Lasso4 incorporates such prior interaction
or grouping among the genes to detect gene groups that contribute to human disease, by
enforcing sparsity at the group level in a supervised regression framework. Group Lasso is ex-
tended by Jacob et al.5 to a more general setting that incorporates groups whose overlaps are
nonempty. Such overlaps in groups is biologically significant, because many genes participate
in multiple pathways and manifest themselves in several biological processes. Although (Over-
lapping) Group Lasso is very useful in identifying biologically relevant groups of genes and
proteins, it cannot capture complex combinatorial relationships among the features within and
across the groups, and it often outputs too many features as biomarkers. Also, current PPI
network data is inherently noisy due to experimental constraints.6 Algorithmic approaches
based solely on these noisy prior information can result in many false positive interactions
which are absent in the real genome space.

Our goal in this paper is to identify the complex combinations of single genes and multi-
plicative pairwise interactions among genes that help us (1) better perform cancer diagnosis
based on blood samples, and (2) gain novel insights into the mechanistic basis of the diseases.
Since the total number of possible pairwise human gene interactions is huge, it is computa-
tionally infeasible to examine all possible combinatorial combinations of them when trying
to understand their relevance to the diseases under consideration. We propose a two-stage
approach in a sparse learning framework, named as QUIRE, i.e. to detect QUadratic Inter-
actions among infoRmative fEatures which show differential behavior for diagnosing a target
disease using protein or mRNA expressions. Based on our own experimentally generated data
from patient blood samples using a novel SOMAmer technology,7 we apply QUIRE to blood-
based cancer diagnosis for RCC and OVC, and we also apply QUIRE to a publicly available
CRC dataset that can be used to prioritize our SOMAmer design. QUIRE can discover com-
plementary sets of markers and pairwise interactions that can better classify samples from
different stages of cancer and predict post-cancerous events, like cancer recurrence and death
from cancer with higher accuracy than other state-of-the-art feature selection methods. To the
best of our knowledge, QUIRE is the first proposed method to identify combinatorial patterns
among the pairs of informative genes for studying complex diseases like cancers. Subsequent
functional analysis of the interactions identified by QUIRE reveals that it can indeed identify
genes relevant to the progression of diseases under study.

Pacific Symposium on  Biocomputing 2014

88



2. Problem and Method

The identification of single gene markers in a genome-wide case-control study is an ill-posed
problem, because the number of genes in human cells is much larger than that of available
samples. For such problems, Lasso, proposed by Tibshirani et al.8 is very popular for selecting
a small number of features relevant to the problem under study. When a set of features are
highly correlated to each other, Lasso selects one from that set, ignoring others. So there is a
possibility that Lasso leaves out biologically relevant genes from its set of selected informative
features.

Suppose we have a data set S containing n samples and p gene features (xi, yi) with response
variable y ∈ R and feature vector x ∈ Rp, where i ∈ {1, . . . , n}, and we assume that the feature
values and the ys are centered in S. The Lasso approach optimizes the following objective
function,

`(w) =

n∑
i=1

(yi −
p∑

j=1

wjx
i
j)

2,

`lasso(w) = `(w) + λ

p∑
j=1

|wj |, (1)

where `(w) is the loss function of linear regression, and w is the weight parameter. The `1 norm
penalty in lasso induces sparsity in the weight space for selecting features. It is obvious that
the sum of the least squared errors and the `1 norm are convex functions with respect to the
weights w. Lasso has a global optimum, which can be identified by any convex optimization
technique.

In spite of the computational efficiency and the popularity of Lasso for feature selection,
its formulation prevents it from capturing any prior information on possible group structures
among the features. Group Lasso4 proposed using `2,1 penalty to select groups of input features
which are partitioned into non-overlapping groups. The group penalty is the sum of the `2
norm on the features belonging to the same group. Overlapping Group Lasso5 extends Group
Lasso to handle groups of features with overlapping group members by duplicating input
features belonging to multiple groups in the design matrix. Because a lot of real applications
involve overlapping feature groupings, Overlapping Group Lasso is a more natural choice than
Group Lasso for biomarker discovery. Suppose that we partition p features in data set S into
q overlapping groups G = {g1, g2, . . . , gq}, the following objective function is minimized,5

`oglasso = `(w) + λ
∑
g∈G
||wg||, (2)

where λ is the regularization parameter, wg denotes the vector of weights associated with fea-
tures in group g, and || · || is the Euclidean norm. The above optimization problem is separable,
so we can use block coordinate descent to optimize the weights associated with each group g

separately. Although considering grouping structure among input features is very important
for feature selection, Overlapping Group Lasso only encourages sparsity at the feature group
level and there is no sparsity penalty within feature groups. Therefore, Overlapping Group
Lasso often outputs a much larger number of selected features than Lasso. Furthermore, Lasso
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Fig. 1. Working model of QUIRE. QUIRE takes as input, gene or protein expression levels of a set of samples,
disease status of those samples and physical interactions amongst the gene products. Then it uses gene ontology
based functional annotation to group the genes and cluster the interaction network. Overlapping group lasso is
run next on the expression and interaction space to identify informative set of genes and interactions. QUIRE
then enumerates all pairwise binary interactions amongst the selected gene features. Finally the proposed novel
objective function is applied on the selected single gene features, the informative protein protein interactions
and the quadratic interactions amongst these genes to identify the final set of interactions and gene markers.

and Overlapping Group Lasso only consider single gene features for prediction, which is limited
for disease status prediction and biomarker discovery as shown by our experimental results.

For cancer diagnosis and biomarker discovery from blood samples or tissue samples, we con-
sider all possible combinations of single gene features and quadratic gene interaction features.
Ideally, we want to optimize the following optimization problem to identify discriminative
features given the dataset S,

`(w,U) =

n∑
i=1

(yi −
p∑

j=1

wjx
i
j −

p−1∑
j=1

p∑
k=j+1

Ujkx
i
jx

i
k)2

+λ1

p∑
j=1

|wj |+ λ2

p−1∑
j=1

p∑
k=j+1

|Ujk|, (3)

where U is the weights associated with pairwise feature interactions. However, the above
model has O(p2) features and is not applicable to genome-wide biomarker discovery studies
because p2 is too large. Provided that the training data is often very limited, it is almost
impossible to identify the discriminative single or quadratic interaction features by solving the
above optimization problem. We propose QUIRE (QUadratic Interactions among infoRmative
fEatures) to address these challenges, which is based on Overlapping Group Lasso and Lasso.
And it takes advantage of both of these feature selection methods.

The underlying idea of QUIRE is to incorporate all possible complementary biological
knowledge (see Figure 1) into the above intractable optimization problem to reduce search
space. By restricting discriminative gene interactions to happen only between genes in some
informative gene groups, we can use existing functional annotations of input genes to identify
these groups thereby to throw away a lot of interaction terms during the optimization. In
addition, available physical interactions between the protein products of input genes can also
be used to cut the search space, although discriminative gene feature interactions for prediction
do not always necessarily correspond to physical interactions. The general working model of
QUIRE is shown in Figure 1. In details, QUIRE takes the expression profile of n samples over
p genes (proteins), the physical interaction network among the genes products (i.e. protein-
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protein interaction network) and the disease status of these samples as input, and it outputs
a (small) set of discriminative genes and gene interactions with corresponding learned weights
for predicting the disease status of any incoming test sample. The step-by-step working model
of QUIRE is given below:

(1) Functional group generation:

(a) QUIRE groups the p input gene features into q overlapping functional categories accord-
ing to the existing Gene Ontology (GO) based functional annotations such as Cellular
Colocalization (CC).

(b) QUIRE clusters the given interaction network (i.e. PPI) into subsets of overlapping
gene products based on CC.b

(2) Informative genes and functional interactions selection:

(a) Given the GO functional grouping of input gene features, Overlapping Group Lasso
is run to select m top discriminative genes for disease status prediction according to
the absolute values of the learned weights of gene features.c

(b) Overlapping group lasso is run on the clustered interaction network to select informa-
tive groups of protein-protein interactions. In this case, each cluster is considered as a
group and the products of pairwise gene/protein feature values among the interacting
proteins in a group are used as interaction feature values.

(3) Selection of most informative interactions and genes: QUIRE first enumerates all possible
quadratic feature interactions among the informative genes selected at step 2(a). Then it
takes these quadratic interactions, single informative gene features and the informative
functional interactions identified at step 2(b) as input and it outputs the final selected
gene interactions and single genes as biomarkers.

In order to identify the discriminative combinations of single gene features and quadratic
interactions among pairwise informative genes, we define our proposed objective function for
Lasso as follows,

`(w,U,R) =

n∑
i=1

(yi −
m∑
j=1

wjx
i
j −

m−1∑
j=1

m∑
k=j+1

Ujkx
i
jx

i
k −

r∑
l=1

RlIl)
2

+λ1

m∑
j=1

|wj |+ λ2

m−1∑
j=1

m∑
k=j+1

|Ujk|+ λ3

r∑
l=1

|Rl|, (4)

where j and k index the m seed informative genes and l indexes the r informative protein-
protein interactions selected by the Overlapping Group Lasso in the previous step, U and R are
weights associated with feature interactions, and λ1, λ2, and λ3 are regularization parametersd.
The objective function contains `1 penalties at single gene level, pairwise gene interaction
level, and protein interaction level. The intuition behind this formulation is that it captures

bWe chose CC as final functional grouping of gene/protein features because it produces groups with reasonable
size (see experiment section for details) and it is the most relevant annotation to blood-based diagnosis.
cm is selected by 5-fold cross validation.
dIn our experiments, we make λ1 = λ2 = λ3 and set it by 5-fold cross validation.
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the interactions that are complementary to the individual informative genes. Because it is
computationally infeasible to consider every pair of interaction in a genome-wide case-control
study, QUIRE reduces the search space by using the features that are selected by Overlapping
Group Lasso as the informative ones, and then it relies on Lasso with `1 penalties to identify
the discriminative combination of informative individual gene features and gene interaction
features, which provides an approximation to the problem of searching an exponential number
(O(2p+p2

)) of all possible combinations of single features and pairwise interaction features. Our
current implementation of QUIRE is based on the standard Lasso package from glmnet9 and
the Overlapping Group Lasso programs from Jacob et al., 2009.5

3. Experimental Results and Discussion

In this section, we present experimental results of QUIRE on three different cancer datasets:
blood-based cancer diagnosis and biomarker discovery for (1) Renal Cell Carcinoma (RCC)
and (2) Ovarian Cancer (OVC) based on our private datasets, and cancer recurrence and
death prediction for (3) Colorectal Cancer (CRC) based on a public microarray dataset, in
which the identified markers can be used to prioritize our SOMAmer design. We compare the
performance of QUIRE to the state-of-the-art feature selection techniques, Lasso, Overlapping
Group Lasso and SVM. We then perform a literature survey and enrichment analysis of the
informative interactions selected by QUIRE and show that they are relevant to the progression
of the disease.

3.1. Our Blood-based Datasets Generated by the SOMAmer Technology

To predict cancer progression status directly from blood samples, we generated our own
datasetse. All samples and clinical information were collected under Health Insurance Porta-
bility and Accountability Act compliance from study participants after obtaining written in-
formed consent under clinical research protocols approved by the institutional review boards
for each site. Demographic data was collected by self-report and clinical data by chart review.
Blood was processed within 2 hours of collection according to established standard operating
procedures. To predict RCC status, serum samples were collected at a single study site from
patients diagnosed with RCC or benign renal mass prior to treatment. Definitive pathology
diagnosis of RCC and cancer stage was made after resection. Outcome data was obtained
through follow-up from 3 months to 5 years after initial treatment. To predict OVC status,
plasma samples were collected from women with a suspicious pelvic mass prior to treatment.
Definitive pathology diagnosis of ovarian cancer stage or benign mass was made after resection.
CA-125 (Carbohydrate Antigen 125 also known as MUC16) was measured by a routine clin-
ical laboratory assay. To generate RCC and OVC datasets, the SOMAmer based proteomic
technology7 is used to measure the concentration of a selected set of about 1000 proteins
in Relative Fluorescence Unit. The CRC samples belong to a publicly available microarray
dataset collected from gene expression omnibus (GEO), and referenced by accession number

eDue to conflict of interest, the datasets are not publicly available. Data requests should be sent to the last
author of this paper.
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GSE17536 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17536).10

Our RCC dataset contains 212 RCC samples from benign and 4 different stages of tumor.
Expression levels of 1092 proteins are collected. The number of Benign, Stage 1, Stage 2, Stage 3

and Stage 4 tumor samples are 40, 101, 17, 24 and 31 respectively. Our OVC dataset contains 845

proteins’ expressions for 248 samples across Benign and 3 different stages of ovarian cancer.
The number of Benign, Stage 1, Stage 2 and Stage 3 tumor samples are 134, 45, 8 and 61

respectively. The public CRC microarray dataset (GSE17536) contains 177 samples from 4

different stages (Stage 1 to Stage 4) of CRC. Expression levels of 20125 genes are collected.
Besides stage information, this dataset also has records for each patient, the binary valued
information of “Cancer Recurrence” and “Death from Cancer”. Out of 177 patients, 55 had
recurrence of cancer and 68 died from cancer.

In order to group the genes using gene ontology terms, we use the web based
tool “Database for Annotation, Visualization, and Integrated Discovery” (DAVID,
http://david.abcc.ncifcrf.gov/).11 There are a set of parameters that can be adjusted
in DAVID based on which the functional classification is done. This whole set of parameters
is controlled by a higher level parameter “Classification Stringency”, which determines how
tight the resulting groups are in terms of association of the genes in each group. In general, a
“High” stringency setting generates less number of functional groups with the member genes
tightly associated and more genes will be treated as irrelevant ones into an unclustered group.
We set the stringency level to “Medium” which results in balanced functional groups where
the association of the genes are moderately tight. The total number of groups based on CC
annotations for RCC and OVC datasets are 56 and 23 respectively, and the number of groups
for the CRC dataset is 520.

Besides using it for selecting informative single gene features, we use Overlapping Group
Lasso to select the informative protein protein interactions. We download the binary protein
protein interactions (PPI) data from HPRD (http://www.hprd.org/). For each feature group
Gi, we identify the pairs of member genes of Gi whose products interact directly with each other
in the PPI network. The set of all such pairs where both interacting partners are members of
Gi forms a group. For a pair of interacting genes xj and xk in a group, we use their quadratic
interaction term xjxk as their expression level. Usage of the quadratic interaction formulation
in Overlapping Group Lasso helps us to integrate the resulting informative protein protein
interactions into the formulation of QUIRE directly without any transformation. Thus the
total number of groups are same in the case of interactions and single gene features. But the
cardinality of each group and the expression levels of the members are different.

3.2. Experimental Design

We perform three stage-wise binary classification experiments using RCC samples: Classifica-
tion of Benign samples from Stage 1−4 samples, Classification of Benign and Stage 1 samples
from Stage 2 − 4 samples, and Classification of Benign, Stage 1, 2 samples from Stage 3, 4

samples. In the OVC dataset, CA125 is a well-known marker in ovarian cancer.12 Concentra-
tion of CA125 is used to measure the progression of the disease. The suspicious cutoff level
of CA125 is 40 U/mL, meaning that concentration level above 40 of this marker might be
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indicative of OVC. But CA125 is not a good indicator of early detection of the disease onset,
especially when the concentration of this biomarker is between 40 and 100.13 So we use samples
with CA125 concentration level between 40 and 100 as our test set in this experiment. The
remaining samples, with concentration of CA125 below 40 and above 100 are used as training
set. We perform the following experiments: Classification of Benign samples from Stage 1− 3

samples, Classification of Benign, Stage 1 samples from Stage 2, 3 samples, and Classification
of Benign, Stage 1, 2 samples from Stage 3 samples. On the CRC dataset, we perform binary
classifications to predict whether there is disease-free survival in the follow-up time or not
for cancer recurrence prediction and whether there is death from CRC across all pathological
stages of the disease for death from colorectal cancer prediction.

3.3. Classification performance of QUIRE

In this section, we report systematic experimental results on classifying samples from different
stages of RCC and OVC and in predicting CRC recurrence and death from CRC. In the first
stage of QUIRE, we use Overlapping Group Lasso to identify the biologically relevant groups
of features and pairwise protein interactions, which in turn, is used in the subsequent stage
to explore the set of informative markers and quadratic interactions. However, for the RCC
and OVC datasets, we do not use protein protein interactions for prediction purpose. This is
because, these datasets include only selected marker proteins distributed sparsely across the
protein interaction network and thus most of them do not interact with each other directly.

After we run Overlapping Group Lasso on the gene groups, we sort the genes based on the
weight value assigned to it by the algorithm. We used cross validation to select the optional
parameter m in QUIRE from {100, 200, 300, 400, 500}, and m = 200 was selected for all our
experiments. For classification of CRC samples, Overlapping Group Lasso on average selects
1000 PPIs as informative ones. We use this whole set of selected protein interactions as input
to QUIRE to be considered besides the paired quadratic interactions.

The predictive performance of the markers and pairwise interactions selected by QUIRE
is compared against the markers selected by Lasso, linear Support Vector Machine (SVM)
and Overlapping Group Lasso. We use glmnet9 and LiblineaR14 packages for implementation
of Lasso and SVM respectively. We use the Group Lasso implementation (with overlapping
groups) from.5 The overall performance of the algorithms are shown in Figure 2. In this
figure, we report average AUC (Area Under the Curve) score for ten runs of five-fold cross
validation experiments for cancer stage prediction in RCC (Figure 2(A)) and for predicting
cancer recurrence and death from cancer in CRC(Figure 2(C)). In five fold cross validation
experiments, we divide the samples equally into five disjoint sets or folds. We keep one fold
for testing. On the remaining four folds, we use Overlapping Group Lasso to identify the
informative set of markers and protein protein interactions (for CRC). We train QUIRE on
these four folds using these markers to identify the pairwise interactions and markers and
use the set-aside test set for prediction purpose. For each run, this procedure is repeated
for each of the five folds and average AUC score is reported for ten such runs. For OVC,
we report average AUC score (Figure 2(B)) for predicting the cancer stage of the samples
with intermediate levels of CA125 (concentration of CA125 is between 40 and 100) using the

Pacific Symposium on  Biocomputing 2014

94



remaining samples for training and informative feature selection. In cancer stage prediction

Fig. 2. Comparison of the classification performances of different feature selection approaches with QUIRE
in identifying the different stages of (A)RCC , (B) OVC and (C) in predicting CRC recurrence and death
from CRC. In (A) and (C), five fold cross validation is repeated ten times and average AUC score is reported.
For (B), samples with CA125 marker’s expression level between 40 and 100 are used as test cases, while the
remaining samples are used for training. This experiment is also repeated ten times and average AUC score is
reported.

experiments for RCC and OVC, we see from Figure 2 that the combination of informative
markers and pairwise interactions identified by QUIRE show better classification performance
in every case, as compared to the markers selected by Lasso, SVM and Overlapping Group
Lasso. For early detection of the diseases (classification of Benign, Stage 1 vs. rest of the
samples), QUIRE achieves average AUC scores of 0.88 and 0.82 for RCC and OVC respectively.
Overlapping group lasso shows next best performance with average AUC scores of 0.83 and
0.80 respectively. Lasso and SVM, which do not use any grouping or interaction information
amongst the features, show the worst performance in all of the classification tasks apart
from one. As QUIRE markers show consistently better performance across all the stages of
RCC and OVC, they can be used for improved diagnosis and prognosis of these two different
types of cancers. Also QUIRE helps better prediction of OVC progression for samples with
intermediate levels of CA125 ; so it can be used by the physicians for early detection of this
disease.

From Figure 2(C), we can see that gene-gene interactions help us better predict both CRC
recurrence and death from CRC, as compared to the other feature selection mechanisms. In
the events of cancer recurrence and death from cancer, the average AUC values achieved
by features selected with QUIRE are 0.79 and 0.81 respectively, while markers identified by
Overlapping Group Lasso show the next best performance with average AUC value of 0.71 in
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both of these categories. Markers identified by Lasso show the worst performance in prediction
of both of these events. The performance gap between QUIRE and the other three popular
feature selection techniques hint to the fact that QUIRE can identify interactions that might
help us better understand the mechanistic basis of CRC.

These experimental results show that QUIRE identifies markers and interactions that
complement each other in such a way that they not only help better diagnosis and prognosis
of cancer, but also can predict the advanced events of recurrence of cancer and survival after
cancer with higher accuracy than other state-of-the-art algorithms. For each of these datasets,
identification of informative pairwise interactions using brute-force enumerative technique is
computationally impractical due to the huge dimensionality of the search space. QUIRE helps
reducing this space by a large margin. The total running time of QUIRE is dominated by the
Overlapping Group Lasso stage which takes around one hour to identify biologically relevant
groups of genes and protein interactions in traditional desktop computers for the types of
problems we study. After the dimensionality is reduced, QUIRE exhaustively enumerates all
the pairwise interactions and use the protein interactions identified in the previous stage
on this low dimensional space in a couple of minutes. QUIRE is computationally very fast
considering that it identifies discriminative pairwise gene interactions at a genome-wide scale.

3.4. Informative QUIRE markers and interactions associated with cancer
Cancer is a genetic disease, which originates and develops through a process of mutations.
Mutations in individual gene not only disrupts its own function, but also affects its interaction
patterns with other genes. As complex diseases like cancer is a result of dysregulation in the
interactions among the genes, researchers focus on identifying those relevant interactions to
gain more insight into the molecular basis of the disease. On the CRC dataset, QUIRE selects
about 120 quadratic interactions and single features in total on average as informative ones
for both CRC recurrence and death from CRC. On the other hand, the average number of
markers selected by Overlapping Group Lasso and Lasso on the same prediction tasks are
about 1100 and 150 respectively. Therefore, Overlapping Group Lasso itself is unsuitable for
biomarker discovery although it produced the second best performance.

An investigation of the pairwise interactions identified by QUIRE on CRC dataset re-
veals that many of these interactions are indeed relevant to the progression of cancer in
general. Some of such interactions identified for prediction of CRC recurrence include JAK2
- LYN ,15 Transforming growth factor beta (TGFβ) - SMAD ,16 Epidermal growth factor re-
ceptor (EGFR) - Caveolin (CAV ),17 TP53 - TATA binding protein (TBP),18 Connective
tissue growth factor (CTGF ) - Vascular endothelial growth factor (VEGF ),19 Edoglin (ENG)
- Transforming growth factor beta receptor (TGFβR).20 Further investigations of the interac-
tions identified by QUIRE might reveal novel gene partners associated with cancer and thus
lead to testable hypothesis.

Disturbance in pairwise interactions among the genes affects the pathways in
which they are located in. Cancer pathways are a set of pathways dysregulations
in which have been shown to be associated with initiation and progression of the
disease. A pictorial view of the well-known cancer pathways can be found in the
KEGG database(http://www.genome.jp/kegg/pathway/hsa/hsa05200.html).21 We per-
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form a pathway enrichment analysis where we test if the set of the markers and interactions
identified by QUIRE on the CRC dataset reside in the cancer pathways. As part of this
experiment, we first use the partner genes identified by QUIRE as part of the informative
interactions while predicting CRC recurrence. We use DAVID to identify the statistically sig-
nificant pathways that are enriched in these genes. An investigation of the enriched pathways
returned by DAVID indicates that many of them are indeed responsible for cancer or related
to functions dysregulation in which results in cancer. Some of such KEGG pathways include
Apoptosis (p-value 4.7x10−4), Focal adhesion (p-value 3x10−3), Cell adhesion molecules (p-
value 9.2x10−4), p53 signaling pathway (p-value 1.3x10−2), Gap junction (p-value 1.3x10−2),
MAPK signaling pathway (p-value 4.5x10−2), ErbB signaling pathway (p-value 5.8x10−2), Cell
cycle (p-value 6.6x10−2), Pathways in Cancer (p-value 7.2x10−4), Colorectal cancer (p-value
10−3). Repeating the same analysis on the interacting partners identified by QUIRE while
predicting “Death from CRC” result in identification of similar pathways (data not shown).

3.5. Significance of feature interactions in QUIRE

We also perform classification experiments to observe the performance of PPIs and informative
single features on predicting CRC recurrence and death from CRC without quadratic feature
interactions. For this experiment, we use the single gene markers and the PPIs selected by
Overlapping Group Lasso as input to QUIRE and enumeration of the pairwise interactions
among the marker genes is avoided. For ten runs of five fold cross validation experiment on
this modified feature set, we observe average AUC score of 0.71 for both classification tasks. If
we only use informative single features with the same experimental setting, the average AUC
score we got is 0.70. These results show that besides physical interactions and single features,
indirect higher level interactions among the informative genes must be taken into account to
understand the basic mechanism of complex diseases.

4. Conclusion

In this paper, we propose a computational approach, QUIRE, to identify combinatorial in-
teractions among the informative genes in complex diseases, like cancer. Our algorithm uses
Overlapping Group Lasso to identify functionally relevant gene markers and protein interac-
tions associated with cancer. It then explores the pairwise interactions among these relevant
genes within this reduced space exhaustively and the selected pairwise physical protein in-
teractions to discover the combination of individual markers and gene-gene interactions that
are informative for prediction of the disease status of interest. The application of QUIRE on
three different types of cancer samples collected using two different techniques shows that our
approach performs significantly better than the state-of-the-art feature selection methods such
as Lasso and SVM for biomarker discovery while selecting a smaller number of features, and
it also shows that our approach can capture discriminative interactions with high relevance to
cancer progression. Further investigations show that QUIRE can identify markers and inter-
actions that have been associated previously with pathways associated with cancer. Moreover,
the good performance of QUIRE on the CRC dataset suggests that applications of QUIRE on
genome-wide microarray experimental data can be used to help prioritize SOMAmer design

Pacific Symposium on  Biocomputing 2014

97



for blood-based cancer diagnosis. And QUIRE applied to blood-based experimental data has
the great potential to impact the field of practical medical diagnosis.

Acknowledgement

We thank Hans Peter Graf for valuable comments and discussions.

References

1. H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee and T. Ideker, Mol. Syst. Biol. 3, p. 140 (2007).
2. S. A. Chowdhury, R. K. Nibbe, M. R. Chance and M. Koyuturk, J. Comput. Biol. 18, 263 (Mar

2011).
3. S. Lee and E. P. Xing, Bioinformatics 28, i137 (June 2012).
4. M. Yuan and Y. Lin, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

68, 49 (2006).
5. L. Jacob, G. Obozinski and J.-P. Vert, Group lasso with overlap and graph lasso, in Proceedings

of the 26th Annual International Conference on Machine Learning , ICML ’09 (ACM, New York,
NY, USA, 2009).

6. H. Yu, P. Braun, M. Yıldırım, I. Lemmens, K. Venkatesan, J. Sahalie, T. Hirozane-Kishikawa,
F. Gebreab, N. Li, N. Simonis et al., Science 322, 104 (2008).

7. L. Gold, D. Ayers, J. Bertino, C. Bock, A. Bock, E. N. Brody, J. Carter, A. B. Dalby, B. E.
Eaton and T. Fitzwater et al., PLoS ONE 5, p. e15004 (12 2010).

8. R. Tibshirani, Journal of the Royal Statistical Society. Series B (Methodological) 58, pp. 267
(1996).

9. J. H. Friedman, T. Hastie and R. Tibshirani, Journal of Statistical Software 33, 1 (2 2010).
10. J. J. Smith, N. G. Deane, F. Wu, N. B. Merchant, B. Zhang, A. Jiang, P. Lu, J. C. Johnson,

C. Schmidt, C. E. Bailey, S. Eschrich, C. Kis, S. Levy, M. K. Washington, M. J. Heslin, R. J.
Coffey, T. J. Yeatman, Y. Shyr and R. D. Beauchamp, Gastroenterology 138, 958 (Mar 2010).

11. G. Dennis Jr, B. Sherman, D. Hosack, J. Yang, W. Gao, H. Lane and R. Lempicki, Genome Biol
4, p. P3 (2003).

12. K. S. Suh, S. W. Park, A. Castro, H. Patel, P. Blake, M. Liang and A. Goy, Expert Rev. Mol.
Diagn. 10, 1069 (Nov 2010).

13. E. L. Moss, J. Hollingworth and T. M. Reynolds, Journal of clinical pathology 58, 308 (March
2005).

14. R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang and C. J. Lin, Journal of Machine Learning
Research 9, 1871 (2008).

15. A. Samanta, S. Chakraborty, Y. Wang, H. Kantarjian, X. Sun, J. Hood, D. Perrotti and R. Ar-
linghaus, Oncogene 28, 1669 (2009).

16. W. Grady, Clinical cancer research 11, 3151 (2005).
17. K. Dittmann, C. Mayer, R. Kehlbach, H. Rodemann et al., Mol Cancer 7, 17 (2008).
18. D. Crighton, A. Woiwode, C. Zhang, N. Mandavia, J. Morton, L. Warnock, J. Milner, R. White

and D. Johnson, The EMBO journal 22, 2810 (2003).
19. I. Inoki, T. Shiomi, G. Hashimoto, H. Enomoto, H. Nakamura, K. Makino, E. Ikeda, S. Takata,

K. Kobayashi and Y. Okada, The FASEB Journal 16, 219 (2002).
20. E. Fonsatti, M. Altomonte, P. Arslan and M. Maio, Current drug targets 4, 291 (2003).
21. M. Kanehisa, S. Goto, Y. Sato, M. Furumichi and M. Tanabe, Nucleic acids research 40, D109

(2012).

Pacific Symposium on  Biocomputing 2014

98



 

MULTIPLEX META-ANALYSIS OF MEDULLOBLASTOMA EXPRESSION STUDIES 
WITH EXTERNAL CONTROLS 

ALEXANDER A. MORGAN 
Stanford University School of Medicine 

Stanford, CA 94305, USA 
Email: alexmo@stanford.edu 

ACHAL S. ACHROL 
Neurosurgery 

 Stanford University School of Medicine 
Stanford, CA 94305, USA 

Email: achrol@stanford.edu  

MATTHEW D. LI 
Stanford University School of Medicine 

Stanford, CA 94305, USA 
Email: mdli@stanford.edu  

PURVESH J. KHATRI 
Institute for Immunity, Transplant and Infection 

Stanford University School of Medicine 
Stanford, CA 94305, USA 

Email: pkhatri@stanford.edu

SAMUEL H. CHESHIER 
Neurosurgery, Stanford University School of Medicine 

Stanford, CA 94305, USA 
Email: cheshier@stanford.edu  

We propose and discuss a method for doing gene expression meta-analysis (multiple datasets) across 
multiplex measurement modalities measuring the expression of many genes simultaneously (e.g. microarrays 
and RNAseq) using external control samples and a method of heterogeneity detection to identify and filter on 
comparable gene expression measurements.  We demonstrate this approach on publicly available gene 
expression datasets from samples of medulloblastoma and normal cerebellar tissue and identify some 
potential new targets in the treatment of medulloblastoma. 

 

1.  Background 

Highly multiplex gene expression studies using microarrays or RNAseq are very useful for 
probing the functional genomics of a wide range of biological processes.  The analysis of gene 
expression data typically involves some sort of comparison between samples. Often this 
comparison is between samples drawn from different conditions.  Possible comparisons include 
samples from tissue treated with different pharmaceuticals, samples drawn from different tissue 
types or different developmental stages, or samples taken from diseased tissue compared with 
samples taken from healthy tissue. Many cancer types have been the focus of extensive gene 
expression analysis, both to identify new molecular subtypes of cancer by comparing different 
cancer samples, one to another, but also to compare the gene expression differences between 
healthy tissue and cancerous tissue to help elucidate the molecular processes in different forms of 
neoplasia.  Comparing gene expression levels across thousands of genes in healthy tissue and 
cancer is a powerful tool in investigating cancer pathogenicity and the development of new 
pharmacological agents to treat cancer.   In many types of cancer such as breast or prostate cancer, 
it is standard practice during therapeutic surgical removal of a tumor to remove an accompanying 
portion of nearby healthy tissue surrounding the tumor (i.e. the margin).   This provides material 
from which paired mRNA can be extracted for comparison between healthy and neoplastic tissue.  
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However, for many types of cancer this is not possible. For primary brain tumors, surgical 
resection of the tumor is often a balanced tradeoff between removing as much neoplastic material 
as possible, while leaving as much essential (eloquent) tissue structures as possible to maintain as 
much function as possible.  In aggressive brain tumors, the border of the malignancy and the 
healthy tissue may not be distinct or clearly separable.  For obvious ethical reasons, it is not 
possible to obtain brain biopsies of healthy tissue from volunteers, unlike tissue types such as skin 
or blood.  This makes having samples for multiplex comparison of gene expression between tumor 
and healthy brain tissue very difficult. 

Medulloblastoma is a type of highly malignant primary brain tumor that typically originates in 
the cerebellum below the tentorium cerebelli in the posterior fossa.  Gene expression studies of 
samples taken from medulloblastoma solid tumor tissue have focused on identifying different 
genomic subtypes of medulloblastoma that might lead to new targeted therapies or stratify 
prognosis [1,2].   Although it might be possible to do a post-mortem analysis of gene expression 
changes between samples drawn from tumor tissue and nearby brain in those unfortunate 
individuals who succumb to the disease, most victims of medulloblastoma are treated with 
radiation, chemotherapy or both, which can cause dramatic gene expression changes in both tumor 
and non-neoplastic tissue, making a true comparison of tumor with “normal” tissue difficult.  
Some of the only gene expression datasets of healthy normal brain tissue come from samples 
taken from freshly deceased cadavers, often from individuals tragically killed in accidents who 
pre-arranged to donate biological samples to research or whose families do so on their behalf. 

 Recent developments in techniques of multiplex meta-analysis have led to techniques that 
synthesize multiple highly multiplex gene expression studies (e.g. microarray or RNAseq) to help 
remove batch effects, increase statistical power, and identify differences more likely to 
biologically relevant and to be reproduced in subsequent studies  [3–6].  In short, these approaches 
typically involve two steps, one is to identify if the measurements of gene expression across 
studies are even comparable, or if there is too much variation.  The second step is to develop some 
overall estimate of the relative variation in gene expression across the studies and its statistical 
significance, against the typical null hypothesis of no difference in underlying expression between 
conditions. 

One possible way to address this problem of gene expression samples without matched 
controls is to find a way to identify genes expression profiles which look the same within datasets 
studying a particular condition (e.g. medulloblastoma and healthy cerebellar tissue), and then look 
for genes that then vary between datasets. To make this intuition more formal, we propose using a 
statistical measure of heterogeneity across datasets for medulloblastoma and healthy cerebellum 
respectively to identify genes that are consistently expressed at an equivalent level within the 
datasets studying each condition (i.e., low heterogeneity implies homogeneity of expression). At 
the same time, we compute a meta-estimate of effect (expression level) with an appropriate meta-
estimate of a confidence interval in that expression level across datasets and compare these two 
differences between conditions.  Figure 2 shows some contrasting patterns of expression across 
datasets that demonstrate these concepts pictorially. 

In order to investigate this concept further, we searched through the Gene Expression Omnibus 
(GEO) [7] to identify publicly available datasets of gene expression of medulloblastoma and 
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healthy, normal cerebellar tissue.  To make the best comparison possible, we focused on control 
brain samples from the cerebellum. Gene expression samples were excluded if they were 
associated with a particular diagnosis (e.g. Huntington’s disease) or a drug treatment. We obtained 
a total of 191 cerebellar control microarrays, and a total of 414 medulloblastoma microarrays for a 
total of 605 microarrays.  We also collected a dataset of 20 microarrays on brain aging to compare 
differences in gene expression in the tumor samples with normal brain aging. The datasets we 
collected are summarized in Table 1.  With any large meta-analysis, not all datasets are completely 
consistent in their methodology or content.  The Fiaschetti20011 mRNA is from medulloblastoma 
tissue culture, not primary tumor tissue, and the Remke2011 and Northcott2012 datasets share 
some overlap in the tumor source for 15 samples (~5% of the Northcott2012 dataset), but these 
were processed at different times on different microarray platforms, and we consider them as 

independent datasets.  

2.  Results of Analysis 

For each microarray dataset, the expression data was obtained from the Gene Expression Omnibus 
(GEO) [7] and quantile normalized.  The probe identifiers for each sample were mapped to Entrez 
Gene identifiers using AILUN  [8]; probes that mapped to multiple identifiers were excluded.  If 
multiple probes mapped to a single gene in a study, the median expression of all probes was taken 
for that gene. The expression levels of 7724 different genes were measured in all medulloblastoma 
and cerebellar datasets, but there was also some missing expression levels in individual 
microarrays, leaving us with 7015 genes with sufficient data to compare expression across 

Table 1.  Gene expression datasets used in this paper.  For the multiplex meta-analysis of gene expression in 
medulloblastoma, four studies of medulloblastoma and four studies of healthy cerebellar cortex were synthesized.  An 
additional dataset of gene expression in the brain as a function of age (individuals age 26-73 were used) was also 
used to compare gene expression changes in aging against gene expression changes found in medulloblastoma.  Note 
that the GPL570 platform (Affymetrix U133 Plus 2.0) has been used for both some control datasets and some 
medulloblastoma datasets, setting a point of relative comparison between conditions. 
 

Dataset	  

Number	  
of	  

Arrays	   Sample	  Type	  

Gene	  
Expression	  
Series	  

Pubmed	  
ID	   Publication	  

GEO	  
Platform	  

Gibbs2010	   146	   Cerebellar	  Control	   GSE15745	   20485568	   JR	  Gibbs,	  PLoS	  Genetics,	  2010	   GPL6104	  

Hodges2006	   27	   Cerebellar	  Control	   GSE3790	   16467349	  
A	  Hodges,	  Hum	  Mol	  Genet,	  

2006	   GPL96	  

Roth2006	   9	   Cerebellar	  Control	   GSE3526	   16572319	   RB	  Roth,	  Neurogenetics	  2006	   GPL570	  

Roth2007	   9	   Cerebellar	  Control	   GSE7307	  
	  

Unpublished	   GPL570	  

Fiaschetti2011	   3	   Medulloblastoma	   GSE22139	   21317922	   G	  Fiaschetti,	  Oncogene,	  2011	   GPL570	  

Kool2008	   62	   Medulloblastoma	   GSE10327	   18769486	   M	  Kool,	  PLoS	  One,	  2008	   GPL570	  

Northcott2012	   285	   Medulloblastoma	   GSE37382	   22832581	   PA	  Northcott,	  Nature,	  2012	   GPL11532	  

Remke2011	   64	   Medulloblastoma	   GSE28245	   21911727	   M	  Remke,	  J	  Clin	  Oncol,	  2011	   GPL6480	  

AgingCortex	   20	   Frontal	  Cortex	   GSE1572	   15190254	   T	  Lu,	  Nature	  2004	   GPL8300	  
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datasets. The genes were quantile normalized the genes across all microarrays together to get a 
normalized expression level across datasets. 

We then performed a meta-analysis for each gene in the cerebellar and medulloblastoma datasets 
separately.  For each gene in each dataset, we computed the mean expression rank and the 
standard error of that mean.  We used the meta-analysis method proposed by Hedges, et al. [9] 
which creates a meta-effect estimate based on a random effects linear model, weighting the 
contribution of the effect (rank expression level) estimate from each included dataset inversely 
with the standard error of that estimate.  This method has been widely used for microarray meta-
analysis [5,10,11]. We computed a meta-effect size estimate and we computed a measure of 
heterogeneity, Cochrane’s Q [12] for each gene across the cerebellar and medulloblastoma 
datasets, respectively.  This gave us a consensus measure of relative expression of each gene 
across the cerebellar studies, a confidence interval around that estimate, and a measure of how 
heterogeneous/homogenous expression of that gene was across studies.  We created the 
corresponding meta-statistics for expression across the medulloblastoma studies.  

By identifying the genes with the lowest 20% of heterogeneity in the cerebellar datasets and 
the genes with the lowest 20% of lowest heterogeneity in the medulloblastoma datasets, and then 
taking the intersection, we were left with 318 genes.  These represent 318 genes that are 
consistently expressed at about the same level across all the cerebellar datasets and consistently 
expressed at about the same level across all the medulloblastoma datasets, but may differ in 
expression between the two conditions.    To test the robustness of this result, we performed 100 

 
Figure 1: Smoothed histograms of the distribution of Cochran’s Q across 100 randomizations (spectrum of 
colors, visible in blue) compared with the distribution of the measure of heterogeneity in the actual samples in 
black.  The median Q for the actual sample labels is shown in the vertical dashed black line, and then the 
median for the 100 randomization tests is shown in the blue vertical line to the right.  The inset in each panel 
highlights that at the lower levels of heterogeneity there is substantially more genes showing expression 
homogeneity in the real data compared with the randomized samples (black line lies above the collection of 
colored lines, one for each of the 100 randomization).  
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random reshufflings of the dataset labels and repeated this analysis.   Figure 1 shows that there 
was more heterogeneity in the randomized samples compared to the actual datasets.   The median 
heterogeneity was always less in the actual data compared to the randomized samples.   This 
suggests that it is possible to find a highly specific set of genes that are more homogenous in 
expression across datasets for each of the two conditions than random chance.  

Of the 318 genes homogeneous in the datasets for both conditions (lower 20% of homogeneity 
in cerebellar and medulloblastoma datasets), 20 varied in meta-expression difference between 
medulloblastoma datasets and cerebellar controls greater than the computed meta-confidence 
interval (Equation 4). In the 100 randomized reshufflings of the dataset labels, there were a 
median of 8 genes (mean 7.97) genes which met the set criteria for heterogeneity and significant 
different, suggesting a false discovery rate of 40%.   

 

 
Figure 2: Four forest plots of gene expression across datasets.  The four cerebellar controls are shown in 
black, the medulloblastoma datasets in red. The expression pattern of PPIP5K2 shows narrow confidence 
intervals and also low heterogeneity, as the expression values across medulloblastoma datasets are similar 
to one another and the same is true for the controls.  PPIP5K2 also shows a pronounced difference in 
expression between these two conditions; this is the type of expression pattern across datasets that shows 
strong evidence of increased expression in medulloblastoma. In contrast ZIC1, shows high heterogeneity 
and thus would be filtered out even though the meta-estimate would suggest substantially lowered 
expression in medulloblastoma, as the expression levels within datasets studying medulloblastoma vary 
widely, while the confidence intervals around the expression measurements are also narrow.  SLC7A11 
shows low heterogeneity, as the expression levels within datasets have broad confidence intervals that 
nearly overlap, but there is also no significant difference between medulloblastoma and cerebellar 
controls and thus would be filtered out.  RAB7A both has high heterogeneity and low meta-estimate of 
the difference between medulloblastoma and cerebellar controls and would then be filtered out for both 
reasons. 
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Of the 20 genes found to be differentially expressed, two were located on chromosome X or & 
and may reflect a gender imbalance in samples and were removed, the remaining 18 are shown in 
Table 2.  Figure 3 shows the expression pattern of ENC1 which encodes Ectodermal-Neural 
Cortex 1, a gene induced by P53 and which interacts with the Retinoblastoma protein. The 
PRKAR2B gene shows a similar pattern of expression (Figure 3); it is greatly increased in 
expression in medulloblastoma compared to the healthy cerebellar tissue. PRKAR2B encodes a 
regulatory subunit that plays a role in regulation of energy metabolism in the cell.   

 The filtering by heterogeneity is intended to limit the false positive rate, but we might want to 
focus on sensitivity and expand the coverage of our meta-analysis.  Ignoring the filtering by 
heterogeneity, we can focus on the top genes whose meta-effect estimate significantly differs 

Table 2.  Top differentially expressed genes with consistent homogeneous expression levels across 
studies within each condition (medulloblastoma or cerebellar control). 

Symbol	  
Map	  

Location	   Description	  
Cerebellar	  
Control	  Q	  

Medullo	  
Q	  

Cerebellar	  
Expression	  

Level	  

Medullo	  
Expression	  

Level	  
Differential	  
Expression	  

B3GALNT1	   3q25	  
beta-‐1,3-‐N-‐

acetylgalactosaminyltransferase	  
1	  (globoside	  blood	  group)	  

501.1	   54.5	   6.89	  ±	  0.22	   8.00	  ±	  0.13	   1.10	  ±	  0.25	  

DNAJC1	   10p12.31	  
DnaJ	  (Hsp40)	  homolog,	  
subfamily	  C,	  member	  1	   533.1	   108.7	   7.07	  ±	  0.11	   8.25	  ±	  0.10	   1.18	  ±	  0.15	  

ENC1	   5q13	   ectodermal-‐neural	  cortex	  1	  
(with	  BTB-‐like	  domain)	  

559.7	   4.3	   7.27	  ±	  0.32	   8.92	  ±	  0.11	   1.64	  ±	  0.34	  

FAM115A	   7q35	   family	  with	  sequence	  similarity	  
115,	  member	  A	   37.8	   84.7	   7.50	  ±	  0.07	   9.03	  ±	  0.15	   1.52	  ±	  0.16	  

FZD7	   2q33	   frizzled	  family	  receptor	  7	   190.9	   159.1	   8.52	  ±	  0.27	   7.42	  ±	  0.47	   -‐1.10	  ±	  0.54	  

LBH	   2p23.1	   limb	  bud	  and	  heart	  
development	  homolog	  (mouse)	   384.0	   66.2	   6.82	  ±	  0.17	   8.06	  ±	  0.21	   1.24	  ±	  0.27	  

LMNB1	   5q23.2	   lamin	  B1	   251.9	   155.2	   6.86	  ±	  0.14	   8.94	  ±	  0.24	   2.08	  ±	  0.27	  

LRIF1	   1p13.3	   ligand	  dependent	  nuclear	  
receptor	  interacting	  factor	  1	   169.6	   128.1	   6.91	  ±	  0.09	   8.36	  ±	  0.17	   1.45	  ±	  0.19	  

MORC3	   21q22.13	  
MORC	  family	  CW-‐type	  zinc	  

finger	  3	   511.0	   50.8	   7.35	  ±	  0.33	   8.52	  ±	  0.09	   1.17	  ±	  0.34	  

OSBPL8	   12q14	   oxysterol	  binding	  protein-‐like	  8	   561.9	   38.6	   7.88	  ±	  0.31	   9.42	  ±	  0.06	   1.54	  ±	  0.32	  

PAX6	   11p13	   paired	  box	  6	   451.4	   144.4	   9.52	  ±	  0.32	   7.98	  ±	  0.51	   -‐1.54	  ±	  0.60	  

PODXL	   7q32-‐q33	   podocalyxin-‐like	   201.8	   63.7	   7.16	  ±	  0.17	   8.97	  ±	  0.15	   1.82	  ±	  0.23	  

PPIP5K2	   5q21.1	  
diphosphoinositol	  

pentakisphosphate	  kinase	  2	   153.7	   120.2	   6.95	  ±	  0.10	   9.30	  ±	  0.12	   2.34	  ±	  0.15	  

PRKAR2B	   7q22	  
protein	  kinase,	  cAMP-‐

dependent,	  regulatory,	  type	  II,	  
beta	  

165.8	   32.3	   7.09	  ±	  0.09	   9.34	  ±	  0.17	   2.25	  ±	  0.19	  

SACS	   13q12	  
spastic	  ataxia	  of	  Charlevoix-‐

Saguenay	  (sacsin)	   145.4	   128.6	   7.08	  ±	  0.13	   9.04	  ±	  0.29	   1.96	  ±	  0.32	  

STMN1	   1p36.11	   stathmin	  1	   188.0	   177.3	   7.53	  ±	  0.10	   8.77	  ±	  0.12	   1.23	  ±	  0.15	  

TRMT11	  
6q11.1-‐
q22.33	  

tRNA	  methyltransferase	  11	  
homolog	  (S.	  cerevisiae)	   183.4	   103.4	   7.24	  ±	  0.17	   8.40	  ±	  0.17	   1.17	  ±	  0.24	  

ZFP36	   19q13.1	   zinc	  finger	  protein	  36,	  C3H	  type,	  
homolog	  (mouse)	  

306.7	   121.1	   8.00	  ±	  0.64	   6.94	  ±	  0.33	   -‐1.06	  ±	  0.72	  
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between cerebellar and medulloblastoma datasets (354 genes were found to be increased in 
medulloblastoma compared to the controls when ignoring heterogeneity), and do an analysis for 
functional enrichment of DAVID  [13].  This analysis shows that these genes are highly over-
enriched relative to the background of the genes measured across all datasets in such functional 
annotations such as cell cycle (10-19, Benjamini corrected p-value for multiple hypothesis testing), 
M phase of mitosis (10-15), cell division (10-11) and being involved with cancer (10-5), as might be 
expected.  The 483 genes with lowered expression in medulloblastoma compared to healthy 
cerebellum (again ignoring the heterogeneity criterion) were highly enriched for genes annotated 
to be involved in the synapse (10-11), transmission of nerve impulses (10-9), synaptic transmission 
(10-9), the transport of neurotransmitters (10-7), psychiatric disorders (10-6), and the regulation of 
nerve impulse transmission (10-5). All this is clearly in line with our understanding of 
medulloblastoma replacing cells essential to the neurological functioning of the brain with cells 
focused on rapid replication and suggests that this multiplex meta-analysis approach for using 
external controls is producing differentially expressed genes with biological relevance to our 
understanding of medulloblastoma. 

To address one of the larger potential biases in our datasets, we also investigated the 
relationship to differential expression of genes due to normal aging.  Although we don’t have age 
information for all of our samples, medulloblastoma is a type of neurological cancer that 
preferentially targets younger individuals.  At the same time, most of the healthy cerebellar brain 
samples are likely from recently deceased older adults, so there may be a bias toward discovering 
genes which vary in expression in the cerebellum due to development and aging.  We do not have 
access to expression datasets from healthy cerebellar tissue in children of different ages; however, 
we do have some expression data on tissue from aging brains in adults.  If we look at the dataset 
on aging of brain samples taken from the frontal cortex of samples taken from recently deceased 
adults, we can look to see if there is any evidence that the gene expression differences between 
medulloblastoma and healthy cerebellum could be attributable to simple differences in age.  This 
is not a perfect comparison, but simple compromise based on what data we have available. 

Using a dataset from Lu, et al.  [14] obtained from the Gene Expression Omnibus  [7], we 
obtained gene expression levels from microarrays made from samples from the frontal cortex from 
twenty individuals aged 26-73.  The original dataset contains additional expression measurements 
from older brain samples, but we wanted to focus our analysis on gene expression changes in 
younger adults, and our exploratory analysis found that when using all the data the changes we 
identified were substantially driven by the samples drawn from much older individuals.  Data was 
again quantile normalized, and we simply looked at the significance test for the Pearson 
correlation between age and gene expression level. The significance estimates were adjusted using 
the Benjamini-Hochberg method for addressing multiple hypothesis testing.  Examples are shown 
in Figure 4. 
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None of the same genes were found to be significantly (adjusted p < 0.1) differentially 
expressed with age that were identified in the multiplex meta-analysis of the medulloblastoma and 
cerebellar controls.   Although this does not prove that gene expression changes that we identified 
in medulloblastoma are not due to differences in the age of individuals sampled, it does suggest 
that we are not identifying changes in gene expression solely based on the most dramatic age-
related changes. 

3.  Statistical Methods 

Computations were done using the 'meta' package in R  [15].  For each gene with an average 
expression level fi in each dataset, i, the meta-expression estimate of that gene within all the 
datasets studying a given condition was estimated by taking a weighted average of the expression 
levels across the gene level median of the probeset expression levels, where the weighting is the 
inverse of the sum of the within study variance and the estimate of the variance in expression 
between datasets.  For a given gene with expression of fi and a within dataset variance of vi in each 
of k datasets, the estimate of meta fold-change, M, for that given gene is shown in Eq. (1) and as 
described by Hedges & Olkin  [9].   This analysis was done using quantile normalized gene 
expression levels. 

 
 
Figure 4: Two examples of genes found to vary in expression with increasing age in the frontal cortex.  The 
expression level  is plotted on the vertical axis and the age of the individual on the horizontal.  The correlation 
coefficient and the corrected p-value appear at the top.  APOD codes for apolipoprotein D, and FOXG1 codes for 
a member of the forkhead transcription factors that plays a role in brain development. 
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The weight for the contribution from each dataset, i, is given by adding the estimate of the 
variance between each dataset and within each dataset and inverting, as shown in Eq. (2). 
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We estimate the between study variance, T2, using the method of moments, Eq. (3) 
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The confidence intervals and then p-values for the meta fold-change, M, are computed from the 
estimate of the variance, vM, which is computed from the inverse weights, Eq. (4). 
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The homogeneity test statistic, Q, is computed by Eq. (5)  
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4.  Discussion 

We have presented a possible method for the multiplex meta-analysis of gene expression with 
external controls amenable for use in gene expression studies of some types of cancer, and have 
presented a set of genes differentially expressed in medulloblastoma compared to cerebellar 
control tissue. There are considerable batch effect differences that usually make directly 
comparing two gene expression datasets for differences in expression challenging or impossible.  
There are also significant differences between gene expression platforms that make a single cross 
platform analysis impossible. However, the power of looking at multiple studies enables 
investigation of shared features across datasets to identify commonalities of expression that enable 
comparison of differences between collections of datasets.  We have only begun to scratch the 
surface of what is possible using the vast resources of the constantly expanding publicly available 
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data on gene expression.   Additional strategies and tools for merging data across varying datasets 
will be crucial for leveraging the full power of all this data.    

Multiplex gene expression measurement modalities are not the only datasets in need of such 
approaches.  For example, the analysis of data drawn from sequencing often is based on a 
comparison against shared or pooled controls that has its own biases as a semi-external control set.  
Other highly multivariate (multiplex) measurement modalities will have similar problems.  Often 
when doing such analyses we are interested in an analysis with very high specificity, such as 
identifying new biomarkers or drug targets, and it is acceptable to filter aggressively, such as by 
requiring very high levels of homogeneity within datasets of a particular condition, making such 
an approach tenable. A further investigation of approaches would include a greater examination of 
non-parametric, rank based approaches, as have been previously investigated for comparing 
against external controls  [16].  It is also possible to use much larger datasets with existing 
included controls (such as other forms of cancer) to demonstrate accuracy and consistency of 
results across a variety of cancers and other pathologies or use information about heterogeneity of 
expression across large numbers of datasets  [17]. 

Although a false discovery rate estimated at 40% may seem unimpressive, it is also highly 
context dependent.  To go from a list of tens of thousands of potential genes, down to a few dozen, 
with only half of them potentially being false positives may have use in many applications, 
including biomarker development.  Also, the general approach of filtering for genes of within 
sample class heterogeneity could be used with RNAseq data, which should have substantially less 
platform variability, but still has experimental and technical biases which would confound direct 
sample to sample comparison of expression  [18].    

Another important avenue of future investigation is to look closer at molecular subtypes of 
medulloblastoma separately.  The original research work that provided these medulloblastoma 
expression datasets identified several clinically different subtypes with characteristic gene 
expression profiles [1].  Our analysis grouped all the medulloblastoma samples together, looking 
only at shared properties in expression patterns, but this opens up exciting new possible avenues 
of hierarchical meta-analytic methodology development.  

We hope this work can lead to greater insight into the genomic and molecular pathogenicity of 
aggressive primary brain tumors like medulloblastoma, and although it will be only one part of 
future large scale data integration across experimental modalities, it will facilitate further methods 
of investigations in the absence of custom made control data.   The full data from these analyses is 
available on request from the authors (alexmo@stanford.edu). 
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Despite increasing investments in pharmaceutical R&D, there is a continuing paucity of 
new drug approvals. Drug discovery continues to be a lengthy and resource-consuming 
process in spite of all the advances in genomics, life sciences, and technology. Indeed, it 
is estimated that about 90% of the drugs fail during development in phase 1 clinical 
trials1 and that it takes billions of dollars in investment and an average of 15 years to 
bring a new drug to the market2. 

Meanwhile, there is an ever-growing effort to apply computational power to improve the 
effectiveness and efficiency of drug discovery3. Traditional computational methods in 
drug discovery were focused on understanding which proteins could make good drug 
targets, sequence analysis, modeling drugs binding to proteins, and the analysis of 
biological data. With the attention on translational research in recent years, a new set of 
computational methods are being developed which examine drug-target associations and 
drug off-target effects through system and network approaches. These new approaches 
take advantage of the unprecedented large-scale high- throughput measurements, such as 
drug chemical structures and screens4, 5, side effect profiles6, 7, transcriptional responses 
after drug treatment8, 9, genome wide association studies10, and combined knowledge11, 
12. More importantly there are increasing reports of these findings being validated in 
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experimental models6, 8, 13, 14, thus clarifying the value proposition for computational drug 
discovery. As a result, now is an exciting time for computational scientists to gain 
evidence for reusing an existing drug for a different use or generate testable hypotheses 
for further screening15.  

Despite the progress, there is clearly room for technical improvement with regard to 
computational repurposing approaches. Furthermore, to materialize the true potential and 
impact of these methods, much work is needed to show that they can be successfully 
adopted into practical applications. Hence, the aim of our session is to provide a forum to 
bring together the research community for a serious examination of these important 
issues.  

The six papers accepted to this year’s session reflect both the value of integrating 
disparate sources of data and an emerging emphasis in the field on target prediction using 
improvements on chemical informatics methods 

Brubaker et al., using data from the Cancer Genome Project, present a study on the 
sensitivity of cancer lines to a large group of drugs. Looking at gene expression, copy 
number data, mutational data, known mechanisms of drugs, and the known targets of 
drugs, they make mechanistic inferences about the mechanisms of drug resistance and 
sensitivity. Extracting this type of knowledge from large, complex repositories of 
screening data will be increasingly important in the coming years. This study also 
explains how these genomic changes may affect the efficacy of drugs, which connects 
repurposing with personalized medicine. 

Zhu et al. present a semantic reasoner that identifies repurposing opportunities for breast 
cancer. Instead of using machine learning, as do the other papers in the session, their 
approach looks to connect disparate pieces of information, from several sources, to make 
a logical case that supports repurposing a effort. 

Ng et al propose an interesting random-walk based approach to finding repurposing 
opportunities for malaria. The authors rightly identify specific challenges in applying 
chemical informatics in infection disease, and there method seems, nonetheless, to make 
good progress towards overcoming these challenges. Molecules are connected to one 
another if they are structurally similar and are annotated with their known targets. They 
show how random walks on this molecule network can identify the targets of molecules 
known to inhibit Malaria and also suggest potential repurposing opportunities with FDA 
approved drugs.  

Yang et al, similarly, propose a promising approach to predicting the protein targets of 
molecules, a key tool in identifying repurposing opportunities. They use a conditional 
random field to integrate information from chemical similarity, protein similarity, and 
known side-effects. This approach predicts the targets of molecules with high accuracy, 
and is exciting because it integrates critical but disparate data in a unified approach. 

Yera et al. propose another approach to predicting the targets of molecules. They use a 
combination of 2D structural similarity, 3D structural similarity, and clinical effect (as 
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reported in package label) similarity. Their best models get a performance boost from 
including the clinical effect information from package inserts. They also see strong 
predictive performance in identifying known off-targets of drugs. 

Blucher et al. makes the point that there are substantial issues in the metadata, data 
quality and completeness of public repositories of chemical assay data, like PubChem 
and ChemBank. Many computational approaches to repositioning seek to identify 
patterns in publically available chemical assay data, so the issues they identify are critical 
for the whole field. In particular, we hope their request for improved data submission 
standards and guidelines will be heeded. Moreover, the next steps forward for the target 
prediction methods that rely on these datasets may include finding better ways of curating 
and managing noise in the assay data. 

This is the second year Computational Drug Repositioning has been offered as a track at 
the Pacific Symposium on Biocomputing, and we are pleased with the results of our call 
for participation. These papers reflect a trend in the field towards target and off-target 
prediction of molecules. Understanding how drugs work and could work in human 
disease is, unsurprisingly, the central challenge in computational repurposing. They also 
reflect a trend towards integrating data from disparate sources, to make connections that 
would otherwise be hidden. 

In the future, we expect the field will continue to develop these themes. There will 
continue to be cross-pollination with chemical informatics and further progress towards 
integrating information from disparate datasets. We believe these challenges and 
opportunities will continue to stimulate innovative work for years to come. 
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Repurposing an existing drug for an alternative use is not only a cost effective method of development, 

but also a faster process due to the drug’s previous clinical testing and established pharmokinetic 

profiles. A potentially rich resource for computational drug repositioning approaches is publically 

available high throughput screening data, available in databases such as PubChem Bioassay and 

ChemBank. We examine statistical and computational considerations for secondary analysis of publicly 

available high throughput screening (HTS) data with respect to metadata, data quality, and 

completeness.  We discuss developing methods and best practices that can help to ameliorate these 

issues.  

 

1.  Introduction 

Despite increasing investment in drug research and development in recent years, the pharmaceutical 

industry has seen limited results in the form of novel marketable drugs.
1
 Attention has recently turned 

to drug repositioning, or finding new uses for already developed drugs. Drug repurposing is 

particularly attractive due to its simplified timeline; while the traditional drug discovery process can 

take between ten and seventeen years to bring a drug to production, repurposing a drug can take as 

little as three to twelve years depending on the drug’s previously established chemical properties.
2
 In 

several cases, repurposing has provided enormous benefit to patients with previously limited 

treatment options, such as the repositioning of thalidomide to treat multiple myeloma, or 

bromocriptine for Type 2 diabetes. Other well-known repositioning successes include Wellbutrin as 

Zyban for a smoking cessation aid, Minoxidil for hair loss, and Viagra (sildenafil) for erectile 

dysfunction.
1–3

   

 

A potentially valuable resource for drug repositioning efforts is publically available high throughput 

screening (HTS) data.
4
 A primary strategy for drug discovery, the automated high throughput 

screening process allows for the activity of hundreds of thousands of chemical compounds to be tested 

simultaneously.
5
 Compounds are screened against a particular target compound, typically a receptor 

or enzyme implicated in a disease, and are declared active if their results differ from the majority of 

the test compounds. However, it is well known that there are several common sources of variation 

within high throughput screens, both technological, such as batch, plate, and positional (row or 

column) effects, and biological, such as the presence of non-selective binders, which can result in 

false positives and negative bioactivity results.
4–8

 These problems are can be resolved through pre-

processing, standardization and normalization methods, which include the z-score, percent inhibition, 

and median-based methods among others.
5,9,10

 

 

Pacific Symposium on Biocomputing 2014

114

mailto:blucher@ohsu.edu
mailto:mcweeney@ohsu.edu


 

 

 

Results from high throughput screening projects, primarily from academic institutions, are often made 

available through public databases such as NCBI PubChem Bioassay and ChemBank. 
4
 The PubChem 

Bioassay database contains the results of high throughput screens for the biological activities of 

molecules cross-listed in PubChem Substance and Compound.
11,12

 Each PubChem assay has a unique 

assay identifier (AID). Assay data sets usually contain compound information, accompanying readout 

(for example, recorded fluorescence emission), activity score, activity outcome, and the mean values 

of minimum and maximum control wells for each plate in the assay. Activity scores and outcome are 

defined in the assay description, which typically explains the threshold used  to declare a particular 

compound active.
12

 The actual raw HTS data is not included in PubChem, however, and therefore 

there is no information on batch, plate, or within-plate position for each screened compound.  

 

The Broad ChemBank database also contains the results of small molecule screens, as well as the raw 

datasets from screening centers. Each assay in ChemBank therefore contains not only compound 

information and accompanying readout, but also batch, plate, row, and column annotation for each 

screened compound. Additionally, each assay is conducted twice, so assay datasets contain replicate 

fluorescence readings.
13

  

 

Given the common sources of variation known to affect high throughput screening data, it is crucial 

that the quality of a particular bioassay is evaluated before its results are used in further research 

efforts. For instance, researchers interested in using bioactivity information from databases such as 

PubChem and ChemBank for computational repositioning methods must first be convinced of the 

reliability of the screens in these databases.
7
 Issues in assay quality can result in false positive or false 

negative bioactivity results, affecting which compounds are considered for potential repositioning.  

Here, datasets from both PubChem and ChemBank are evaluated to quantify the advantages and 

limitations of each repository as well as to investigate common sources of variation such as batch, 

plate, and positional effects. This analysis is representative of a typical investigation of HTS data that 

would be conducted before utilizing this data in further computational repurposing efforts. Overall, 

the problems encountered here illustrate some of the key barriers to effective secondary use of 

publically available high throughput screening data in order to realize the full potential of these 

datasets. 

 

2. Methods 

In this study, exploratory analysis was conducted on representative bioassay datasets from PubChem 

and ChemBank to examine data completeness, particularly in the context of data pre-processing and 

addressing technical sources of variation. Additional data was obtained directly from the original 

screeners of the highlighted PubChem study to complete the exploratory data analysis and allow for 

comparable assessments to the ChemBank study.  
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2.1 PubChem Example 

The PubChem CDC25B (AID 368) dataset contains the results from approximately 65,222 

compounds and controls of a primary screen against the target CDC25B. CDC25 is a protein tyrosine 

phosphatase cell cycle regulator, and of three existing isoforms, two are oncogenic and have been 

found to be overexpressed in a variety of human tumors. The goal of this screen was to find potential 

inhibitors for the CDC25B isoform.
14

 The CDC25B dataset contained the following attributes: 

PubChem Substance ID, PubChem Compound ID, activity score, activity outcome, database URL, 

comment field, raw fluorescence intensity, calculated percent inhibition, mean of minimum control 

well signals (by plate), mean of maximum control well signals (by plate), calculated z-factor, and 

assay run date. Exploratory data analysis was conducted to evaluate the overall distribution of 

fluorescence intensity, percent inhibition, minimum control well means, maximum control well 

means, and calculated z’-factors. However, no further analysis could be performed for this dataset in 

the form available from the PubChem database, given the lack of plate level data such as batch 

number, plate number, and row and column information for each well. 

 

2.2 Full PubChem Example 

 The full CDC25B dataset, including plate-level annotation, was obtained directly from the PMLSC 

screening center and contained results from approximately 83,711 compounds and controls across 218 

384-well microtiter plates. In addition to PubChem Compound ID, raw fluorescence emission, 

calculated percent inhibition, mean minimum signal, mean maximum signal, calculated z-factor, and 

run date, this dataset also included assay batch, plate ID, row, column, well number, and well 

annotation. This information enabled further exploratory data analysis such as evaluation of 

fluorescence intensity distribution by well type and across plates and batches. Heatmaps were created 

for individual plates to check for positional effects. The mean signal to background ratio and percent 

coefficients of variation for the minimum and maximum control wells were also calculated. Based on 

the exploratory data analysis, percent inhibition was chosen as the most appropriate normalization 

method, which was also the method chosen by the original screeners when processing the dataset. 
5,14

  

 

2.3 ChemBank Example  

The ChemBank BRAF dataset contains the results from approximately 41,088 compounds and 

controls of a primary screen to find an inhibitor of the BRAF
V600E

 mutant. The BRAF gene plays an 

important role in the mitogen-activated signaling pathway and in particular, the BRAF
V600E

 mutation 

has been implicated in melanoma, papillary thyroid carcinoma, and colorectal cancer.
15

 The BRAF 

dataset is composed of seven different assays, each with two replicates. Given limited assay 

description and annotation provided, each of the seven assays was evaluated separately. First, 

correlation of raw fluorescence intensity between the two replicates was assessed for each of the 

seven assays, and if present, any outlying data points were investigated at the plate level. Next, 
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exploratory data analysis was conducted for each assay to assess the overall distribution of 

fluorescence intensity, background-subtracted values, and calculated z-score. This analysis included 

histograms, boxplots, and quantile-quantile plots for individual replicates and statistical indices of the 

combined data, as appropriate.  

 

3. Results 

3.1 PubChem Example 

Overall, the distribution of fluorescence intensity across all compounds in the CDC25B dataset is 

strongly skewed right, while the distribution of percent inhibition across all compounds is strongly 

skewed to the left. The distribution for the range between the mean minimum and mean maximum 

control wells is slightly skewed bimodal (See Supplementary Material S1) The distribution of z’-

factors across all compounds is fairly skewed to the left and appears to be slightly bimodal. Boxplots 

of z’-factor by run date reveal strong variation by date (Figure 1).  

   

                              (A)                                                                                (B) 

Figure 1. Distribution of Z’-factors for PubChem CDC25B dataset. (A) Histogram depicting distribution of 

calculated z’-factors. (B) Boxplots by run date for calculated z’-factors.  

It is noted that the compounds run in March 2006 have much lower z’-factors than the remaining 

compounds, run in August and September 2006. Additionally, the compounds run on September 13th, 

2006 exhibit a much wider range of z’-factors than compounds run on any other dates, while 

compounds run on September 29
th
, 2006 exhibit a much narrower range. Given that the z’-factor is a 

commonly used measure of assay quality, plates with a such divergent z’-factors should be examined 

for possible errors and batch effects.  Here, however, further investigation into the sources of this 

variation could not be conducted due to the lack of plate level annotation available through the 
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PubChem Bioassay database. If the metadata had been available, it would then be possible to attempt 

to correct for batch and technical sources of variation.  

Full PubChem CDC25B example 

 Histograms of fluorescence intensity by well type (compound, 50% inhibition, minimum, and 

maximum) for the full CDC25B dataset show that the distribution of fluorescence intensity across all 

wells is somewhat normal with a strong peak. The distributions of fluorescence intensities for 

compound wells and maximum control wells are slightly skewed right, while the distributions of 

fluorescence intensities for minimum and 50% inhibition control wells are more strongly skewed to 

the right (See Supplementary Material S2 Fig 1 and 2). Fluorescence intensity appears to vary widely 

by both batch and run date as well as by plate within respective batches (See Supplementary Material 

S2 Fig 3-8). No apparent positional effects were detected by visual examination of heatmaps for each 

of the 218 plates in the dataset.   

 

Following a recently proposed decision process for HTS data processing, percent inhibition was 

chosen as the most appropriate method of normalization, due to the fairly normal distribution of 

fluorescence intensity, lack of row and column biases, a mean signal to background ratio greater than 

3.5, and percent coefficients of variation for both the minimum and maximum controls wells less than 

20% 
5
 (See Supplementary Material S2 Table 1). This appeared to successfully normalize the data by 

batch, date, and across plates within each batch and reproduced the original analysis (See 

Supplementary Material S2 Fig 9-16). It is important to note that it would not be possible to 

successfully evaluate this data set with regard to pre-processing and normalization without the plate 

level annotation.  

 

3.2 ChemBank Example 

 

There was a large range with regard to correlation of fluorescence intensity between replicates: 0.436-

0.910 (Table 1).  Scatterplots further illustrate the high variability among some replicates (Figure 2). 

This allows easy identification of signal discrepancies. For example, the bottom of the scatterplot for 

assay 1110.0002, it is easy to detect a set of mock treatment wells (in red) where signal was present in 

replicate A, but not in replicate B. Similarly, the upper left-hand corner of the scatterplot for assay 

1110.0003 shows a replicate specific cluster of compound treatment wells. The outlying data points in 

assay 1110.0002 were found to be confined to one plate, 1110.0002.Base. The outlying data points in 

assay 1110.003 were similarly located on a single plate, 1110.0003.2340.  

Table 1. Correlation Coefficients for Fluorescence Intensity Replicate A vs Fluorescence Intensity 

Replicate B, by Assay, ChemBank BRAF dataset.  

Assay 

Number 

1110.0001 1110.0002 1110.0003 1110.0004 1110.0005 1110.0006 1110.0007 

Correlation 0.436 0.536 0.906 0.910 0.902 0.869 0.846 

Pacific Symposium on Biocomputing 2014

118



 

 

 

Examination of the well-plate layout for 1110.0002 allowed identification of an obvious positional 

effect in the upper six rows of the plate (Figure 3). Similarly for 1110.0003, the corresponding well-

plate layout illustrated a clear positional effect along the bottom two rows of the plate.  
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Figure 2. Scatterplots for Correlation of Fluorescence Intensity Between Replicates A and B. Correlation 

between replicates of Assay 1110.0001- 1110.0007. Blue indicates compound-treatment wells, red indicates 

control wells.    

 

Figure 3. Well Plate Layouts for Selected BRAF Assays. (Left) Replicate B of Base Plate for Assay 

1110.0003. (Right) Replicate A of Plate 2340 for Assay 1110.0003. Darker wells indicate decreased 

fluorescence. 

Overall, each of the seven assays in the BRAF dataset showed fairly different distributions for 

fluorescence intensity, background-subtracted values, and calculated z-scores (See Supplementary 

Material S3), further reiterating the role of exploratory data analysis to examine model assumptions 

prior to downstream analysis.   

 

Boxplots of the fluorescence intensity by plate were then examined. It was noted that the signal varies 

considerably across plates, both within and across each of the seven assays. (Replicate A shown in 

Figure 4). Beginning with assay 1110.0003 in replicate A, it is apparent that within each assay, 

fluorescence intensities steadily increase with each successive plate that is run before dropping down 

at the beginning of the next assay. In the absence of timestamps for each plate, it was assumed that 

increasing plate numbers indicate passage of time. However, without that appropriate metadata, it is 

not possible to determine the actual source of variation, again limiting the ability to correctly model 

batch or temporal effects.  
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Figure 4. Raw Fluorescence Intensity by Plate, Across All Assays, Replicate A, ChemBank BRAF dataset. 

Each boxplot depicts the fluorescence values of the wells of one plate. Colors indicate assay “Name”, which 

may or may not be synonymous with batch.   

 

4. Discussion 

Both repositories examined provide excellent opportunities for secondary analysis of public HTS data. 

However, we have noted several issues that need to be addressed in order to realize their full potential.  

Most notably, the lack of actual raw data, and therefore plate level annotation for bioassays in 

PubChem BioAssay prevents rigorous analysis of data quality. As illustrated above, initial exploratory 

analysis of the limited CDC25B dataset (as obtained from PubChem) reveals potential quality issues, 

such as variation by run date. These issues cannot be fully investigated, however, without knowledge 

of batch and plate numbers and row and column positioning for each tested compound. The complete 

CDC25B dataset, obtained directly from the screeners, allowed for more in-depth investigation of 

sources of variation, which in turn allowed for more appropriate pre-processing and normalization 

recommendations to be made. It would not have been possible to evaluate the dataset solely from the 

data and annotation made available through the PubChem database. 

 

Another issue for researchers seeking to extract assay information from PubChem is the lack of 

description for the particular readouts used in assays. While the PubChem assay discussed in this 

paper provided a full description of the fluorescence emission readout, many assays do not necessarily 

include this level of information.  It is also important to note that the issues discussed here are likely 
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extensible to other databases, such as ChEMBL, which contain bioactivity information from selected 

PubChem Bioassays.
16

 

 

 

The ChemBank database is currently the only publically available bioassay database that requires the 

inclusion of plate level annotation in their datasets. While this information is crucial for secondary 

analysis, the value of the datasets in ChemBank is negatively impacted by the lack of assay annotation 

and description. For instance, the BRAF dataset was composed of seven different assays, but it was 

unclear how these differed from one another, if at all. From the assay descriptions, it appeared that 

only the first assay differs in its biological components, but there was no additional information as to 

why the remaining six assays were conducted separately.  Additionally, while we might expect strong 

correlation between replicates for each assay, several assays exhibited exceptionally poor correlation, 

which casts doubt on the overall quality of the screening data. Furthermore, the lack of date or 

timestamps for the ChemBank data makes it impossible to confirm temporal batch effects, limiting 

one to data visualization by plate, with an assumption that plate order corresponds with time, as done 

in Figure 4.  

 

Correspondence with PubChem confirmed that PubChem Bioassay does not require plate level 

annotation in uploaded datasets to the BioAssay database. It is also noted that there is no way to query 

for which, if any, datasets include this level of annotation (Personal communication with PubChem). 

ChemBank also confirmed that the “AssayName” field is used by depositors in different ways: it can 

be used for biologically different assays or batches of similar assays. Currently, there is no method of 

querying for datasets to identify those for which particular descriptive information/metadata are 

included (Personal Communication with ChemBank). These issues affect not only the general 

usability of the databases, but in particular hinder a larger-scale systematic quality analysis of HTS 

assays. The analysis presented here was restricted to one assay from each database primarily due to 

difficulties in accessibility and poor annotation.  

 

Issues such as these in turn stymie the usage of high throughput screening data in further research 

efforts such as computational repositioning efforts requiring bioactivity information. There is the 

potential for improved data standards and development of best practices for data dissemination to 

improve the quality and reusability of the data in these repositories. At a minimum, the inclusion of 

metadata such as plate and well-level annotation will enable a more thorough secondary analysis of 

HTS data. Additional oversight to ensure descriptor fields for assays are completed may also 

encourage assay re-use. With respect to cost-benefit analysis, the potential for re-use of the data via 

secondary analysis far outweighs any costs due to additional data standards or metadata requirements, 

as the metadata has already been generated. Further impact in time/resources for depositing additional 

metadata can easily be mitigated by automation. One example of methods to facilitate the reporting of 

this metadata is a recently proposed method to first extract workflows directly from screening data in 

PubChem and then use the workflows to organize data within screening projects. 
17
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Addressing these issues in the research community and in the requirements for submission to these 

repositories could improve the re-use of these data sets.  A PubMed search for “PubChem” results in 

only 263 articles, and the more specific “PubChem BioAssay” pulls up only 51 articles. Querying for 

“ChemBank” returns even fewer articles, with only 17 results.  For perspective, searching “GEO” 

brings up approximately 8480 results for Gene Expression Omnibus. While both PubChem BioAssay 

and ChemBank are fairly young databases and more expansive mining efforts using their datasets may 

still be yet to come, the annotation and data quality issues in both databases cannot be ignored as a 

potential barrier to dissemination. Expanded datasets as well as more rigorous quality standards are 

necessary to ensure the public data is truly accessible and re-usable.
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The r evolution i n sequencing t echniques i n t he p ast d ecade ha s p rovided a n extensive p icture o f the 
molecular mechanisms behind complex diseases such as cancer. The Cancer Cell Line Encyclopedia (CCLE) 
and T he C ancer Genome P roject ( CGP) h ave p rovided an  unprecedented o pportunity t o e xamine co py 
number, ge ne e xpression, a nd m utational in formation f or over 10 00 c ell l ines of  multiple t umor t ypes 
alongside IC50 values for over 150 different drugs and drug related compounds. We present a novel pipeline 
called D IRPP, D rug I ntervention Response P redictions with P ARADIGM7, wh ich predicts a cel l l ine’s 
response to a  d rug i ntervention from molecular data. PARADIGM (Pathway Recognition Algorithm using 
Data Integration on Genomic Models) is a probabilistic graphical model used to infer patient specific genetic 
activity by integrating copy number and gene expression data into a factor graph model of a cellular network. 
We evaluated the performance of DIRPP on endometrial, ovarian, and breast cancer related cell lines from 
the CCLE and CGP for nine drugs. The pipeline is sensitive enough to predict the response of a cell line with 
accuracy and precision across da tasets a s high as 80 a nd 88% respectively. We t hen c lassify d rugs b y t he 
specific pathway mechanisms governing drug response. This classification allows us to compare drugs by 
cellular r esponse mechanisms r ather t han s imply b y t heir specific g ene t argets. T his p ipeline r epresents a  
novel approach for predicting c linical drug response and generating novel candidates for drug repurposing 
and repositioning. 

 

1. Introduction 
 
The potential for bioinformatics techniques to bring about transformative results in personalized 
medicine is just beginning to be realized.  Large scale studies such as The Cancer Genome Atlas 
(TCGA), the Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Project (CGP) have 
provided bioinformaticians with a wealth of –omic and pharmacologic data to interrogate1-5. Novel 
algorithms have been developed to perform detailed signaling pathway analysis6, integrate diverse 
–omic data types7-11, and even predict markers of drug sensitivity and resistance12. Analytical 
efforts are also underway to identify candidates for drug repurposing or repositioning and to 
computationally predict new drug indications for disease13.  
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Despite this wealth of innovation, the complexity for interpretation and translation of 
results to cancer patients remains challenging. The diversity of computational approaches has 
made it difficult to identify which of these have the most potential to improve the treatment of 
patients and improve clinical outcomes14. Each algorithm relies on a different type of –omic or 
combination of –omic data making it difficult to integrate them in a single analytical pipeline12, 13.  

An important goal of computational bioinformatics pipelines is to provide actionable results to 
help physicians make optimal therapeutic decisions for a patient. To this end, the patient’s 
likelihood to respond to a specific treatment regimen is of particular interest to clinicians. The 
typical clinical case includes investigators looking to discover alternative therapies for patients 
who demonstrate resistance to the primary treatment. Both drug repurposing, the recycling of 
shelved or failed drugs, and drug repositioning, the use of active therapies for new applications, 
represent opportunities for the development of second line therapies. In order to maximize the 
impact of such an analysis pipeline, it should be versatile enough to address a myriad of clinical 
and scientific questions and easily integrate with existing clinical pipelines to assist physicians.    

To address these clinical and analytical challenges we propose an integrative pipeline called 
DIRPP, Drug Intervention Response Predictions with PARADIGM (Pathway Recognition 
Algorithm using Data Integration on Genomic Models)7. Our pipeline aims to classify a cell line 
as either sensitive or resistant to a given therapy and to define specific genetic backgrounds 
represented in the cell line, potentially applicable to specific patients, associated with drug 
response phenotypes. This classification is performed using an extension of an open source 
probabilistic graphical model called PARADIGM. Drawing on multiple data types, DIRPP 
proceeds to integrate the copy number and gene expression data for a cell line into a biological 
pathway activity score which includes the result of a simulated drug intervention. Once the cell 
line (which may be a surrogate for a patient of interest) has been classified as sensitive or resistant 
to a given therapy, downstream gene set enrichment analysis (GSEA) on the pathway activity 
scores illustrates the underlying biological pathway mechanisms at work driving the drug response 
phenotype. The method can be applied to assess the impact of a wide variety of therapies on one 
particular cancer, or multiple cancers at a time to develop precision medicine strategies. 
 
2. Materials and Methods 
 
2.1. Datasets, Pathway Sources, and Pharmacologic Profile Data 

Copy number, gene expression, and drug sensitivity data for 202 cancer cell lines from two 
recently published preclinical studies, the cancer genome project (CGP)4 and the cancer cell line 
encyclopedia (CCLE)5 were used for analysis. The distribution of cell lines by cancer type was: 20 
ovarian, 39 breast, and 6 endometrial cancer cell lines from the CGP for testing of the algorithm 
and 51 ovarian, 59 breast, and 27 endometrial cancer cell lines from the CCLE for an independent 
dataset to validate the algorithm. Of the 16 drugs in common between the two studies, 9 inhibitory 
drugs were selected for analysis based on their clinical potential for treatment of ovarian cancer 
and repurposing/repositioning in breast and endometrial cancers (Table 1).  Genetically similar 

Pacific Symposium on Biocomputing 2014

126



 

 

 

sub-types of these cancers represented in this array of cell lines have been the subject of numerous 
genomic and drug repositioning studies and provide a robust sample set for analysis.  
 
        Table 1. Nine (9) anticancer inhibitory drugs analyzed in both the CGP and CCLE with primary clinical                     
            relevance to ovarian cancer and secondary clinical relevance to breast, and endometrial cancer.   

Drug Name Target(s) Class 
Erlotinib EGFR Kinase Inhibitor 
Irinotecan Topoisomerase Cytotoxic 
AZD0530 Src, ABL/BCR-ABL, EGFR Kinase Inhibitor 
AZD6244 MEK, ERK, MAPK Kinase Inhibitor 
PD0325901 MEK, RAF, MAPK Kinase Inhibitor 
Lapatinib EGFR, HER2 Kinase Inhibitor 
17-AAG HSP90 Other 
Sorafenib KIT, PDGFRB, FLT3, FLT4, KDR, RAF1, BRAF Kinase Inhibitor 
Paclitaxel Microtubules Cytotoxic 

 
All cell line drug sensitivity values were reported as IC50 values, the concentration at 

which a drug inhibits 50% of cellular growth4, 5. Gene expression probes were normalized by 
centering on the gene’s median expression across all cell lines and then taking the base 2 log of 
that value7. SuperPathway, a merged biological pathway of 1,441 curated signal transduction, 
transcriptional, and metabolic pathways, was used to analyze the comprehensive cellular network 
of activity in the cell lines. This framework captures the global interactions of any perturbation in 
a cell while removing redundant pathway elements15. For each drug of interest, detailed 
pharmacological information about gene targets and mechanism of action was obtained from the 
drugbank and selleckchem databases16-18.  

 
2.2. Analysis Pipeline 

The DIRPP7 pipeline was implemented and tested using the overall scheme and specific steps laid 
out in Figure 1. Two runs of the PARADIGM algorithm are completed, one with –omic data, the 
two factor analysis, the other with –omic data and a simulated drug intervention, a three factor 
analysis. PARADIGM represents each entity in a biological pathway as a node whose value 
depends upon a defined internal set of “evidence nodes” whose connectivity mirrors the central 
dogma of molecular biology (Figure 2). These “evidence nodes” enable the integration of patient 
data into the biological pathway network. After assessing the signaling pathway activity of the cell 
lines with an initial run of the PARADIGM algorithm, where a DNA node interacts with a mRNA 
node to propagate biological information to the cellular network7, a second run of PARADIGM is 
performed while including a drug induced re-wiring of the cellular network (Figure 2). The 
resulting IPLs were then compared on a per-patient-per-gene basis to assess the impact of the drug 
intervention on perturbing the signaling network of a cancer cell line by computing a paired t-test 
p-value using the IPLs of the two PARADIGM runs for each cell line. The least perturbed cell 
lines were deemed the most resistant (least sensitive). All cell lines were then ranked in order of 
increasing sensitivity. Biological pathways involved in drug sensitivity and resistance were then 
identified using Gene Set Enrichment Analysis (GSEA) 6. 
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Figure 2. Comparison of the PARADIGM standard central dogma with an alternative dogma which 
represents a drug induced re-wiring of the network. The drug intervention propagates through the network 
based on an inferred interaction at the DNA node as a surrogate for its actual influence on protein activity. 

 
 
Figure 1. Experimental design of DIRPP. For each cell line dataset, gene expression and copy number data were 
analyzed in 2-factor PARADIGM analysis. These inferred pathway levels IPL’s were compared to those from 3-factor 
PARADIGM analysis with a simulated drug intervention to generate a ranking by drug sensitivity. This ranking was 
then validated on the CGP and CCLE data. Response mechanisms were classified with GSEA. 
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2.3. PARADIGM Model 
 
Briefly, PARADIGM is a factor-graph-based approach which quantifies the activity of a gene 
given a pathway diagram and dataset of observations8. For the model proposed here, 
SuperPathway was used to define this pathway diagram where each gene, protein, or process is 
connected by a series of factors which encode the probabilistic constraints between variables7, 15. 
Each entity in the pathway infers its activity from a set of nodes which define an internal set of 
rules for how these data types interact to assign a value to the pathway entity. Nodes for DNA and 
mRNA connect to the active protein node which then passes information through the entire 
pathway diagram via the dependencies encoded in the factors. The DNA and RNA nodes of each 
gene in the pathway are assigned values as a function of the copy number and gene expression 
data respectively to include biological information from the cell lines. For each gene, 
PARADIGM is capable of integrating these diverse –omic data types to compute an inferred 
pathway level (IPL) for each gene in the pathway. These IPL scores were computed using a belief-
propagation algorithm on the factor graph diagram of the pathway. Each score represents a log-
posterior odds (LPO) ratio of the state of a pathway entity given the observed data. Positive IPLs 
correspond to an entity being active in a tumor relative to normal tissue and negative to inactivity7, 

8.  
 
2.4. Drug Intervention Simulation 
 
DIRPP exploits a versatile feature of PARADIGM which allows the user to define a drug induced 
re-wiring for a  gene i n a pa thway. A s de signed, P ARADIGM i s capable of  i ntegrating D NA 
methylation d ata b y in cluding an e xtra n ode i n a gene’s n ormal w iring connected at  t he D NA 
node7. The current algorithm utilized the DNA methylation feature to encode the action of a drug 
on t hat pa rticular gene’s r egulatory s tructure (Figure 2) . A dr ug’s m echanism of  a ction was 
retrieved from drugbank and selleckchem databases, which provide a l ist of genes (proteins) the 
drug targets16-18. A matrix of genes that correspond to a drug intervention was then defined. The 
edge c onnecting t he i ntervention node  t o t he DNA node  e ncoded a  f actor w hich s ignaled a 
downregulation to the gene (similar to the standard use of methylation). Only genes listed in this 
intervention m atrix ha d the e xtra node  a dded t o t heir wiring d iagrams. I n pr inciple, the ed ge 
connecting t he i ntervention node  t o t he D NA n ode c ould be  c hanged t o a ct i n a n a mplifying 
manner for an agonist.  

To assess the significance of a drug intervention, two runs of the PARADIGM algorithm 
were completed: one with copy number and gene expression data, the other with the addition of a 
third data type, the simulated drug intervention, with each run generating a matrix of IPL scores. 
The two resulting matrices of IPL scores were then compared on a per-cell line-per-gene basis 
using a paired t-test to calculate a p-value for that cell line. The cell lines were ranked in order of 
largest to smallest p-value corresponding to a ranking of least to most sensitive cell lines for a 
given drug.  
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2.5. Validation 
 
To validate our approach, analysis of the CGP and CCLE data were independently performed by 
calculating the accuracy and precision statistics for each ranking. Accuracy assesses the 
algorithm’s overall performance for distinguishing between sensitive and resistant cancer cell lines 
while precision is used to assess the positive predictive value of the algorithm at identifying drug 
resistant cancer cell lines.  
 
                                                                                                               𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
                                                                                              (1) 

 
𝑝𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                                                                                                                                                                         (2) 

A ranking of cell lines by p-value was first constructed using the results of the t-test. This ranking 
by p-value was compared to the actual ranking by IC50 value measuring drug sensitivity. The 
accuracy and precision statistics were calculated by defining a cutoff in the ranking where the cell 
lines change from primarily resistant (IC50>1) to primarily sensitive (IC50<0.1), where 
intermediately sensitive lines (0.1< IC50<1) were treated as resistant. There were generally more 
drug-resistant cancer cell lines than sensitive ones and for some drugs; no sensitive cell lines were 
available for comparison. For validation of these difficult drugs we defined our cutoff for drug 
resistance detection at an IC50 value of 8µM, where we considered values greater than 8µM to 
correspond to highly drug resistant cell lines and everything below to moderately drug resistant 
cell lines.  The CGP did not have any ovarian, breast, or endometrial cancer cell lines with IC50 
less than 8µM for Erlotinib. We then calculated DIRPP’s accuracy (1) and precision (2) for each 
dataset for each of the three cancers studied individually and together as a whole.Previous studies 
have indicated 78% accuracy as being a very high level, others have used a concordance index and 
set the cutoff at 0.6 to measure correlations12,13. We chose to use accuracy and precision cutoffs at 
0.67 to define an “acceptable” level of validation between these two cutoffs.   
 
3. Results 
 
3.1. Drug Simulations 
 
We simulated drug interventions for each of the drugs in Table 1 by defining mechanism-specific 
drug intervention files. The drug’s mechanism of action, the genes it targets, was propagated 
through the cancer cell line’s network via a drug intervention node coded in the PARADIGM 
algorithm’s rewiring for each effected gene. Four interventions were simulated for each drug in 
each dataset, one which included all breast, ovarian, and endometrial cancer cell lines as one 
cohort, and three other simulations for each cancer-type individually.  

The ranking of cell lines by p-value was compared to the ranking of cell lines by IC50 for 
each drug and the accuracy and precision of that ranking was assessed using the cutoffs for 
resistance and sensitivity either by IC50 value, or by the highly-moderately resistant cutoff 
previously described. Certain ovarian cell lines have been shown to be hypermutated or were 
potentially mislabeled as they are more similar to other tumor types19. These cell lines were 
excluded to ensure the consistency of this analysis for only breast, endometrial, and ovarian 
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cancer. Except for AZD0530, the overall response of all drugs across both datasets was predicted 
within 67% average accuracy or greater, with most being predicted with over 75% accuracy 
(Table 2). DIRPP predicted the resistance of cell lines with precision of 0.67 or greater for all 
drugs except for Paclitaxel. Some drugs such as Irinotecan performed distinctly different between 
datasets (Table 2). DIRPP was able to detect resistant cell lines with an overall precision of 0.81 
across all datasets (Table 3). Across all cancers studied combined DIRPP performed with a 
precision of 0.78 and accuracy of 0.73. Ovarian cancer drug response was predicted better than the 
other cancers with an overall precision of 0.81 and accuracy of 0.79 (Table 3).  
 
     Table 2. Precision and accuracy statistics for each drug across all cancer types combined by dataset and overall. 
 CGP Data CCLE Data Overall 
 Resistance 

Precision  
Accuracy  Resistance 

Precision  
Accuracy  Average 

Precision 
Average 
Accuracy 

17AAG 0.88 0.77 0.72 0.59 0.80 0.68 

AZD0530 0.73 0.57 0.62 0.58 0.67 0.58 

AZD6244 0.84 0.76 0.90 0.81 0.87 0.79 

Erlotinib - - 0.88 0.80 0.88 0.80 

Irinotecan 0.44 0.63 0.91 0.88 0.68 0.75 

Lapatinib 0.90 0.75 0.72 0.58 0.81 0.67 

Paclitaxel 0.80 0.83 0.43 0.60 0.61 0.72 

PD0325901 0.79 0.69 0.93 0.86 0.86 0.78 

Sorafenib 1.0 1.0 0.71 0.59 0.86 0.80 

 
 

Table 3. Precision and accuracy statistics by dataset for all cancer types combined and by cancer type individually 
 CGP Data CCLE Data Overall 
 Resistance 

Precision 
Accuracy Resistance 

Precision 
Accuracy Precision Accuracy 

All Cancers 0.81 0.78 0.76 0.70 0.78 0.73 

Breast  0.83 0.80 0.73 0.67 0.78 0.73 

Ovarian 0.75 0.81 0.84 0.78 0.81 0.79 

Endometrial 0.83 0.83 0.74 0.65 0.76 0.70 
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3.2. Mechanisms of Drug Resistance 
 
Once the cell lines were classified as either sensitive or resistant to a drug we performed gene set 
enrichment analysis (GSEA) by drug response phenotype to uncover the biological pathway 
mechanisms driving drug resistance. For this analysis we required cell lines with IC50 values 
greater than 1 or less than 0.1 to define, resistant and sensitive, respectively. Only 17AAG, 
Irinotecan, Paclitaxel, and PD0325901 had sufficiently diverse drug sensitivity profiles to classify 
cell lines using the above definition in order to perform GSEA. Each of these drugs has a distinct 
mechanism of action and no overlapping molecular targets. Despite this, we were able to identify 
several signaling pathway mechanisms that these cell lines shared related to drug resistance.  

We ran GSEA using the IPL values generated by PARADIGM using the simulation that 
combined copy number and gene expression data. Permutation analysis of the phenotypes 
(sensitive or resistant) was used to judge significance. Pathways which had nominal p-values less 
than 0.05 were selected for further comparison across drugs. There was a common activation of 
PDGF signaling associated with resistance to PD0325901, Paclitaxel, and Irinotecan in the 
resistant endometrial, breast, and ovarian cancer cell lines. This confirms previous work which 
associates PDGF upregulation with Paclitaxel resistance in breast and ovarian cancer20, 21 and 
suggests that the genetically similar endometrial cancer1 may also share this mechanism of drug 
resistance. Irinotecan and Paclitaxel shared 9 mechanisms of resistance with each cancer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Number of common pathways implicated in drug resistance between 17AAG, Irinotecan, 
Paclitaxel, and PD0325901 (1,441 total pathways tested). 
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Paclitaxel also shared 8 mechanisms of drug resistance with 17AAG when comparing all; however 
none of these pathways overlapped between 17AAG and Irinotecan. Our results suggest that 
resistance to Paclitaxel is closely tied to that of Irinotecan and 17AAG. 

We were able to identify common pathways which confer drug sensitivity in all three 
cancers to multiple drugs. 17AAG shared 7 sensitivity based biological pathways with Irinotecan 
and 4 with Paclitaxel.  This is contrasted by the single biological pathway Paclitaxel and 
Irinotecan share associated with drug sensitivity. We can then begin to compare drugs on the basis 
of which biological pathways play a role in conferring drug sensitivity or resistance. Hierarchical 
schemas of drug similarity are illustrated in Figures 3 and 4.   

Our results suggest that cancer cell resistant to Paclitaxel is likely to also resist 17AAG and 
Irinotecan. As Irinotecan and 17AAG appear to have quite distinct biological pathway 
mechanisms of action for drug resistance, it is less likely that a cancer cell line resistant to one will 
be resistant to another (Figure 3). On the other hand, as sensitivity to Irinotecan has some pathway 
similarities to sensitivity to 17AAG it is more likely that a cell line that is sensitive to one is 
sensitive to another (Figure 4). These results may suggest that a good starting point for the 
repurposing and repositioning of drugs is to classify them by their impact on the biological 
network of a cancer cell rather than by their distinct mechanism of action.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Number of common pathways implicated in drug sensitivity between 17AAG, Irinotecan, Paclitaxel, 
and PD0325901 (1,441 total pathways tested). 

Pacific Symposium on Biocomputing 2014

133



 

 

 

 
 
4. Discussion  
 
Though there are some success stories, many clinical biomarkers have had limited impact7, and a 
shift is needed to more global explanations of disease and drug response phenotypes. Since a 
single gene is often involved in multiple pathways, it is difficult to assess the significance of a 
given genetic aberration without considering the broader context in which the dysregulation 
occurs7. In addition, many cancer patients have multiple genetic aberrations and multiple signaling 
pathways may be dysregulated and associated with drug resistance. However, the current analysis 
suggests that these signaling pathways related to drug resistance are shared by four drugs with 
completely different mechanisms of action. These results suggest that grouping drugs for 
treatment, repurposing, and repositioning by shared mechanisms which govern resistance and 
sensitivity may be more accurate than grouping them by the specific genes they appear to target. 
Such classification allows for simplification of the drug repurposing and repositioning process by 
making it a simple matter of  counting and comparing biological pathway mechanisms. 

DIRPP is a novel pipeline for classifying cell lines by drug sensitivity and for elucidating 
biological pathway mechanisms that drive drug response. PARADIGM forms the foundation of 
DIRPP and thus its scalability and comparability to other pathway based ones will be similar to 
that of PARADIGM. PARADIGM has been utilized in the hallmark TCGA papers and is an 
integral part of their pipeline easily scaling up to over 400 patient samples1-3.  When compared to 
other pathway based methods, PARADIGM was shown to perform better compared to other 
methods7,9. Though PARADIGM has been used to compare separate groups of patients known to 
respond better to a selected therapies than others, it has never been used in a discovery manner as 
presented here. The DIRPP pipeline thus represents a novel extension of PARADIGM’s 
capabilities. Though we chose to connect the drug-intervention node to the DNA entity in 
PARADIGM’s central dogma, many drug targets are proteins. This could be reflected in future 
refinements of the method by modifying the connecting point for the drug-intervention node.   

DIRPP performs comparably well on two independent datasets and is generalizable to 
other datasets with gene expression, copy number data, or both. The high predictive power of 
DIRPP across multiple drugs and cancers makes it a versatile tool to aid pre-clinical research. 
Further work to assess the utility of DIRPP is required. The CCLE and CGP datasets contain cell 
lines for ovarian cancer which were not screened for drug response and do not have IC50 values. 
Once a robust ranking of cell lines with known drug response is built and the accuracy is 
validated, DIRPP can be used to classify the unknown cell line(s) as either sensitive or resistant to 
a particular drug. Further analysis will utilize the –omic data for tumor samples from TCGA and 
other publically available datasets to predict drug response phenotypes by applying the knowledge 
learned and methods developed from the current analysis.   

The complexity of cancer presents many challenges to predicting therapeutic effectiveness 
if using individual biomarkers alone. Pathway level approaches such as DIRPP bring us one step 
closer to the goal of personalized medicine by utilizing complex –omic data and knowledge on 
biological pathways in order to robustly identify drug sensitivity.     
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The emergence of m ulti-drug and extensive drug resistance of microbes to an tibiotics poses a great threat to hu man 
health. Although drug re purposing is a prom ising sol ution for accele rating t he drug development process, its  
application to anti-infectious drug discovery is lim ited by the scope of existing phenotype-, ligand-, or target-based 
methods. In this paper we introduce a new computational strategy to determine the genome-wide molecular targets of 
bioactive compounds in both human and bacterial genomes. Our method i s based on the use of a  novel algorithm, 
ligand E nrichment of  Net work T opological Sim ilarity (l igENTS), t o m ap t he che mical uni verse t o i ts global 
pharmacological space . l igENTS outperforms t he st ate-of-the-art al gorithms i n i dentifying n ovel drug-target 
relationships.  F urthermore, we  i ntegrate ligENTS with o ur st ructural sy stems bi ology platform t o i dentify drug 
repurposing opportunities v ia targ et simila rity p rofiling. Using this in tegrated strateg y, we have id entified nov el P. 
falciparum targets of drug-like active compounds from the Malaria Box, and suggest that a number of approved drugs 
may be active  agai nst m alaria. T his study  dem onstrates the po tential of an in tegrative ch emical g enomics an d 
structural systems biology approach to drug repurposing. 
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1.  Introduction 

 Treatment of infectious diseas es is under threat.  The em ergence of multi-drug resistance and 
extensively drug res istant m icrobes to an tibiotics ca lls f or new trea tment reg imes.1 Yet, at th e 
same ti me, the drug discovery process, char acterized b y a one-drug-one-gen e-one-disease 
paradigm, has yielded  few success es in  com bating drug resistan ce and  is  ham pered by a high  
failure rate leading  to s oaring costs .2 Fortuna tely, the  caus e of  that f ailure is  also  cause f or 
optimism. Since the failure is due, in part, to dr ug prom iscuity there is also the opportunity to 
repurpose existing drugs to treat infectious diseases.3 However, there are several unique challenges 
in anti-infectious drug repurposing. First, successful phenotype-based methods which compare the 
genome-wide m olecular signature of reposit ioned drugs to a disease-induced phenotype, 4 have  
limitations when applied to anti-infectious  drug discovery. Second, recent efforts in  cell-based 
antibiotics screening produce thous ands of active com pounds, but gives few hints as to their 
molecular targets as well as their in vivo activities and toxicities.5-6 Finally, due to the bias in high-
throughput screening, existing chemical genomics databases only collect several thousand targets, 
most of which are from hum an a nd m odel organism s, not pathogens. Taken together these 
limitations hinder the application of state-of-the-art computational methods to anti-infectious drug 
repurposing. 

These limitations can be addressed through chemical genomics - the construction of genom e-
scale drug-target interaction ne tworks. Creating such networks requires that we addres s th e 
question, given a chem ical en tity, h ow do we accurately id entify its targets on a g enome scale 
based on its structural sim ilarity with known liga nds and reliably determ ine the significance of 
those putative targets? Several da ta m ining techniques have recen tly b een deve loped to p redict 
drug-target interactions.7-15 However, few of them can assess the sta tistical significance of ranked 
targets. A notable adv ance was the develop ment of  Sim ilarity En semble Approach (SEA)  
statistical model, 16-17 which is comparable to the state-of -the-art m achine learn ing algorithm s.18  
However, SEA and most of the existing m achine learn ing techniqu es only consider local 
neighborhoods for relevance between chem icals.19 Thus it rem ains a big challenge to find the 
global relationships between chemicals so that an expanded target space can be established. 20-27 In 
this paper, we introduce a funda mentally ne w m ethodology, ligand Enrichm ent of Network 
Topological Si milarity (ligENTS), which inte grates graph m ining algorithm s and random set 
theory to begin to address the above challenges. ligENTS considerably improves the performance 
of existing m ethods for drug-ta rget prediction. Thus, ligEN TS may ope n new doors to the next 
generation of chemical genomics algorithms.   

The integration of chem ical genom ics and s tructural genom ics is needed since current 
chemical genomics methods have only identified targets for a sm all portion of the hum an (<10%) 
and pathogen genomes (often <1%), respectively.28 In other words the molecular targets of a large 
number of active compounds against bacteria are still unknown. Complementary to the knowledge 
of existing drug targets, the structural info rmation of proteins has increased rapidly. 29

  Previously, 
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starting from a known drug-targ et, we have developed a structural systems biology  approach for 
linking drug m olecules to pathoge n structural genom es through ta rget binding site sim ilarity, 
thereby reconstructing high-re solution 3D drug-target phys ical interaction m odels.30  However, 
these s tructural sy stems biology m ethods are not sc alable to m illions of chem icals. To address 
these limitations, we combine ligENTS with the structural systems biology approach to link entire 
bioactive chem ical space  to the pathogen structural genom e. The innovative integration of 
chemical genomics with structural systems biology will not only greatly expand th e scope of both 
ligand- and target-based m ethods, but also consid erably improve the quality of predicted drug-
target interaction models. Consequently, it may provide new opportunities for drug discovery.      

To demonstrate the utility of this integrated approach, we apply it to identify molecular targets 
of drug-like com pounds from  the Malaria Box, a nd suggest drug repurposing opportunities for 
anti-malaria chem otherapies. Mala ria is one of the m ost devast ating and wides pread trop ical 
parasitic diseases and is the m ost prevalent in developing countries. 31 The Malaria Box includes  
200 drug-like and 200 probe-like com pounds that  are active against the blood stage of P. 
falciparum, one of the most dangerous pathogen causi ng malaria. Altho ugh the compounds have 
desirable ADMET properties, thei r molecular targets  in  bacteria and  hu man, as well as  in vivo  
activity and toxicity, rem ain unknow n. W e use ligENTS to identify their target profiles in the 
chemical genomics databases, and their m apping to the P. falciparum genome . Using the target 
profile of active compounds as a proxy, we link approved drugs with active compounds against P. 
falciparum. Our results provide abundant testable hypothesis for further experimental validation. 

2.   Results and Discussion 

2.1.  Ligand Enrichment of Network Topological Similarity (ligENTS) method  

Fig. 1. Scheme of ligENTS. Hexagons represent chemicals. Two similar chemicals are connected. The more similar a 
chemical is to the query, the darker the hexagon. The chemicals in the colored sphere bind to corresponding targets Ti 
and Tj. 

We have developed a new algorithm, ligand E nrichment of Network Topological Sim ilarity 
(ligENTS), to ass ess th e statis tical sign ificance of chem ical-target associations  based on the 
network topological sim ilarity. As shown in Fig. 1, ligENTS consists of three key steps. (1) We 
connect around half a million chem icals in ChEMBL32 into a chemical similarity network (termed 
ChemWeb). (2) Given a query, we apply a Random  Walk with Restart (RWR) algorithm to define 
the network topological sim ilarity between the query and other ch emicals in ChemWeb. (3) To  
assess the statistical significance of the topological rank derived from the RWR, we apply random 
set theory to estimate the enrichment of a ligand set that is associated with a protein target in terms 
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of the distribution of its networ k topological similarity scores. The f inal output of ligENTS is the 
false discovery rate (FDR) of a li st of targets in  the d atabase, which m ay interact with the que ry 
chemical. 

 

Fig. 2.  Performance comparison of (A) global RWR relevance and Daylight fingerprint in detecting a pair 
of chemicals that share the same target, and (B) ligENTS (ligand Enrichment of Network Topological 

Similarity), SEA (Similarity Ensemble Approach)16, HGBI (Heterogeneous Graph Based Inference)15, and 
MaxSim (maximum similarity score in a set of ligands)33 in ranking targets given a query chemical.  

2.2. Graph mining improves the performance of detecting pairwise chemical similarity 

State-of-the-art algorithms such as SEA, TurboSim ,34 MaxSim,33 and IRV 19 only consider 
the sim ilarity between the ne arest neighbors, but ignores th e global structure sim ilarity 
relationships a mong all entities in a database . To overcom e this lim itation, we apply graph 
mining algorithms to define global relationships  between ch emicals. Given a query c hemical, 
we first link the query to all nodes in Che mWeb, if edge weights between the query and any 
node are above a predefined threshold. Then, we use a Random  W alk with Restart (RWR) 
algorithm to perform a probabilistic traversal of  ChemWeb across all paths leading away from 
the query. T he probability of choosing a path depends on the edge weight. The output of the 
algorithm is the list of all nodes (chemicals) in the network, ranked by the probability pi for the 
query to reach node i. In this way, the query m ay detect related chem icals that are missed by 
the direct neighbors through inte rmediate nodes. As shown in Fig. 2A, a RW R transversal of  
ChemWeb improves the sensitivity and specificity of pair-wise chemical similarity search over 
a Daylight f ingerprint sim ilarity (h ttp://www.daylight.com). W hen the Tanim oto Coefficient 
(TC) is 0.57 (approximately false positive ratio of 0.1), the Daylight fingerprint only identifies 
around 20% of all ligand pairs th at bind to the sam e target. Using the sam e threshold to 
construct ChemWeb, the sensitivity of RWR is approximately 0.30, 50% more than that of the 
Daylight fingerprint. Thus the exploration of global community structures within the chemical 
similarity network allows us to detect novel protein-ligand interactions.  

2.3. Ligand Enrichment of Network Topological Similarity (ligENTS) considerably improves 
the performance of detecting novel drug-target associations 
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Conventional ligand-based virtual screening focuses on ranking putativ e active compounds to 
a specific target. The iss ue that we n eed to addr ess here is a revers e screening problem. Given a  
query chemical, how can we reliably rank all prot ein targets in a database by their likelihood to 
interact with the query chem ical? To detect nove l protein-chemical interactions, we developed a 
new algorithm , Ligand Enrichm ent of Networ k Topological Sim ilarity (ligENTS). ligENTS 
combines RWR/ChemWeb with a ligand set enrichment framework. We compare the performance 
of ligENTS with thre e state -of-the-art algo rithms: Sim ilarity Ense mble Approach (SEA), 16 
Heterogeneous Graph Based Inference (HGBI), 15 and the target assignm ent based on the m ost 
similar chemical in a ligand set (MaxSim).33 SEA normalizes the sum of similarity scores between 
two sets of ligands known to bind to their targets, based on an empirical extreme value distribution 
model, and in an extensive benchmark study, SEA outperforms a state-of-the-art machine learning 
method.18 SEA is the most releva nt com parison to ligENTS in term s of  statistic al m odels f or 
evaluating the chemical-target association. MaxSim is found to be the best perform ing method for 
ligand-based vir tual screening when multiple  ligands are used as a  profile.33 For co mparison we 
modified the MaxSim algorithm  to rank targets based on the m aximum si milarity score when 
comparing their ligands to the query. HGBI ap plies RWR on a heterogeneous drug-drug, drug-
target, and target-target network to infer drug-target interactions, and outperform s other network 
inference algorithms for drug-target prediction. 15 As shown i n Fig. 2B, HGBI is slightly better in 
the low false positive region th an MaxSim . Cons istent with a recen t study in  ev aluating th e 
performance of ligand profiles, 33 MaxSim outperforms SEA when th e f alse pos itive ra te is le ss 
than 0.15. Although HGBI is one of the best perfo rmers of the three of existing m ethods, HGBI 
does not provide a statistical significance assessment for predicted interactions. 

  LigENTS outperform s the above three m ethods in identifying novel chem ical-target 
relationships, as shown in Fig. 2B.  ligENTS iden tifies 200% and 50% of true positives m ore than 
that of HGBI at a false positiv e ratio of 0.01 and 0.05, resp ectively. The superior performance of 
ligENTS com es f rom its com bination of  the R WR search and global se t s tatistics. The RW R 
captures the global stru cture of chem ical space. However, conventional statis tics models such as 
SEA fail when applied to global sim ilarity problems. Global set statistics is m ore powerful than 
the fitted parametric statistical model. However, it is les s useful when only the nearest neighbors  
are considered, as the scores of most ligands in the se t are zeros, providing no information for the 
hypothesis testing. Enrichm ent of Network Topol ogical Similarity (ENTS) by integrating RWR 
and global set statistics provides a general framework to enhance similarity search and association 
detection. Although this paper focu ses on its application to chem ical-target prediction, we have  
shown that ENTS improves the performance of protein fold recognition, RNA structure prediction, 
and disease gene identification. These results will be published elsewhere.  

2.4. Prediction of molecular targets of Malaria Box in the chemical genomics database 

       To de monstrate the application of ligENTS to  drug repurposing, we first use it to identify 
molecular targets of drug-like compounds from the Malaria Box, which are annotated in ChEMBL. 
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At a false discovery rate of 0.05, we associate 161 out of 200 drug-like active compounds from the 
Malaria Box with m ore than 577 proteins annotat ed in ChEMBL. The m ajority of these hits 
(~80%) are proteins from hum an and animal models. This reflects the screening and annotation 
bias in  the chem ical genom ics databases. Nevert heless, en riched bio logical p rocesses for thes e 
genes m ay provide valuable inform ation on poten tial side effects (e .g., regulation of blood 
pressure, and m uscle contrac tion) of these com pounds, or their im pact on pathogen-host 
interactions (e.g., response to molecule of bacterial origin), as shown in Table 1. 

Table 1.  Enriched biological processes of molecular targets of human and animal models 
for drug-like compounds from the Malaria Box. 

Biological process False Discovery Rate 

second-messenger-mediated signaling 1.171e-58 

positive regulation of lipase activity 3.028e-23 

calcium ion homeostasis 1.923e-22 

oxidoreductase activity 6.961e-17 

regulation of blood pressure 1.117e-15 

inflammatory response 1.593e-10 

phosphoric diester hydrolase activity 3.745e-10 

smooth muscle contraction 2.888e-07 

regulation of apoptosis 2.353e-05 

response to molecule of bacterial origin 3.870e-03 
 

 

2.5 Prediction of molecular targets of drug-like compounds in P. falciparum 

To identify the P. falciparum targets of drug-like com pounds from the Malaria Box, we m ap 
the targe ts identif ied f rom the chemical genom ics databases  to th e P. falciparum  genome using 
both sequence sim ilarity and ligand binding site similarity. Most of the m apped targets are 
essential genes in P. falciparum . Som e of them  (e.g., dihydroor otate dehydrogenase, beta-
hydroxyacyl-ACP dehydratase, cysteine protease falcipain-3, and type II DNA topoisomerase) are 
novel targets under investigation. 35-38 W hen we rank the targets by the num ber of binding 
compounds, the top ranked targets include several pr oteins that bind to qui nine, one of the m ost 
efficient drugs to trea t malaria, providing support for our predictions. Othe r proteins include the  
JmjC dom ain containing protein, 3-oxoacyl-acyl-carrier protein reductase , and several putative 
transporters.  The Jm jC domain containing prot ein is particularly interesting. Twelve com pounds 
are predicted to intera ct with JmjC. JmjC plays a key role in chrom atin remodeling and histone 
posttranslational modifications that is fundamentally important in the developmental program of P. 
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falciparum.39 However, this protein has not been expl ored as a drug target. Because the hum an 
homolog of JmjC exists, the detailed analysis of the drug binding site features may provide critical 
information on developing selective anti-m alaria ch emotherapy targeting J mjC. This analysis is 
ongoing. 

2.6 Repurposing approved drugs to target P. falciparum 

We apply ligENTS to 1,484 approved sm all mol ecule drugs in DrugBank to identify their 
molecular targets in C hEMBL. If the target prof ile of  a drug is sim ilar to that of  the active 
compounds from the Malaria Box, we hypothesize that the drug is active against malaria. We term 
this strategy Target Similarity Profiling (TSP). Based on TSP, Table 2 shows the top ranked drugs 
that have the potential to treat m alaria. The top hit sirolim us is a m acrolide compound, targeting 
the FK506 binding protein. It has been  used as an anti-fungal and an  anti-neoplastic agent. FK506 
binding protein in P. falciparum has been suggested as a novel ta rget to fight m alaria infection.40 
Several other drugs are predicte d to target phosphodiesterase, di hydrofolate reductase, protease, 
carbonic anhydrase, somatostatin receptor, and ion channels. All these prot eins are novel targets  
for anti-malaria therapeutics.41-46 Doxycycline is a known a nti-malaria agent, providing putative 
validation to TSP predictions. Thus, TSP provides abundant testable hypothe ses for anti-m alaria 
drug repurposing.  

 
Table 2.  Top 10 ranked drugs by TSP and their predicted target by ligENTS 

Drug Target (s) Primary indication 

Sirolimus FK506 binding protein anti-fungal and anti-neoplastic 

Acitretin Lyase, Nitric oxide synthase, DNA 
methyltransferase, Collagenase 

treatment of psoriasis 

Roflumilast Ph osphodiesterase (PDE) chronic obstrtuctive pulmonary 
disease 

Trimetrexate dihydrofolate reductase (DHFR) Antibiotics 

Metaxalone Prot ease muscle relaxant 

Piperazine C arbonic anhydrase Anthelmintic 

Doxycycline dem ethylase, hydrolase, dehydrogenase Anti-malaria 

Octreotide Som atostatin receptor treatment of acromegaly and 
reduction of side effects from 
cancer chemotherapy 

Benazepril Sodium channel subunit alpha, Voltage-dependent 
calcium channel subunit alpha 

Hypertension 
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3.  Conclusion 

In this paper, we introduce a new chemical genomics algorithm, ligENTS, to map the chemical 
universe to its g lobal p harmacological sp ace, as well as a n integ rated chem ical g enomics and 
structural system s biology approach for anti-in fectious drug repurposing. Although the detailed 
implementation of the algorithm needs to be improved, its prototype outperforms existing state-of-
the-art methods, and demonstrates the potential for use in anti-infectious drug repurposing. T he 
further development of this new strategy m ay c onsolidate phenotype-, li gand-, and target-based 
drug discovery, thereby facilitati ng the transformation of the conve ntional drug discovery process 
to a new paradigm of systems pharmacology.   

4. Methods 

4.1. Benchmark 

We extract  positive and negative ca ses f rom the bioactivity databas e ChEMBL32. To reduce 
the chance of including false positive hits, we only include those pairs with IC50<10.0 M as 
positive cases. The negative ca ses include those  pairs in which no binding is detecte d. We define 
the benchm ark using the intersection of ligand sets in th e positive a nd negativ e cases. Af ter 
removing the chem ical redundancy (Tanim oto Coefficients (TC)   of 0.85, a common threshold in 
virtual screening), the final be nchmark includes 390 chemicals, which involve 803 true and 1,336 
false chemical-target interactions, respectively. We evaluate the s ensitivity and specificity of the 
ranked target for a benchm ark chem ical when  querying Che mWeb in which all benchm ark 
chemicals are excluded. 

4.2. Construction of similarity matrix of ChemWeb 

Using a Daylight fingerprint repr esentation of each chem ical and TC as a sim ilarity measure, 
we connect 415,975 chemicals that have high confid ence annotation to targets in C hEMBL into a 
pairwise chem ical sim ilarity network. W e represent ChemWeb as a weighted graph, in which 
nodes are chemicals. An edge is formed between two chemicals if they share the same activity and 
their chemical similarity is above a certain threshold. With a TC larger than 0.57, a threshold used 
by SEA but not optim ized for ligENTS, ChemWeb consists of  more than 10 m illion edges. W e 
represent the ChemWeb weighted graph as a similarity matrix W. 

4.3. Implementation of Random Walk with Restart (RWR) algorithm 

We modified the RankProp algorithm, 47 a variant of RWR, and im plemented it using a boost 
library (http://www.boost.org). The pseudo code of the algorithm is shown as follows. 
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Input: A graph representation of ChemWeb, with i  = 1, …, N chemicals and their chemical similarity matrix  
W with the instance of ݓ; a diffusion vector A with the instance of  ai, and   a query chemical q. 
Initialization: pq(0) = 1; pi(0) = 0 

while t = 0, 1, 2, … do 
                    for i = 1 to N do 
                           pi(t+1) = wqi + ai∑ ሻݐሺݓ

ே
ୀଵ   

                       end for 
               until convergence t = T* 
              output:  a ranked list of pi(T*) 

        ai corresponds to the restart probability in the RWR and determines how far the query will 
propagate through ChemWeb. In this study, ai was set as a constant of 0.65. 

4.4. Implementation of set statistics 

Inspired by Gene Set Enrichm ent Analysis, we adapted the random set m ethod48 to estim ate 
the enrichment of a ligand set that is associated with a protein target. For the RWR output pi(T*), i  
= 1, …, N, an unnormalized score for a ligand set S consisting of m chemicals is calculated  as the 
average of the RWR outputs of these chemicals    

 തܺ = 
∑ ೕೕ∈ೄ


 

To compare the enrich ment in a ligand set S with th at of  all o ther (N, m) distinct random ly 
drawn ligand sets of size m, the ligand set S is now considered as a random collection of m ligands 
whose score pj are fixed. The exact distribution of തܺ is intractable, but can be approxim ated with 
the normal distribution with mean and variance as follows: 

              = ଵ
ே
∑ ݏ
ே
ୀଵ  

ଶߪ              ൌ 	 ଵ

ቀேି
ேିଵ

ቁ ቀଵ
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ே
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ଶ
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       The enrichment score is then normalized with    

ܼ ൌ 	
തିఓ

ఙ
 . 

       The false discovery rate (FDR) is estimated by fitting the enrichment score Z with the false 
positive ratio from the benchmark. 

4.5. Target identification of active compounds from the Malaria Box in the ChEMBL 
database and P. falciparum genomes 

       LigENTS was first used to identify potential molecular targets of active com pounds from the 
Malaria Box found in the ChEMBL database. Because  most of the targets in ChEMBL are from 
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human or model organisms, SMAP49-51  and PSI-Blast 52 are applied to m ap the tar gets identified 
by ligENTS, which are not from P. falciparum genome, to P. falciparum proteins.  

4.6. Functional Enrichment Analysis 

Functional Enrichment Analysis of hu man targets is carried out us ing the DAVID functional 
annotation tool ( http://david.abcc.ncifcrf.gov/). The whole genom e of Homo sapiens is used as 
background. 
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In silico prediction of unknown drug-target interactions (DTIs) has become a popular tool for drug
repositioning and drug development. A key challenge in DTI prediction lies in integrating multiple
types of data for accurate DTI prediction. Although recent studies have demonstrated that genomic,
chemical and pharmacological data can provide reliable information for DTI prediction, it remains
unclear whether functional information on proteins can also contribute to this task. Little work has
been developed to combine such information with other data to identify new interactions between
drugs and targets. In this paper, we introduce functional data into DTI prediction and construct bio-
logical space for targets using the functional similarity measure. We present a probabilistic graphical
model, called conditional random field (CRF), to systematically integrate genomic, chemical, func-
tional and pharmacological data plus the topology of DTI networks into a unified framework to pre-
dict missing DTIs. Tests on two benchmark datasets show that our method can achieve excellent pre-
diction performance with the area under the precision-recall curve (AUPR) up to 94.9. These results
demonstrate that our CRF model can successfully exploit heterogeneous data to capture the latent
correlations of DTIs, and thus will be practically useful for drug repositioning. Supplementary Mate-
rial is available at http://iiis.tsinghua.edu.cn/~compbio/papers/psb2014/psb2014_sm.pdf.

Keywords: Drug-Target Interaction; Drug Repositioning; Conditional Random Field; Functional
Similarity.

1. Introduction

In recent years, drug repositioning or drug repurposing has become an increasingly popu-
lar trend in drug discovery.1–4 The main goal of drug repositioning is to reuse existing or
abandoned drugs and identify their new therapeutic functions. Recent literature reveals that
drugs often possess the so-called promiscuity property,5,6 that is, individual drugs can act on
other off-target proteins in addition to the original target. This property provides a strong
theoretical support for drug repositioning.

In silico prediction of drug-target interactions (DTIs) has been widely applied in drug
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repositioning, since it can significantly reduce time and cost of drug development. Molecu-
lar docking methods have been commonly used in predicting new DTIs if structure coordi-
nates of both proteins and drugs are available.7–10 When three-dimensional (3D) structures
of molecules are absent, we need to depend on other approaches to perform DTI prediction.
The structure-free approaches can be roughly divided into two categories: ligand-based and
network-based methods. Ligand-based methods exploit ligand similarity to identify new targets
that can interact with a query drug.11,12 Although with some successful stories, ligand-based
approaches have difficulty in identifying new interactions associated with novel binding scaf-
folds.13 Network-based methods14–20 detect the latent correlation features of DTIs to predict
new interactions, and recently have become a popular tool for drug repositioning and drug
development. A key challenge in network-based prediction approaches lies in integrating het-
erogeneous data for accurate DTI prediction. Traditional DTI prediction approaches often
relate genomic and chemical data with DTI networks to perform new prediction.21 Recently,
pharmacological data such as drug side-effects have also been taken into consideration,18,20,22–24

and the results suggest that incorporating more data into DTI prediction can further improve
prediction accuracy. Most existing network-based approaches mainly rely on the sequence
similarity to measure the closeness of two targets. The sequence similarity, however, is not
necessarily sufficient enough to characterize the shared patterns of DTI profiles between two
targets.

Functional similarity enables us to compare two proteins with respect to their molecular
and biological functions.25 It is defined mainly based on Gene Ontology (GO) terms, which
indicate the biological roles of gene products. This measure can identify functionally-related
proteins regardless of homology, and hence provide additional information about the similarity
of two targets aside from their genomic data. Based on functional similarity, we can construct
biological space for proteins and analyze their DTI patterns from a different angle.

Although numerous approaches18,20,23,24,26 have been proposed to integrate genomic (i.e.,
protein sequences), chemical (i.e., chemical substructures of drugs) and pharmacological (i.e.,
drug side-effects) data for predicting unknown DTIs, functional information has not been well
exploited in DTI prediction. To our knowledge, little work has been developed to systematically
integrate functional information on proteins with the aforementioned data to predict missing
interactions between drugs and targets. In this paper, we present a new approach to address the
DTI prediction problem by systematically integrating large-scale chemical, pharmacological,
genomic and functional data and DTI network information into a unified framework. Our
method applies a probabilistic graphical model, called conditional random field (CRF), to
encode the complicated network associated with drugs and targets, and predict new DTIs. We
apply a stochastic gradient ascent approach plus the contrastive divergence (CD) algorithm27

to train our graphical model and capture the hidden correlations between drugs and targets.
Tests on two benchmark datasets derived from multiple publicly-available databases show that
our CRF model can effectively integrate multiple sources of information and achieve excellent
prediction performance, with the area under the precision-recall curve (AUPR) up to 94.9.
These results indicate that our approach can have potential applications in drug repositioning.

In summary, the following contributions are made in this paper: (1) Introduction of func-
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tional data into DTI prediction and construction of biological space for proteins using the
functional similarity measure; (2) Development of a new machine learning approach that can
systematically integrate heterogeneous data into a unified framework to predict unknown
DTIs; and (3) Promising testing results on two benchmark datasets.

2. Methods

2.1. Conditional Random Field Framework

Conditional random field (CRF) is a probabilistic graphical model or a variant of Markov
random field28–30 that was first proposed for object recognition and image segmentation.31 Now
it has been widely used in many fields such as shallow parsing,32 named entity recognition,33

topic distillation,34 social recommendation35 and molecular structural modelling.36 We apply
a binary CRF model34,35 to formulate our DTI prediction problem.

Let {di} , 1 6 i 6 nd, be the set of known drugs and {tj} , 1 6 j 6 nt, be the set of targets,
where nd and nt represent the total numbers of drugs and targets respectively. We use X to
denote observed data, including known DTIs and various similarity scores, such as sequence
similarity scores for proteins and chemical similarity scores for drugs. In other words, X

stands for a set of binary indicators representing known drug-target interactions, and positive
variables representing observed similarity scores. For each drug di, we construct a CRF on
an undirected graph G = (Vt, Et), where Vt = {tt} is the set of targets and each edge in Et

represents the similarity between a pair of targets. Let vector Y = (y1, y2, · · ·, ynt
) denote the

prediction, where each yj is a binary random variable representing the prediction of target tj,
that is, yj = 1 if the predicted interaction between drug di and target tj is true, and yj = 0

otherwise. We call this model the target-based CRF. Similarly, for each target tj, we construct
a CRF on an undirected graph G = (Vd, Ed), where Vd = {dd} is the set of drugs and each
edge in Ed represents the similarity between a pair of drugs. We call the second model the
drug-based CRF. For the convenience of description, next, we will mainly use the target-based
model as an example to illustrate the learning and prediction procedures of our CRF model
unless otherwise specified.

For each target-based CRF, we define a joint probability distribution conditioning on
observation X. In the underlying graph, each node represents a target ti or its associated
binary random variable yi, and each edge connecting two nodes represents the dependency
between these two nodes. Hereinafter, we will slightly abuse the notation and use terms ‘node’
and ‘random variable’ interchangeably. The undirected graphical model possesses the so-called
conditional independence property ,37 which states that the conditional distribution of node yi

is independent of all other nodes given its ‘neighbors’ (i.e., all other nodes that yi is connected
to). By connecting similar proteins together, we indeed assume that the conditional state of
a target depends only on the states of other proteins with high similarity. Details about how
to construct edges between targets will be described in Section 3.1.

In a CRF model, the energy of a joint configuration Y given X can be defined as follows:

E (Y |X) =
∑

i

aif (yi|X) +
∑

i,j

bijg (yi, yj |X) (1)
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where f (yi|X) is a local node feature function defined based on the state of yi, g (yi, yj |X)

is a relational edge feature function defined based on states of both yi and yj, and ai > 0

and bij > 0 are weight parameters that need to be learned from training data. In our DTI
prediction framework, we let all target-based or drug-based CRFs share the same parameters
ai and bij. Then the joint probability density function of Y given X can be defined as

p (Y |X) =
1

Z (X)
exp (−E (Y |X)) (2)

where Z (X) =
∑

Y exp (−E(Y |X)) is the normalizing constant, also called partition function.
We define functions f (·) and g (·) as followings:

f (yi|X) = − (yi − Hxi
(yi))

2 (3)

g (yi, yj |X) = −Hxi,xj
(yi − yj)

2 (4)

where Hxi
(yi) represents the observed feature of target ti, and Hxi,xj

(yi − yj) represents the
relational feature measure of yi and yj given observation X. In our framework, we let Hxi

(yi)

be the average number of observed drug interactions for target ti, and let Hxi,xj
(yi − yj) be the

difference between binary variables yi and yj. By defining the above two feature functions, we
indeed add a penalization when (1) predictions for two connected nodes are different, and (2)

the prediction of a given node deviates from its average state. Unlike in Ref. 35, which assumes
that all nodes share the same parameter a and all edges share the same parameter b, here
in our model all weight parameters ai, bij are set to be different values for individual nodes
and edges. This parameter setting is more flexible to capture information from data and can
avoid potential improper assumptions about weight parameters. Our test results (details are
not shown in the paper) suggest that this new parameter setting can yield better performance
than the original version35 which chooses a relatively rigid parameter setting.

2.2. Parameter Training

In the training process, we aim to learn parameters ai and bij from training data. We use
stochastic gradient ascent38 as an optimization method to maximize the conditional log-
likelihood of training data. To simplify the notation, we use vector θ to denote parameters
(ai, bij), and function vector h to denote (f, g). Then the probability density function in Eq. (2)
can be rewritten as

pθ (Y |X) =
1

Zθ (X)
exp (θ · h) (5)

Thus we can derive the following conditional log-likelihood:

Lθ =

nt∑

i=1

log(p (yi|X)) =

nt∑

i=1

[θ · h (yi|X) − log(Zθ (X))] (6)

Since each component of θ is non-negative, we let θ =
(
exp

(
θ

′

1

)
, · · ·, exp

(
θ

′

nt

))
. For simplicity,

we use exp
(
θ

′
)

to represent
(
exp

(
θ

′

1

)
, · · ·, exp

(
θ

′

nt

))
. Then we have
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Lθ =

nt∑

i=1

[
eθ

′

· h (yi|X) − log(Zθ (X))
]

(7)

The gradient in Eq. (7) is

∂Lθ

∂θ
′

= θ ·

nt∑

i=1

[h(yi|X) − Eθ(h (Y |X))] (8)

where Eθ(h (Y |X)) is the expectation of h (Y |X) and Y |X follows the distribution pθ defined
in Eq. (5).

To apply the gradient ascent method, we need to deal with the expectation term in Eq. (8).
It is algebraically intractable to directly calculate this expectation, and one possible solution
is to employ some simulation techniques such as Markov Chain Monte Carlo (MCMC) to
approximate its value. A Gibbs sampling method was used in Ref. 35 to sample a sequence of
Y following the current distribution pθ and then approximate Eθ(h (Y |X)) by

Eθ(h (Y |X)) =
1

L

L∑

i=1

h (ỹi|X) (9)

where {ỹi} , 1 6 i 6 L, is the sampled sequence, and L is the total number of sampling iterations.
Sampling such sequence often proceeds as follows: We first randomly pick some initial value y0,
and then sample each variable using the current value according to its conditional distribution.
Normally, after some burn-in period, the distribution of yi can approximate distribution pθ.

Although Gibbs sampling is a popular method to approximate the expectation, it suffers
from heavy computational cost, which is impractical in our case. Here we apply another
sampling algorithm, called contrastive divergence (CD), which was first proposed in Ref. 27.
The CD algorithm has been successfully used to train restricted Boltzmann machines39 and it
can be easily implemented. The basic idea of the CD algorithm is to substitute Eθ(h (Y |X)) in
Eq. (8) by EpT

(h (Y |X)), where pT represents the distribution of data transformed by T cycles
of Gibbs sampling.27 In practice, T is often chosen to be one. Although the CD algorithm
may lead to biased estimates, the bias is small in general.40 In practice, the CD algorithm can
provide an efficient method to approximate the log-likelihood function.27,39,40

2.3. Predicting New Drug-Target Interactions

To predict unknown drug-target interactions for a query drug given observation X, we compute
the conditional probability distribution p (yk|y−k, X) for each target tk, where y

−k denote the
all other targets except tk. For i 6= k, yi = 1 if target yi is known to interact with the query drug,
and yi = 0 otherwise. We then calculate the conditional expectation of yk as the prediction
score of the interaction between target yk and the query drug.
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3. Results

3.1. Constructing Conditional Random Field

In our CRF model, an edge connecting two nodes indicates the relational dependency between
them, and we assume that two connected nodes should share high similarity. One natural
approach for constructing edges in the underlying graph is to connect two nodes if their
similarity score is above a threshold. By choosing different threshold values we should be
able to tune the number of edges in the graph. This construction method, which we call
the threshold-based approach, could yield an unbalanced graph in which some nodes may have
much fewer neighbors than others. This situation would make it difficult for inferring the states
of those neighbor-free nodes. To avoid this problem, we used another approach to construct
the underlying graph. For each node ti, let Ni be the set of top K nodes that have the highest
similarity scores with ti, and we connect two nodes ti and tj if ti ∈ Nj or tj ∈ Ni. We refer
to this new approach as the degree-based approach, which ensures that the degree of each
node in the underlying graph is at least K and roughly balanced, and thus can prevent the
existence of ‘isolated’ nodes. In practice, we should not choose a large value of K in order to
train our CRF model efficiently on a large-scale dataset. Our sensitivity analysis shows that
our results did not vary much for different K values (Supplementary Material S2). We can
also combine the above two approaches to get an integration-based approach for constructing
edges, that is, we connected two nodes mainly based on a similarity score threshold but
also added more connections to a node if its degree is less than K. The comparison results
show that different construction approaches did not influence much on prediction performance
when choosing K ≥ 2 (Supplementary Material S3). In the following analysis, the underlying
graph of our CRF model was constructed mainly based on the degree-based approach, unless
otherwise specified. We chose K = 4 when a single similarity measure was used and K = 2

when multiple similarity measures were used. This parameter was fixed throughout all our
tests.

We tested the following six different approaches in our conditional random field framework:

• Genomic approach (GEN): The target-based CRF was constructed using the sequence sim-
ilarity measure.

• Functional approach (FUN): The target-based CRF was constructed using the functional
similarity measure.

• Integrated Genomic-Functional approach (IGF): The target-based CRF was constructed
using the sequence and functional similarity measures simultaneously. In other words, two
nodes were connected if they satisfied the sequence or functional similarity criterion.

• Chemical approach (CHEM): The drug-based CRF was constructed using the chemical
similarity measure.

• Pharmacological approach (PHAR): The drug-based CRF was constructed using the side-
effect similarity measure.

• Integrated Chemical-Pharmacological approach (ICP): The drug-based CRF was con-
structed using the chemical and side-effect similarity measures simultaneously. In other
words, an edge was constructed if it was valid under the chemical or side-effect similarity
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measure criterion.

In addition, we investigated the combination of two independent predictions from target-
based and drug-based CRFs respectively. For any given drug-target pair, let Sd denote the
prediction score using the drug-based CRF model and St denote the prediction score using
the target-based CRF model. Then our final score for this query drug-target pair is

S = αSd + (1 − α) St (10)

In the current version of our program, we fixed α = 0.5. By fine-tuning the parameter α,
we may achieve better results than our current tests. Our final approach integrated chemical,
pharmacological, genomic and functional data simultaneously:

• Full Integration approach (FI): The final prediction was the simple linear combination of
both integrated chemical- pharmacological (ICP) and integrated genomic-functional (IGF)
approaches using Eq. (10).

Our program was implemented in Matlab (2010 b) based on the UGM package devel-
oped by Mark Schmidt (http://www.di.ens.fr/~mschmidt/Software/UGM.html). UGM is
a Matlab toolbox that implements various tasks in discrete undirected graphical models with
pairwise potentials. We used the default parameters of functions in the UGM package through-
out all our tests.

3.2. Datasets

To demonstrate the predictive power of our approach, we first tested it on a dataset derived
from the KEGG database41,42 which contains experimentally-verified drug-target interactions.
We call this dataset the first dataset. All drugs in the first dataset have molecular weight more
than 100. In order to obtain pharmacological information we only included those drugs that
also have side-effect records in the SIDER database.43 As a consequence, in total 875 drugs
and 249 proteins with 2596 drug-target interactions were obtained in the first dataset.

To compare with other existing approaches, we tested our algorithm on another dataset
that has been published in Ref. 24, where all drugs have records in SIDER, JAPIC and AERS.
JAPIC and AERS are two public databases about drug side-effects. More details about these
two databases can be found in Ref. 24. The data we tested here is slightly different from the
original data which contains 359 drugs and 226 proteins with 1188 drug-target interactions.
We excluded six proteins that do not have any GO annotation and two drugs that have no
interaction with the remaining proteins. Thus the new dataset includes 357 drugs and 220
proteins with 1174 drug-target interactions. We call this new dataset the second dataset. De-
scriptive statistics about the first and second datasets are provided in Supplementary Material
S1.

Chemical similarities between drugs were calculated using the graph kernel approach,44

where chemical structure information of drugs was taken from the KEGG database. Side-
effect similarities between drugs were calculated using the same method as in Ref. 24, where
pharmacological information was obtained from the SIDER database. Sequence similarities be-
tween proteins were computed using local alignment kernel approach.45 Functional similarities
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between proteins were calculated using online software FunSimMat,46,47 in which functional
similarity scores were derived from GO terms annotated with biological process and molecular
function. In both datasets that we have tested, most pairs of proteins or drugs were dissimilar.
In the first dataset, less than 3% of all drug pairs had chemical similarity score greater than
0.85 (all similarity scores were normalized to 1), and less than 1% of all protein pairs had
sequence similarity score greater than 0.85. In the second dataset, less than 2% of all drug
pairs had chemical similarity score greater than 0.85, and less than 1% of all protein pairs had
sequence similarity score greater than 0.85.

3.3. Performance Evaluation

We used the Receiver Operator Characteristic (ROC) curve and the Precision-Recall (PR)
curve to evaluate the performance of our algorithm. In addition, we also computed the AUC
(area under ROC curve) and AUPR (area under PR curve) scores. In our performance eval-
uation, true positives were those correctly predicted interactions, while false positives were
those predicted interactions that were not present in the tested dataset. For highly-unbalanced
data, the PR curve is usually considered to be a better criterion to assess the prediction per-
formance, since it can punish more false positive examples.16,19,48 Thus our analysis mainly
focused on AUPR, although in many cases AUC and AUPR were positively correlated. Our
tests were performed mainly using a 10-fold cross-validation procedure. In this procedure, all
DTIs were randomly partitioned into 10 equal size subsamples. Each subsample was in turn
used as validation data to test our algorithm, and the remaining nine subsamples were used
as training data.

Table 1. Prediction results on the first dataset using 10-fold
cross-validation. Both AUC and AUPR scores are normalized
to 100. The best result is shown in bold.

Approach
Evaluation Criterion

AUC AUPR

Target-based CRF
GEN 97.3 80.7
FUN 97.7 80.9
IGF 98.0 83.9

Drug-based CRF
CHEM 96.0 81.5
PHAR 96.6 79.9
ICP 98.1 85.9

Full Integration Approach (FI) 99.2 94.9

Table 1 summarizes the test results on the first dataset using the 10-fold cross-validation
procedure. Under the target-based CRF framework, integrating both genomic and functional
data achieved better performance than other two approaches, with the AUPR score improved
by > 3%. When both chemical and pharmacological data were integrated into the drug-based
CRF framework, the results outperformed each single-similarity based approach with the
AUPR score improved by > 4%. When integrating all available information, the FI approach
achieved the best performance with AUPR > 94. Figure 1 shows the AUPR curves for different
approaches tested on the first dataset. These results demonstrate that incorporating additional
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Fig. 1. PR curves for different approaches on the first dataset. (A) PR curves for drug-based CRFs. (B) PR
curves for target-based CRFs. (C) PR curves for the FI approach.

information about drugs and proteins can further improve prediction accuracy. To check the
robustness of our model, we also performed a 5-fold cross-validation test, and only observed
a slight decrease in AUC and AUPR values (Supplementary Material S4).

3.4. Comparison Results

To compare with other existing approaches, we tested our algorithm on the second dataset,
i.e., the benchmark dataset published in Ref. 24. Here we mainly compared our approach
with the pairwise kernel regression (PKR) method proposed in Ref. 24, which claimed that
PKR outperformed many other state-of-the-art methods on the same data. As in Ref. 24,
we also tested seven different approaches, including AERS-freq-based pharmacogenomic ap-
proach (AERS-freq), AERS-bit-based pharmacogenomic approach (AERS-bit), SIDER-based
pharmacogenomic approach (SIDER), JAPIC-based pharmacogenomic approach (JAPIC),
chemogenomic approach (CHEM), integrated pharmacogenomic approach (INTEG-P) and
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integrated pharmaco-chemogenomic approach (INTEG-PC). These different methods, as sug-
gested by their names, are defined mainly based on input data, and more details about them
can be found in Ref. 24 or Supplementary Material S5 of this paper. In addition, we tested
an additional approach that combines chemical, side-effect, sequence and functional data to-
gether. This approach was not included in Ref. 24 and we referred to it as ‘INTEG-ALL’.
Table 2 shows the comparison results between our conditional random field (CRF) model and
the pairwise kernel regression (PKR) model.

As shown in table 2, our method outperformed the PKR model over all different tests. In
particular, our approach can improve the AUPR score by up to 10.5 when only SIDER-based
information was used. Furthermore, the results produced by CRF were not as sensitive to
different input data as those produced by PKR. For example, the AUPR score of PKR based
on JAPIC was about 10% larger than that based on SIDER, whereas the test of our algorithm
on SIDER-based data can still yield decent performance. These comparison results indicate
that our method is more robust to input data than PKR, and may have a better capacity to
handle noise in data.a

Table 2. The comparison results between our CRF and PKR methods. The second
dataset was tested in our CRF model using 3-fold cross-validation. The results for
PKR were taken from Ref. 24 in which pair-wise cross-validation corresponds to our
3-fold cross-validation test here. Note that the INTEG-ALL approach was absent in
Ref. 24. The best score is shown in bold.

Approach
AUPR

CRF PKR
AERS-freq 85.7 80.6
AERS-bit 85.4 81.3
SIDER 87.3 76.8
JAPIC 91.2 87.7
CHEM 87.7 79.7

INTEG-P 90.7 87.4
INTEG-PC 90.4 88.5
INTEG-ALL 91.5 \

4. Conclusion

In this article, we introduced functional data into DTI prediction and developed a probabilistic
graphical model to predict new drug-target interactions using known drug-target interactions
and various similarity scores for both drugs and targets. Our model can integrate chemical,
pharmacological, genomic and functional data systematically, and predict new DTI inter-
actions with high accuracy. We demonstrated that incorporating functional information of
targets can further improve prediction performance.

Currently, our algorithm uses a simple linear combination of independent predictions from

aAlthough our dataset were slightly differently from the original data tested in the PKR model (six proteins
and two drugs were excluded from the original dataset), the tiny difference between two datasets should not
change the conclusions that we draw here.
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drug-based and target-based CRFs respectively. In the future, we will extend our model into
a more sophisticated framework that can better integrate both drug-based and target-based
CRF models. In addition, we will incorporate other data such as drug-drug interaction (DDI)
and protein-protein interaction (PPI) information into DTI prediction. We hope that by in-
corporating these additional information our model can reveal mechanism of drug action to
a greater extent. Currently we only evaluated our approach based on benchmark data. We
will explore the practical applications of our prediction algorithm, e.g., identifying novel drug-
target interactions for drug repositioning.
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We present a probabilistic data fusion framework that combines multiple computational approaches
for drawing relationships between drugs and targets. The approach has special relevance to identi-
fying surprising unintended biological targets of drugs. Comparisons between molecules are made
based on 2D topological structural considerations, based on 3D surface characteristics, and based
on English descriptions of clinical effects. Similarity computations within each modality were trans-
formed into probability scores. Given a new molecule along with a set of molecules sharing some
biological effect, a single score based on comparison to the known set is produced, reflecting either 2D
similarity, 3D similarity, clinical effects similarity or their combination. The methods were validated
within a curated structural pharmacology database (SPDB) and further tested by blind application
to data derived from the ChEMBL database. For prediction of off-target effects, 3D-similarity per-
formed best as a single modality, but combining all methods produced performance gains. Striking
examples of structurally surprising off-target predictions are presented.

Keywords: Molecular similarity; Surflex-Sim; Patient Package Inserts; Off-Target Predictions.

1. Introduction

In prior work, we introduced a methodological approach for data fusion which was used to
predict the protein targets of small molecules based on molecular similarity.1 Given a test
molecule and a set of small molecules with a known shared biological effect, the method
produces a score corresponding to the likelihood that the test molecule will share the same
activity. We showed that for predicting primary targets (i.e. targets modulating intended
therapeutic effects) the performance advantage of a 3D similarity method over a 2D method
was relatively small, due to the dominating effects of human 2D bias in drug design (i.e.
“me-too” drugs).1,2 However, for predicting secondary targets (i.e. sources of side-effects) 3D
similarity was much more effective than 2D topological comparisons. We also showed that
clinical effects of drugs could be used as a surrogate for biochemical characterization,1 making
use of common side effects of muscarinic antagonism as markers for the biochemical protein-
ligand effect. It was possible using 3D chemical similarity to achieve strong separation of likely
muscarinic modulators from those with no evidence of such effects.

In the current work, we expand the analysis to a much larger set of small molecule drugs,
again making use of 2D and 3D chemical similarity computations. Additionally, computations
involving structural similarity are augmented with clinical effects similarity, made possible by
automating the extraction and weighting of relevant textual terms from drug package inserts.
The top row of Figure 1 shows two highly similar first generation sulfonylureas, tolbutamide
and tolazamide, each having highly similar pharmacological effects,3 with their therapeutic
benefits deriving from identical mechanisms.4 Clinical effects similarity coincides here with
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Figure 1. 
Relationship between molecular similarity methods, the proteins they modulate, and 
clinical effects in common. The top row shows two antidiabetics, tolbutamide (first in 
class) and tolazamide (follow on) which are very structurally similar, interact with 
similar proteins, and have similar clinical effects. The bottom row shows two anti-
epileptic drugs, carbamazepine and levetiracetam, that have different primary targets 
but similar clinical effects and 3D molecular similarity. Surflex-Sim's 3D overlay is 
shown at the bottom where carbamazepine is colored by green carbons and 
levetiracetam is in atom color. Green sticks correspond to regions of significant
hydrophobic similarity and blue/red sticks correspond to regions of significant polar 
similarity.
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Fig. 1. Relationship between small molecules based on molecular similarity, protein target modulation, and
clinical effects. The optimal 3D superimposition (bottom) indicates high similarity, despite little topological
commonality (green sticks correspond to regions of significant surface shape similarity and blue/red sticks
correspond to regions of significant polar similarity).

high structural 2D and 3D similarity. Next, consider the two structurally dissimilar anticon-
vulsants on the bottom of Figure 1, carbamazepine and levetiracetam. Carbamazepine was
one of the first anticonvulsants (approved in 1968), and its therapeutic benefit is attributed to
stabilizing the inactivated state of voltage-gated sodium channels (Nav1.1).5 Levetiracetam is
a newer anticonvulsant, believed to act through interaction with synaptic vesicle glycoprotein
2A (SV2A).6 As expected, the two package inserts have clinical effect terms in common due
to shared indications. Given the high 3D structural similarity, our expectation is that these
drugs do in fact share some molecular targets, as will be discussed later.

The present study establishes a computational method to draw relationships between drugs
based on the clinical effects present in Patient Package Inserts (PPI), whose utility for pre-
dicting drug target interactions has been shown previously.7 The present study makes three
primary contributions. First, we introduce a method to extract and weight medically relevant
terms from English clinical effects information. Second, we show that drug similarity com-
puted from package inserts is directly correlated with drug similarity computed by molecular
structure comparison. Third, we established that the combination of 2D, 3D, and PPI simi-
larity yielded better off-target predictive performance over any single similarity computation.
Recovery of roughly 40–50% of off-target annotations was possible with false positive rates of
about 1–3%. The approach is generalizable to other computational modalities (e.g. docking of
ligands to protein structures), and it is our hope that broad application of the methods will
aid in identifying unexpected interactions between drugs and biological targets.
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2. Methods and Data

The following describes the molecular data sets, computational methods, and specific compu-
tational procedures (see http://www.jainlab.org for additional details on software, data, and
protocols).

2.1. Molecular Data Sets

In the present study two molecular data sets are used. The Structural Pharmacology Database
(SPDB) is a deeply curated drug target database that is used as the basis to make predictions.
A set of drug target annotations from ChEMBL that were not annotated in our database were
used as a blind test set.

The details of the SPDB and its relationship to other databases has been extensively de-
scribed elsewhere.1,2,8 It has two features that are particularly important for the present study.
First, “targets” are specific binding sites on proteins or protein complexes. This is a critical
distinction in order to make inferences about small molecule activity based on structural sim-
ilarity. Second, primary targets (those that are believed to be therapeutically beneficial) are
distinguished from secondary targets (which mediate pharmacologically relevant off-target ef-
fects). By making this distinction, it is possible to explicitly quantify performance of methods
for prediction of surprising effects. Of the roughly 1000 drugs within the SPDB, 602 met our
criteria for inclusion based on PPI information (see below). Of the 257 primary and secondary
targets of these 602 drugs, 91 had at least 5 annotated drugs and formed the basis of cross-
validation experiments. These 91 targets were comprised of 83 human proteins, including 28
aminergic GPCRs, 19 ligand and voltage gated ion channels, 13 human enzymes, 7 nucleotide
and short peptide GPCRs, 5 tyrosine kinases, 5 steroid receptors, 3 reuptake transporters, 2
ion transporters, and 1 transcription factor. The remaining 8 targets were bacterial, fungal,
and viral proteins. To test the methodology, we employed ChEMBL version 14, which curates
linkages between chemicals and biological targets.9 For each of the 602 drugs, corresponding
ChEMBL compounds were identified based on direct structural equivalence. Equating the 91
SPDB target binding sites to ChEMBL bioactivities was done manually, yielding 65 corre-
sponding ChEMBL targets. Significant bioactivity was defined as Kd, Ki, or IC50 values less
than or equal to 1µM. There were 380 drug-target interactions present in ChEMBL that were
missing from the SPDB matrix of 602 drugs and 91 targets. This set served as a blind test set
and will be referred to as the ChEMBL set in what follows.

2.2. Patient Package Insert Similarity

We employed the well established vector space information retrieval approach10,11 to model
patient package inserts (PPIs). Text documents are modeled as vectors in high dimen-
sional space where each dimension corresponds to a term with an associated weight. Co-
incidence of terms with high weight leads to high computed similarity between documents.
The process to transform PPIs into weighted term vectors requires four steps. First, rele-
vant sections are extracted, including: Indication, Contraindications, Precautions, Adverse
Reactions, Drug Interactions, and Clinical Pharmacology. Second, term lists (up to five
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words each) are generated, with punctuation and short words like prepositions and ar-
ticles removed. Third, to eliminate artifactual terms and enhance relevance, terms are
identified that are part of two controlled vocabularies: Medical Subject Headings (MeSH,
http://www.ncbi.nlm.nih.gov/mesh) and the low-level Medical Dictionary for Regulatory
Activities (MedDRA, http://www.meddra.org). Last, term weights are assigned based on
information richness (e.g. “generalized seizures” > “seizures”). Word frequencies from the
Google Web 1T 5-gram Corpus (http://www.ldc.upenn.edu/Catalog/index.jsp, catalog num-
ber LDC2006T13) were used to compute term weights, with rare terms producing higher
scores than common ones. For example, “seizures” produced a log odds weighting of 4.74, but
the more specific term “generalized seizures” yielded 6.89. The final output for each drug is a
vector composed of 6,591 term weights (the weight of the term if present and zero otherwise).
From the PPI for carbamazepine, the Indication Section includes: “patients with the following
seizure types: partial seizures with complex symptomatology (psychomotor, temporal lobe).”
The unfiltered bigrams include both sensible ones such as “partial seizures” and useless ones
such as “patients with” with the filtering process eliminating the latter. For carbamazepine,
the two most heavily weighted terms were “failure liver” (8.83) and “syncope and collapse”
(8.62). The term “partial seizures” scored 6.37, with many related terms (e.g. “grand mal”)
scoring similarly.

PPISimilarity(A,B) =

∑n
i=1Ai ∗Bi√∑n

i=1A
2
i ∗

√∑n
i=1B

2
i

(1)

Comparison of a pair of drug PPI vectors is quantified using the cosine similarity metric
(Eq. 1). The metric has a range of 0–1, but its units are both arbitrary and counterintuitive.
To employ such values in our data fusion framework, the raw similarity scores were normalized
to p-values by generating a distribution of PPI similarity scores for unrelated molecule pairs.
The unrelated pairs were identified based on having low 2D and low 3D similarity, quantified
as described below with pairwise p-value comparisons ≥ 0.5 (we have previously shown that
structurally unrelated drug pairs very infrequently share targets1). So, given a PPI similarity
score S between a drug pair, the p-value is simply the proportion of occurrences of S or
greater in the background set. For example, the raw PPI similarity between carbamazepine
and levetiracetam was 0.286 (see Figure 1), and this corresponded to a p-value of 0.044. The
most heavily weighted terms in the comparison included the following: pancytopenia (6.6),
cytochrome p450 (6.6), grand mal (6.5), antiepileptic drugs (6.5), and partial seizures (6.4).

2.3. Target Prediction using Patient Package Insert Similarity

We have previously reported a framework for data fusion which allows for the integration
of similarity scores into a single value.1 Briefly, given a molecule A and a set a molecules
with a shared biological effect, Bn, the similarity between molecule A and each molecule Bi

is computed. The similarity scores are normalized to p-values as detailed above by assessing
score magnitude against score from a random background set. The multinomial distribution
is then used to compute the likelihood, M , of observing the set of p-values and of the converse
probabilities, M∗. The log-odds score L is then computed by taking the log of the ratio of M
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and M∗ and inverting the sign. A detailed discussion of the computation and corresponding 2D
and 3D similarity example can be found in the original publication.1 An attractive feature of
our methodology is that it is able to integrate the results of different similarity computations
into a single value. For example, the log-odds calculation for tolazamide interacting with
PPARγ-RXR yields single-modality values of 11.35 for PPI, 7.57 for 3D, and 5.49 for 2D.
Combining the similarity methods gives a stronger prediction compared to using any single
method alone with 3D+2D+PPI log-odds = 23.43.

2.4. Similarity and p-value Computation with Surflex-Sim

The Surflex-Sim 3D molecular similarity method and its use for virtual screening and off-target
prediction has been extensively described in multiple publications.2,8,12,13 Briefly, given two
molecules in specific poses, a value from 0 to 1 is computed that reflects the degree to which
their molecular surfaces are congruent with respect to both shape and polarity. The function
is based on the differences in distances from observer points surrounding the molecules to
the closest points on their surfaces, including both the closest hydrophobic surface points and
the closest polar surface points. So, two molecules that may have very different underlying
chemical scaffolds may exhibit nearly identical surfaces to the observer points. These points
are analogous to a protein binding pocket, which also “observes” ligands from the outside.
Additional details regarding the theory and underlying algorithmic details can be found in the
previously published work. In order to produce a log-odds value for a molecule against a list
of molecules with a shared annotation, 3D similarity values must be computed against each
annotated molecule, and these values must then be transformed into probabilities. Given the
particulars of the conformational sampling density, 3D similarity optimization thoroughness,
and empirical conversion of raw scores to p-values, the overall process required many hours
for each comparison of one molecule to a typical set of annotated molecules.

In the current work, two improvements were made to support large-scale application of the
methods. First, a new mode of pose optimization was developed in which diverse conforma-
tions of molecules are pre-generated prior to molecular comparison. Using this new mode, the
optimal pose for one molecule onto a specific pose of another can be done quickly enough to
process roughly 2 million drug-like molecules per day on a single computing core (compared
with roughly 10,000 previously). Second, rather than using explicit computation of 1000 back-
ground similarity values for each molecule (as previously), we made use of the observation
that these distributions were essentially always normally distributed. Given a molecule pair,
only the particular mean and standard deviation for each need be estimated in order to de-
rive a p-value rather than making use of the full empirical computation. Estimation of the
distributional parameters was accomplished using simple linear regression models that made
use of “molecular imprints” for each molecule.8 A molecular imprint is a vector of similarity
values for a particular molecule against a fixed basis set of molecules (one pose each). Such
vectors have precedent in predicting many molecular properties,14,15 and the conformational
pre-search procedure was augmented to produce standard molecular imprints. So, given two
pre-searched molecules, their mutual maximal 3D similarity can be rapidly calculated, and
the p-value conversion is immediately derived from the estimated distributional parameters
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for each molecule. Taken together, the two improvements allow for typical 3D log-odds com-
putations to be made in a few minutes for a given molecule against a target characterized by
twenty known ligands. To test the accuracy of the faster method, we recomputed the p-values
and log-odds values from our previous work. An all-by-all similarity of the 358 drugs from
the original study yielded a Pearson’s correlation of 0.947 and Kendall’s tau of 0.814, both
highly statistically significant. The full log-odds computation of 358 drugs against 44 targets
yielded a Pearson’s correlation of 0.955 and Kendall’s Tau of 0.761 (again highly statistically
significant).

For 2D molecular similarity computations, which make purely topological comparisons
between molecules, we employed the previously described GSIM-2D method.1,2 This method
is sufficiently efficient that empirical conversion of raw scores into p-values is possible, as
we have previously described.1 For this method to yield high similarity, two molecules must
be roughly the same size and contain similar subgraph compositions, especially for those
subgraphs rooted at heteroatoms.

3. Results and Discussion

3.1. Relationship between Structural Novelty and Clinical Effects

Previously, we quantified the effect of me-too drugs by showing that drug pairs with high
2D and high 3D similarity had four times more likelihood of having identical primary and
secondary targets than drugs pairs where one was structurally novel.1 Here, this analysis has
been extended to clinical effects by making use of the lexical similarity of package inserts.
Both to establish the relevance of the PPI similarity metric and to quantify the degree to
which structural novelty is related to changes in clinical effects, we computed the pairwise 2D,
3D, and PPI similarity of all 602 drugs. The drug pairs were separated into four categories
based on chemical structural similarity: high 2D and 3D similarity, low 2D but high 3D, high
2D but low 3D, and low 2D and 3D. High similarity included pairs with p-values ≤ 0.01 and
low similarity were those with p-values ≥ 0.5.

Figure 2A shows the histogram of the PPI p-value distributions for each of the four struc-
tural categories. It is clear that the “me-too” drug distribution (red line, drug pairs with high
2D and high 3D similarity) is different than the others. Toward the left side of the plot, where
clinical effects similarity was high (PPI p-values ≤ 0.05), a large fraction of the me-too drug
pairs had highly similar clinical effects. Structurally novel drug pairs (high 3D but low 2D
similarity, green line) exhibited a significantly smaller fraction with highly concordant clin-
ical effects but still showed some relationship between structural similarity and therapeutic
profile. The high 2D and low 3D pairs had little signal (blue), and only a very small portion
of structurally dissimilar drug pairs (low 2D and low 3D, magenta) shared clinically similar
effects. Clearly, drug pairs with very high structural similarity (both by 2D and 3D meth-
ods) were much more likely to have closely shared clinical effects than molecule pairs of any
other category, even those sharing high 3D similarity but low 2D similarity. The converse
observations paralleled these observations. Figure 2B shows the corresponding histograms of
3D and 2D p-value distributions where molecule pair segregation was made based on clinical
effect similarity. The 2D and 3D similarity p-value distributions for drug pairs with high PPI
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Figure 7. 
Quantifying the effect of me-too drugs based on PPI similarity. Panel A shows the PPI p-
value distribution of drug pairs that were segregated based on 2D and 3D p-values into 
the four bins shown above (number of pairs per quadrant are shown in parentheses).
Drug pairs with high 2D and high 3D have a higher likelihood of having  significant
phenotypic effects than molecules with low 2D but high 3D. Panel B shows the 3D p-
values distribution of drug pairs that were segregated based on high and low PPI p-
values. len(high_ppi):  3968
len(low_ppi):  88539
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Fig. 2. Relationship between structural similarity and clinical effects similarity.

similarity (red and green lines) showed stronger enrichment for low p-values associated with
high 3D structural similarity. As expected, drug pairs that had low PPI similarity (blue and
brown lines) also had low 3D and 2D structural similarity.

3.2. Internal SPDB Validation: Off Target Effects

An attractive aspect of the log-odds framework is that it allows us to combine different types
of similarity computations into a single value. For each of the 602 drugs in our dataset, we
computed the 2D, 3D, PPI, and combination log-odds scores of interacting with each of the 91
targets that had at least 5 drugs as ligands in the SPDB. In each case, any self/self comparisons
were omitted from the calculations, making this exercise a leave-one-out cross-validation of
the log-odds predictive methodology. The three methods were used independently and in
combination to predict the log-odds of known primary and secondary target interactions.
As we observed in our previous study, primary target predictions were dominated by the
presence of me-too drugs, limiting the differences between any methods (data not shown).
However, for prediction of secondary targets, i.e. those that mediate side-effects, significant
differences appeared. Table 1 summarizes the true-positive rates observed for difference log-
odds computations for secondary target prediction at different score thresholds.

Table 1. SPDB Secondary Target Performance

Log-Odds 3D 2D PPI 3D+2D 3D+PPI 2D+PPI 3D+2D+PPI
0 97 90 96 95 98 97 97
10 43 7 14 55 61 33 64
20 16 0 0 23 26 1 38
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For all single methods and combinations of methods, the information present in the anno-
tated drugs yielded positive information, evidenced by high true-positive rates at a log-odds
threshold of 0. However, substantial differences among the methods appeared as higher log-
odds thresholds were considered. At a threshold of 10, the 3D similarity approach showed a
much higher retrieval rate than either of the other two single-mode methods. All combinations
of methods showed synergy, with the most effective retrieval occurring with a combination
of all three similarity methods to produce a single log-odds score. Roughly 60% of the true
secondary target annotations could be recovered using the log-odds score from 3D+2D+PPI
similarity computations. Note, however, that true positive rates without the context of false
positive rates can be very misleading. The issue of estimating false positive rates is not straight-
forward though. In our SPDB, a missing annotation between a drug and a target does not
mean that the interaction does not occur. Authentic interactions within our 602 drug/91 target
set may have been published after our curation or have yet to be biochemically characterized.
Nonetheless, we expect that the large majority of unannotated interactions, in fact, represent
true negative data. So, as a surrogate for a measurement of false positive rates for our sim-
ilarity methods, we determined the number of drug/target predictions for interactions that
were unannotated. At log-odds thresholds of 5, 10, and 20, predictions for non-existent SPDB
annotations for both 3D similarity alone and 3D+2D+PPI were 3%, 1%, and 0.2%. These are
upper limits of false positive predictions. As will be described below, the false positive rate
was actually lower since many of the new predictions were validated as true by incorporating
annotations from the ChEMBL database.

3.3. Prediction of New Drug-Target Pairs within ChEMBL

As discussed above, a missing annotation within the SPDB between a drug and a target does
not necessarily mean that the interaction does not occur. For example, the drugs orphenadrine
and mesoridazine showed high 3D log-odds against the muscarinic receptor but the interactions
had been unannotated in the SPDB. Careful inspection of the literature revealed that the
drugs were known to antagonize muscarinic receptors.1 Therefore, drug target annotations
that are known but missing from our SPDB can serve as a blind set to test our methodology.
To supplement annotations within the SPDB with a blind set for methodological testing,
we searched ChEMBL and found 380 biochemically characterized drug/target interactions
not present in the SPDB. We then investigated how well the methodology could identify the
new ChEMBL annotations based only upon information within in the SPDB as the basis to
compute the log-odds.

Table 2 shows the proportions correctly predicted at various log-odds using different meth-
ods and combinations. In general, the trends observed for the SPDB leave-one-out experiments
were borne out. Among individual methods, 3D similarity strongly outperformed 2D- or PPI-

Table 2. ChEMBL Prediction Performance

Log-Odds 3D 2D PPI 3D+2D 3D+PPI 2D+PPI 3D+2D+PPI
5 43 14 13 42 41 19 41
10 16 3 3 20 18 8 22
20 2 0 0 3 1 0 4
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based similarity, with the latter two having similar performance. However, the combination of
the three methods, overall, yielded better performance than 3D alone. At log-odds thresholds
of 10 and 20, using the full combination of methods, the percentage of recovered annotations
within the SPDB test set was 22% and 4%, respectively. This compared with 16% and 2%
using 3D similarity alone, and 3% and 0% using either 2D or PPI similarity alone. The enrich-
ment ratios for the combination approach, using the upper-bound false positive rates discussed
above, corresponded to 22-fold and 40-fold, respectively, at log-odds thresholds of 10 and 20.

Figure 3 shows a typical example of a drug/target interaction not annotated in the
SPDB where the combination similarity approach confidently identified a pharmacolog-
ically relevant target. Sibutramine is an anorexic annotated in the SPDB as a ligand
of the serotonin and norepinephrine reuptake transporters. However, it has been shown
that sibutramine also interacts with the dopamine reuptake transporter and that this in-
teraction contributes to the therapeutic benefit (indicated in the Meridia package insert,
http://www.rxabbott.com/pdf/meridia.pdf). Computing the similarity between sibutramine
and 11 other dopamine reuptake transporter inhibitors (two are shown in Figure Figure 3),
the log-odds were 2.3, 4.2, and 6.9 using 2D, 3D, and PPI, respectively. These predictions
were strengthened by combining all three methods, with corresponding log-odds of 9.4. The
pairwise PPI similarities between sibutramine and bupropion and nefazodone are highly signif-
icant as are the individual 3D similarities. Clinical effects can be sufficient to infer off-targets,

nefazodone 
terms: 547 

Sibutramine 
terms: 464 

Primary: 5-HT & Norepinephrine reuptake transporters 

Figure 15. 
ChEMBL Example: PPI alone can infer off-target effects and combining with 3D makes 
stronger inference.  
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Fig. 3. ChEMBL example showing that combination similarity effectively predicts a drug target interaction
not covered within the SPDB. Shown are the 2D structures, 3D overlays, and common clinical terms between
sibutramine and two dopamine reuptake transporter inhibitors, bupropion and nefazodone.
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Fig. 4. A near-neighbor analysis for each of 602 drugs (SPDB in green, ChEMBL in red) based on target
annotations from the SPDB.

but combining similarity methods generally adds confidence to predictions.
Note, however, that the numerical performance on the ChEMBL set was lower than for

the SPDB set in terms of pure true positive recovery rates (see Tables 1 and 2). This stemmed
from an increase in structural diversity for molecules within ChEMBL compared to those
molecules within the SPDB for the target identified by the ChEMBL annotation. To quantify
structural novelty, we performed a nearest-neighbor analysis. For each drug within ChEMBL,
the most similar 2D representative from the SPDB was identified (based on p-value) from
within the collection of drugs having the same target annotation. An analogous leave-one-out
computation was performed for each drug target annotation within the SPDB. Figure 4 shows
a histogram of the distributions of p-values for the ChEMBL (red line) and SPDB (green line)
sets. Within the SPDB set, there were substantially more cases with extremely low p-values
than for the ChEMBL set. The nearest structural neighbor for each ChEMBL test molecule
were generally more divergent. Two examples are highlighted from the ChEMBL set where
the nearest neighbor had poor 2D p-values relative to the much more significant 3D p-values
which provided support for high log-odds scores.

Fluoxetine (blue box) is a selective serotonin reuptake inhibitor which mediates its ther-
apeutic benefit through inhibition of the 5-HT reuptake transporter. The ChEMBL data in-
dicated that fluoxetine also interacts with the muscarinic M3 receptor. The nearest-neighbor
molecule sharing this annotation was methadone (2D p-value = 0.041). Considering all of the
muscarinic M3 receptor ligands (38 total), the 2D, 3D, and PPI log-odds were 1.2, 7.7, and
3.7 respectively. Combining all of the methods gave a score of 8.2.

Apomorphine (red box) is indicated to treat Parkinson’s disease and its therapeutic benefit
is thought to be primarily due to activating dopamine D2 receptors. However, apomorphine
was indicated within ChEMBL to also interact with the dopamine D3 receptor (which is also
known to play a role in the beneficial effects for other anti-Parkinsonian drugs). The nearest-
neighbor drug within the D34 ligands was ropinirole (2D p-value = 0.210), which is structurally
distinct in a topological sense in Figure 4. As in the previous case, when considering all 11
dopamine D3 ligands, the 3D comparisons provide primary support for a positive log-odds
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score. The 2D, 3D, and PPI log-odds were -1.1, 7.7, and 1.2 respectively. The combination of
all three comparison types yielded a score of 3.3. Here, the 3D molecular similarity information
was the most reliable predictor.

4. Conclusion

In the present study, we report a means to combine chemical similarity between molecules
with information derived from computing similarity based upon lexical analysis of patient
package inserts (PPI). As expected based on our prior work, drugs that were highly struc-
turally similar (both by 2D and 3D comparison) were much more likely to have significant
overlap of their clinical effects compared to drugs that were structurally different (low 2D
similarity but high 3D similarity). Our prior work illustrated a similar effect with respect to
specifically annotated molecular targets: me-too drugs tend to have nearly identical target
profiles.1 The correlation between lexical and chemical similarity also served to validate the
lexical comparison methodology.

We extended a probabilistic data fusion method to include observations from both molec-
ular and clinical effects similarity and reported performance on predicting protein targets of
small molecules. This was done both by leave-one-out cross-validation on our internal database
of drug-target interactions (the SPDB) as well as on a blind test on new interactions present
in ChEMBL. For off-target prediction within the SPDB, 3D similarity was the most effec-
tive single information source. However, combining the methods predicted a larger proportion
of secondary targets than any of the individual methods, while maintaining a similar nomi-
nal false positive rate. On the test against previously unseen ChEMBL drug-target linkages,
again 3D similarity was the single most effective predictor, but gains were derived from com-
bining the different data sources. We note that the method supports the integration of any
method that produces scores relating molecules to targets (e.g. docking), and that inclusion
of additional information sources is likely to produce further benefits. It is also important to
understand that this framework is similar in character to virtual screening methods, in that
while enrichment for compounds with the predicted effects occurs, the actual potencies of the
effects are not predicted. This point is discussed at length in a prior study.16

In contemplating the problem of off-target prediction for drugs, the problem of molecular
design ancestry can confuse the issue of methodological validation. For example, ligands of
aminergic GPCRs offer troublesome test case, owing to the established promiscuity of such
drugs among numerous targets.17 Returning to Figure 1 (bottom), we see the example of lev-
etiracetam, an anticonvulsant believed to have a unique mechanism of action when compared
with most existing anticonvulsants. The established CNS targets of the major classes of an-
ticonvulsant drugs include the GABAA receptor (for barbiturates such as pentobarbital) and
neuronal voltage-gated sodium channels (for drugs such as carbamazepine and phenytoin).
These drugs have been recently shown to modulate voltage-gated potassium channels as part
of their anti-epileptic effects.18–21 Levetiracetam, having a novel scaffold, has been proposed
to work through an entirely new mechanism of action due to high binding affinity to the
synaptic vesicle protein SV2A (which is not a known therapeutic target of any drug).6,22,23

Our methods strongly predict that levetiracetam is a voltage-gated sodium channel modulator
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with 3D log-odds alone of 14.5 (the combination log-odds was 21.4). Levetiracetam has been
shown to inhibit voltage-gated potassium currents,22 leading to the suggestion that this drug,
like other anti-epileptics, acts at least in part through potassium channels. Considering that
many antiepileptics modulate both sodium and potassium channels,23 our prediction supports
the notion that levetiracetam shares a similar mechanism of action, perhaps in addition to
the interaction with SV2A.

Identification of off-target activities of drugs is a difficult problem, particularly in cases
where the drug in question has a non-obvious structural relationship with the known ligands
of a given target. Our hope is that methods that make use of multiple information sources
will help to identify clinically important and unexpected effects.
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Computational drug repositioning leverages computational technology and high volume of 
biomedical data to identify new indications for existing drugs. Since it does not require costly 
experiments that have a high risk of failure, it has attracted increasing interest from diverse 
fields such as biomedical, pharmaceutical, and informatics areas. In this study, we used 
pharmacogenomics data generated from pharmacogenomics studies, applied informatics and 
Semantic Web technologies to address the drug repositioning problem. Specifically, we 
explored PharmGKB to identify pharmacogenomics related associations as 
pharmacogenomics profiles for US Food and Drug Administration (FDA) approved breast 
cancer drugs. We then converted and represented these profiles in Semantic Web notations, 
which support automated semantic inference. We successfully evaluated the performance 
and efficacy of the breast cancer drug pharmacogenomics profiles by case studies. Our results 
demonstrate that combination of pharmacogenomics data and Semantic Web 
technology/Cheminformatics approaches yields better performance of new indication and 
possible adverse effects prediction for breast cancer drugs. 
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1.  Introduction 

Traditional drug development is costly and labor-intensive, and scientists are devoted to finding an 

alternative way to facilitate the drug discovery process. Drug repositioning, finding new therapeutic 

uses for existing drugs, is one of the most efficient and efficacious approaches to speed drug 

discovery. With the advance in computational technology, computational drug repositioning has 

shown its advantage as many studies been published recently. Ye et al. [1] explored a disease-

oriented strategy for evaluating the relationship between drugs and disease on the basis of their 

pathway profile; Napolitano et al. [2] investigated machine-learning algorithms to predict drug 

repositioning; Li and Lu[3] presented an approach for identifying potential new indications of an 

existing drug through its relation to similar drugs. Butte’s lab has reported their efforts on 

computational drug repurposing by exploring gene expression data [4, 5]. These studies drew on 

different technologies to address the problem of computational drug repositioning. However, none of 

them attempted to leverage data from emerging pharmacogenomics (PGx) studies in an integrated 

and transformable manner and explore Semantic Web technology as core implementation tool to 

address drug repositioning, which is our proposed aim for this study. PGx study investigates how 

genetic variations affect drug responses for the individual patient, consequently high volume of PGx 

information including relations among drugs, genes, single nucleotide polymorphisms (SNPs), etc. 

has been accumulated. The overarching goal of this study was to provide PGx profiles for FDA 

approved breast cancer drugs (BCDs) by leveraging informatics approaches and Semantic Web 

technologies, and ultimately to facilitate oncology-relevant biomedical and clinical studies and to 

support breast cancer drug repositioning.  

Currently in the PGx world, different formats are being used for different data resources, which is the 

main obstacle to integration of PGx data to support development of relevant applications. Different 

formats might be preferred to represent scientific data, based on the nature of the source, the way 

the data are to be queried or visualized, or the type of analyses to be performed. Traditionally, 

investigators have relied heavily on tools such as Excel spreadsheets and relational databases to 

store and represent their research findings. However, these tools lack interoperability and capability 

to make inferences. In contrast, Semantic Web technology can manage scientific data in a more 

integrative and intelligent way. It is “a rigorous mechanism for defining and linking data using Web 

protocols in such a way that the data can be used by machines not just for display, but also for 

automation, integration, and reuse across various applications”[6]. Web Ontology Language (OWL), 

as a Semantic Web standard, can formally represent domain knowledge; it “organizes concepts or 

entities within classification (specialization or “is-a”) hierarchies that provide for inheritance of 

attributes”[7]. Reusing existing resources in an integrative manner is essential, but exploring new 

associations is much more challenging. A Semantic Web reasoner enables identification of new BCD 

PGx associations, with an ultimate goal of repositioning BCDs. Dumontier [10] has demonstrated 

some advantages by expressing PGX data, PharmGKB in OWL for personalized medicine purpose.  

Pacific Symposium on Biocomputing 2014

173



 

 

 

Additionally, novel PGx information may be detected from a chemical perspective. Drugs with 

chemical structure similar to that of cancer drugs or genes associated with drugs with similar 

chemical structure can be identified using cheminformatics approaches[8]. Cheminformatics, a suite 

of computational technologies to solve a range of chemical problems, can be used to identify and 

evaluate new PGx associations. More precisely, we implemented a similar-structure searching 

algorithm to identify drugs similar to BCDs and find potential new uses for these drugs. 

The paper is organized into the following sections. First, we introduce materials being used in this 

study; second, in the Methods section, we introduce details about PGx OWL profiles generation for 

BCDs and case study; third, we illustrate our results generated from each step in the Results section, 

which is followed by Discussion and Conclusion. 

2.  Materials 

2.1. PharmGKB 

The PharmGKB contains genomic, phenotype and clinical information collected from PGx studies. 

PharmGKB provides information regarding variant annotations, drug-centered pathway, 

pharmacogene summaries, clinical annotations, PGx-based drug-dosing guidelines, and drug labels 

with PGx information[9].  

In this study, we used PGx information extracted from a relationship file received from PharmGKB by 

May 8, 2013, to generate the PGx profile for FDA-approved BCDs. Figure 1 shows some concrete PGx 

related association examples from the PharmGKB relationship file. Particularly, we extracted “Entity 

id”, “Entity name”, and “Entity type” for this study. Other fields, such as PubMed IDs (PMIDs), will be 

explored and integrated in a future study to support selection of the best PGx associations with 

publications as evidence. 

 
Fig. 1. Examples of PGx relations available in PharmGKB 

In addition to the PGx information from the PharmGKB relationship file shown in Figure 1, 

PharmGKB also provides pathway information, which includes associations between pathway and 

Pacific Symposium on Biocomputing 2014

174



 

 

 

 

 

drug, pathway and gene, and pathway and disease. Overall ten associations among drugs, genes, 

diseases, pathways, SNPs are available from PharmGKB. Table 1 shows these associations from two 

PharmGKB data files. Haplotype related associations are beyond the scope of this study. 

Table 1.  PGx related associations available from PharmGKB 

2.2. FDA approved BCDs 

The National Cancer Institute (NCI) maintains cancer drugs approved by the FDA for breast 

cancer[11]. In this study, we did not consider drug combinations that are not approved by the FDA, 

even though the individual drugs are approved. Of 23 BCDs from NCI, a total of 18 BCDs have been 

manually mapped to the PharmGKB relationship file. The PGx profiles have been generated for these 

18 BCDs, as described in the following sections. Table 2 shows the 23 BCDs from NCI vs 18 BCDs 

mapped to PharmGKB.   

Table 2.  BCDs from NCI and PharmGKBa 
BCDs available from NCI BCDs identified in PharmGKB relationship file 

ado-trastuzumab emtansine   

anastrozole   

capecitabine   

cyclophosphamide   

docetaxel   

doxorubicin hydrochloride   

epirubicin hydrochloride   

everolimus   

exemestane   

fluorouracil   

fulvestrant   

gemcitabine hydrochloride   

ixabepilone   

lapatinib ditosylate   

letrozole   

megestrol acetate   

methotrexate   

paclitaxel   

paclitaxel albumin-stabilized nanoparticle formulation  

pertuzumab  

 tamoxifen citrate  

 trastuzumab  

 toremifene  

 
 

anastrozole 

capecitabine 

cyclophosphamide 

docetaxel 

doxorubicin 

epirubicin 

everolimus 

exemestane 

fluorouracil 

fulvestrant 

gemcitabine 

lapatinib 

letrozole 

methotrexate 

paclitaxel 

pertuzumab 

tamoxifen 

trastuzumab 

 
 

aDrugs that failed to map to PharmGKB are 

shown in bold. 

             Associations 
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Drug 

Drug-

Gene 

Drug-

Pathway 

Drug-

SNP 

Gene-

Pathway 

Gene-

Disease 

Disease-

Pathway 

Disease-

SNP 

Gene-

Disease 

Gene-

Gene 

PharmGKB 

Relationship file 

          

PharmGKB 

Pathway data 
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2.3. Semantic Web Technologies 

Emerging Semantic Web technologies provide a formal mechanism to represent domain knowledge 

and data and to perform semantic reasoning on top of this knowledge. Semantic Web technology 

supports flexible, extensible, and evolvable knowledge transfer and reuse. It has been widely used in 

biomedical domains to formalize and model medical and biological systems. The Resource 

Description Framework (RDF)[12] is a World Wide Web Consortium (W3C) standard that specifies a 

graph-based data model for representing Semantic Web data. Each piece of information is 

represented in three parts (a triple): subject, predicate, and object. The RDF representations allow 

efficient querying and visualization of relationships between important biomedical entities.  OWL 

[13] is a standard ontology language for the Semantic Web. A distinguishing characteristic of RDF 

and ontologies compared with the conventional relational database is “their degree of 

connectedness, their ability to model coherent, linked relationships”[14]. Representing the 

associations using OWl will enable powerful data integration among heterogeneous data sets, which 

is a well-known challenge in the translational science study community. 

3.  Methods 

In this study, we focused on FDA approved 

BCDs and generated PGx OWL profiles by 

leveraging PharmGKB data and semantic web 

technologies. The OWL profiles explicitly 

capture BCD concepts and relationships and 

enable the semantic inference for novel drug 

associations. The overall architecture of the 

proposed project is shown in Figure 2. The 

details about each step are described in the 

following sections. 

3.1.  Generation of Integrative Breast Cancer PGx Profiles  

3.1.1.  BCD PGx related association extraction  

The PGx related associations shown in Table 1 were explored in this study for generation of PGx 

profiles. We programmatically extracted the PGx related associations from the relationship file that is 

tab delimited. In addition, we manually identified associations among pathways, drugs, genes and 

diseases for 18 BCDs from the PharmGKB pathway file that is a plain text file. Additional associations 

were inferred by invoking a rule-based OWL reasoner described in section 3.2.   

Fig. 2. Building blocks for the overall architecture 
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3.1.2.  Chemical structure based similarity calculation 

To identify inferred associations for BCDs from a chemical perspective, two steps were involved: 

retrieval of chemical representations (by the simplified molecular-input line-entry system [SMILES] 

[15] or the IUPAC International Chemical Identifier InChI [16]) and structural similarity calculation. 

Except for the drugs with SMILES annotated by PharmGKB, we first converted active ingredient 

names to chemical representations through publically accessible services, such as the PubChem 

Entrez web service [17] and the NCI Chemical Identifier Resolver [18].  We then translated such 

chemical representations to chemical fingerprints and compared chemical structure similarity 

between BCDs and drugs from the PharmGKB by calculating the Tanimoto coefficient [19]. A 

cheminformatics toolkit, the Chemical Development Kit [20], has been explored to automate these 

two steps. Finally, PharmGKB drugs with similarity scores higher than 0.7 compared with BCDs were 

marked as structurally similar BCDs. Thus, more PGx related associations were transformable to 

BCDs via similar PharmGKB drugs. Appropriate properties for describing the similar structural 

relationships have been defined and used for inference in PGx OWL profiles for BCDs. 

3.2.  BCD PGx OWL profile construction and semantic inference 

We captured and integrated PGx related associations for BCDs as PGx profiles. These integrated PGx 

profiles can then serve as a knowledge base to further infer new drug targets or associations. We 

established an OWL ontology-based approach for this purpose. More specifically, we developed an 

OWL ontology that captures 1) comprehensive BCDs’ PGx profiles and 2) rules to infer drug targets 

or other associations based on the profiles. We used the Protégé system[21] for OWL ontology 

development.  

3.2.1.  Meta-ontology model definition  

We first defined a meta-ontology model to describe base classes and relationships for the BCD 

profiles. Base classes include “Drug,” “Gene,” “Disease,” “SNP,” and “Pathway.” Specific subclasses of 

these base classes, such as “Breast Cancer Drug” or “Breast Cancer Drug Associated SNP,” can also be 

defined. Relationships between these classes, such as “associatedwithDrug,” “associatedwithDisease,” 

“associatedwithSNP,” and “associatedwithPathway,” have also been defined as object properties with 

appropriate domains and ranges.  

3.2.2.  PGx profile representation  

Specific BCDs, SNPs, genes, and pathways were represented as OWL individuals with appropriate 

types. For example, line 1 in Figure 3 defines Tamoxifen as an instance of the Drug class. Lines 2-5 

further represent additional PGx profile information about the Drug Tamoxifen. Similarly, 

information about particular genes, SNPs, diseases, and pathways can also be stored using RDF 
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triples. For example, lines 8-10 and 

13-14 represent a partial profile of 

SNP rs2234693 and the drug 

clomifene, respectively.  

3.2.3.  Identifying new indications for 

BCDs via semantic inference  

New indication candidates 

identification for BCDs is built on the 

basis of PGx related associations and predefined axioms.  We used Description Logic (DL)[22] to 

define axioms shown in Figure 4. For instance, we defined that a disease di may associate with a drug 

dr if di is either directly associated with dr or associated with any gene, pathway, or SNP that is 

associated with dr. For example, we can find tamoxifen-associated diseases using the first axiom 

listed in Figure 4. Similarly, we can define a tamoxifen-associated SNP, gene, and pathway using OWL 

DL. Another way to find tamoxifen-associated disease is to search on the basis of its chemical 

structure. Our method is based on the fact that drugs with the similar structure 

(isStructuralSimilarto) are very likely to share the same biological properties, which would likely 

lead to the same disease profile. The second axiom in Figure 4 defines this feature. 

 
Fig. 4. Rule representation for PGx OWL profiles.  

4.  Case Study 

Using the above semantic definitions, we can infer more information about a particular BCD. We 

chose tamoxifen, as a use case testbed. “Tamoxifen treats advanced breast cancer in men and women, 

and early breast cancer in women. And it may prevent breast cancer in women who are at a high risk 

because of age, family history, or other 

factors”[23].  We did not invite domain experts to 

evaluate our inference results for this study, 

hence, we attempted to validate the performance 

and usability of PGx OWL profiles by detecting 

existing hints from the literature as evidence. 

Tamoxifen is associated with the BRCA1 gene (a 

TamoxifenGene, in Figure 3) and BRCA1 is 

associated with the disease “Ovarian Neoplasms”. 

The reasoner can infer ovarian cancer might be associated with tamoxifen via the first axiom listed in 

Fig. 5  Structural comparison between 
tamoxifen and clomifene. 

Fig. 3. RDF representation for PGx profiles 
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Figure 4.  That is to say, tamoxifen can not only treat breast cancer, but also may be used to treat 

ovarian cancer. Several publications and clinical trials have reported this use of tamoxifen.[24, 25] 

“Clomifene treats ovulation problems in women who want to become pregnant”[26]. There are no 

explicit hints to tie together an ovulation drug and a BCD. However, PGx OWL profiles identified a 

possible linkage between these two agents. As shown in Figure 5, clomifene and tamoxifen are 

structurally similar with a similarity score 0.75, which is higher than the threshold 0.7 that we setup. 

Then the reasoner can infer that tamoxifen may be associated with diseases associated with 

clomifene (eg, Polycystic_Ovary_Syndrome) via the second axiom shown in Figure 4. In 

2011,Dhaliwal et al [27]  reported that tamoxifen can be prescribed as an alternative to clomifene in 

women with polycystic ovary syndrome.  

In addition to repositioning tamoxifen with other therapeutic uses, we also can identify potential 

adverse effects by running our PGx OWL profiles based reasoner. From our OWL profiles, as shown in 

Figure 3, we identified that tamoxifen is associated with the ESR1 gene as a “TamoxifenGene.” Since 

the SNP rs2234693 is associated with ESR1 (a “TamoxifenGene”), rs2234693 is classified as a 

“TamoxifenSNP” by the reasoner. Furthermore, since rs2234693 is “associatedwithDisease” 

Rheumatoid Arthritis, then rheumatoid arthritis is identified as a disease that might be associated 

with tamoxifen by the reasoner. In the real world, as of June 24, 2013, a total of 7,947 people have 

been reported to have adverse effects when taking tamoxifen citrate. Among them, 35 people 

(0.44%) have rheumatoid arthritis. [28] 

5.  Results 

We generated and presented PGx profiles for 18 breast cancer drugs from NCI by exploring PGx 

information from PharmGKB. To enable semantic reasoning and to identify more novel PGx 

associations for BCDs, we created OWL ontology to capture and represent the concepts and relations 

from PGx profiles. 

5.1.  BCD PGx profile generation 

We identified 955 associations for 18 BCDs from the PharmGKB relationship file, which include 

associations among drugs, genes, and SNPs.  We manually identified 287 associations for 18 BCDs 

from the PharmGKB pathway file, which include associations among pathways, drugs, genes, and 

diseases. 

5.2.  Chemical structural similarity calculation 

To integrate structural similarity, we calculated drug pairs between BCDs and drugs from the 

PharmGKB. Of 679 unique PharmGKB drugs (including drug classes) extracted from the PharmGKB 

relationship file, 339 are without SMILES. We invoked NCI chemical resolver to generate SMILES for 

Pacific Symposium on Biocomputing 2014

179



 

 

 

these 339 drugs by given drug names, 193 have retrieved SMILES.  For the rest of 146 drugs and drug 

classes without SMILES, we ran PubChem entrez web service to generate SMILES and 37drugs 

assigned with SMILES. In total 78 drug classes and 31 drugs were excluded from similarity 

calculation because no SMILES were generated. For pathway file, we have identified another 71 

unique drugs. Among these drugs, there are 65 drugs assigned SMILES via PubChem Entrez web 

service. Total 5 drugs and 26 drug classes without SMILES were excluded for similarity calculation. 

5.3.  PGx OWL profile generation 

BCDs relevant PGx profiles were converted to OWL representation, the drugs, genes, diseases, SNPs 

from the PharmGKB relationship file and pathway file were also imported into the OWL ontology for 

inference purpose. A snapshot of the PGx OWL ontology is shown in Figure 6.  This ontology includes 

294 diseases, 750 drugs including 18 breast cancer drugs, 4277 genes including 215 breast cancer 

associated genes, 1,426 pathways including 15 breast cancer drugs involved pathways, and 1744 

SNPs including 346 breast cancer associated SNPs. It also includes the similarity scores of 10,159 

pairs of drugs. 

 
 Fig. 6. PGx OWL ontology snapshot 

6.  Discussion and Conclusion 

This report presents our preliminary work focusing on computational drug repositioning application 

development leveraging PGx information integration and Semantic Web technology exploration for 
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FDA approved BCDs. We have successfully demonstrated the utility of this application to reposition 

existing BCDs with new uses, and detect potential adverse effects. Our work illustrates that PGx data 

provides sufficient information to support drug repositioning and, furthermore, that Semantic Web 

technology provides technical support for formal representation and semantic inference of data. 

This is our first attempt to use a PGx resource and Semantic Web technology to address drug 

repositioning in a computational way. With the promising results of this study, we will expand this 

investigation in several directions: 1) In the current study, we explored only PharmGKB as a PGx 

resource, which is not enough to identify more novel associations for BCDs. We will integrate 

additional PGx-related resources, such as an FDA biomarkers table, the DrugBank database, the 

Comparative Toxicogenomics Database, and the Kyoto Encyclopedia of Genes and Genomes. 2) Once 

more PGx resources are integrated, one drug might be inferred to multiple PGx associations. Then we 

will propose to define some “gold standards” for prioritizing the relevance of these associations to 

particular drugs. The standards might be built on the number of co-occurrences of the PGx 

associations, as supported by publications, etc.  3) We worked only on BCDs in this study. In future 

studies, we will extend our effort to other cancer drug categories or other categories of drugs, such as 

antidepressants, using the same strategy that we applied in this study. 
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Introduction

Pleiotropy, the phenomenon in which one gene influences more than one phenotype, was
first defined over 100 years ago by Ludwig Plate.1 Since that time our understanding of
pleiotropy has changed and expanded to incorporate knowledge of molecular genetics. With
this increase in knowledge has come an increase in an appreciation for the importance of
pleiotropy in human health and evolutionary dynamics, but also a corresponding increase in
confusion about how pleiotropy should be measured, and how the context in which pleiotropy
is measured affects its interpretation. The purpose of this session is to offer a general view of
pleiotropy and of the different approaches used to study this phenomenon. During the session,
we will be examining a series of questions that are currently being discussed in the literature:

• Which genetic elements can be defined as pleiotropic?
• How are phenotypes defined and counted?
• How prevalent is pleiotropy? Does every gene affect every phenotype, or is pleiotropy

more limited?
• How does pleiotropy influence, and how is it influenced by, evolution?
• How does an understanding of pleiotropy improve our understanding of human health?

Defining Genetic Elements

Pleiotropy requires defining a genetic element that affects multiple phenotypes. But which
genetic element is appropriate? A gene, a chromosomal segment with high linkage disequilib-
rium, a mutation? Plate’s original definition of pleiotropy came long before the discovery of
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DNA, and referred to a “unit of inheritance”.1 A unit of inheritance may refer to a single nu-
cleotide polymorphism (SNP), or a gene, or a large segment of the genome containing multiple
genes. Individual mutations may affect a single gene, or multiple genes.2,3 In this session, the
problem is addressed in a variety of ways. Darabos et al. use SNPs and genes, while Philip
et al. use expression quantitative trait loci (eQTL) as genetic elements. The choices made in
different experiments clearly have implications for the interpretation of pleiotropy, although
the implications of these choices is still being debated.

Defining Phenotypes

The concept of counting phenotypes is perhaps an even more difficult issue than identifying
genetic elements. As Wagner and Zhang point out, a biologist may see two traits, femur
length and tail length, where a mathematician familiar with rotation of coordinate systems
my see only one: FeTail.3 Further disagreements may arise as to whether two correlated traits
such as femur length and femur width are one trait or two. Finally, there is discussion about
whether the relationship between traits represents yet another phenotype that can be affected
by genetic manipulation. Relationship QTL, or rQTL, which change the relationships between
phenotypes have been identified in mice,4,5 and are likely present in other organisms as well.

To reduce the number of subjective choices, some studies, such as Philip et al. in this
session, use mRNA expression levels as phenotypes. mRNA expression is relatively easy to
measure comprehensively and at scale. However, problems such as high-dimensional data with
relatively few samples and correlation between phenotypes arise in these studies. One class
of methods used to address these problems is dimensionality reduction, and in this session
Philip et al. discuss one such dimensionality reduction approach.

Measurement of physiological traits in humans is addressed by Hall et al.. This paper
examines the concept of standardized, high-througput phenotyping in a range of medically
relevant areas from physiological measurements available in electronic medical records to en-
vironmental exposures.

The Prevalence of Pleiotropy

In addition to specific relationships between individual genes and phenotypes, many studies
of pleiotropy are concerned with quantifying pleiotropy itself. Ronald Fisher promoted the
idea of “universal pleiotropy” in which every gene affects every phenotype to some extent
either directly or indirectly.6 This idea was implicit in his geometric model of adaptation.6,7

However, since the 1930’s molecular genetics experiments have revealed a more modular model
of pleiotropy.8 In modular pleiotropy, gene actions are limited to a specific set of processes or
phenotypes and are relatively independent from other phenotypes3,9

Modular pleiotropy is supported in the literature. Wagner and Zhang3 review the results
from experiments in yeast, nematode and mouse, using a variety of methods of counting genetic
elements and phenotypes. In each of these experiments, the vast majority of genetic elements
affect very few phenotypes, while only a few elements affect a large number of phenotypes.
These distributions are surprisingly consistent across the different experiments. This limited
scope of the majority of genes supports the hypothesis that gene action is relatively limited to
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phenotypes modules. The paper by Darabos et al. presented in this session shows additional
evidence in support of a modular view of pleiotropy.

Pleiotropy in an Evolutionary Context

Whether pleiotropy is universal or modular has an impact on how pleiotropic genes are influ-
enced by selection. Complex organisms have vastly more cell types than prokaryotes, but only
about four-fold more genes.10 The necessary increase in pleiotropy per gene that this statis-
tic suggests could limit the evolvability in complex organisms due to potentially wide-spread
effects of single mutations. Des Marais and Rausher11 have proposed that gene duplication
may provide an escape from these evolvability limitations, as each gene copy can take over a
subset of the original gene’s functions. Other studies have addressed molecular mechanisms by
which genes evolve to be more pleiotropic. This process may preferentially recruit genes to new
biological processes rather than adding new biological functions.3 For example, new processes
might include changes in tissue expression, subcellular localization, interacting partners and
context-sensitive transcription.3

In this session, the relationship between pleiotropy and evolution will be addressed by the
keynote speaker, James Cheverud in his talk titled “Genetic Variation and Evolution of
Pleiotropy.”

Pleiotropy and Human Health

The importance of pleiotropy in human health is undeniable. Pleiotropy coupled with dy-
namic networks that exist between the genetic architecture, signaling pathways, intermediate
phenotypes, and outcome traits can be an important part of health and disease and may
become important for network-based medicine.12 Phenomics, phenome scans, and phenome-
wide association studies may provide a high-throughput way for exploring both pleiotropy
and the diseasome.13–19 Identifying genetic variation that confers both protection for some
traits/outcomes but risk for others may both highlight important genetic regions, and also
show important features of larger biological networks. Knowing which genes influence which
phenotypes may aid in drug repurposing for genetically related diseases, as well as predicting
off-target effects of targeted therapies. All papers in this session address human health either
directly or indirectly. Philip et al. investigate QTL that interact to affect kidney health in
a mouse model of kidney disease. Darabos et al. explore the relationships between SNPs,
genes and pathways, and phenotypes to show novel molecular relationships between human
diseases. And finally Hall et al. discuss methods of standardized, high-throughput phenotype
measurement in patients with type 2 diabetes (T2D).

Session Contributions

The keynote lecture for this session will be given by James Cheverud who has worked
extensively on pleiotropy and the evolution of pleiotropy in mammals. He will speak on the
“Genetic Variation and Evolution of Pleiotropy.”

Philip et al. investigate epistasis and pleiotropy at the transcript level in an F2 mouse
cross designed to examine kidney function. This paper presents a method called the Com-
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bined Analysis of Pleiotropy and Epistasis (CAPE) which combines information across mul-
tiple phenotypes to infer directional interactions between genetic variants. This method has
previously been used to examine pleiotropy related to physiological traits and now focuses on
pleiotropy at the level of transcription. The authors found loci on eight chromosomes that
interact to influence three expression modules. This method was further able to distinguish
between which markers are truly pleiotropic and affect more than one module, and which are
indirectly pleiotropic, affecting multiple modules through interactions with other genetic loci.
This paper directly addresses several open issues in pleiotropy research including dimension
reduction for high-dimensional phenotype spaces and distinguishing direct pleiotropy from
indirect pleiotropy.

Darabos et al. also combine analysis of epistasis and pleiotropy. This paper constructs
a bipartite network of genetic elements and phenotypes reported in GWAS data and other
public repositories in a method similar to that used to construct the human diseasome.20 How-
ever, unlike the diseasome, the network constructed by Darabos et al. includes non-disease
phenotypes, such as hair color, as well as risk-associated SNPs that fall outside of coding
regions. The authors constructed networks at three different levels of resolution: SNPs, genes,
and pathways. These networks show that most genes have limited pleiotropic effects, support-
ing a model of modular pleiotropy. The pathway-base network also proves to be particularly
informative and shows well established links between glaucoma and blood pressure, as well
as glaucoma and type 2 diabetes. The network also shows a novel relationship between glau-
coma and Alzheimer’s disease, a connection that has only recently begun to be investigated.
This paper shows the powerful predictions in human health that can be made by taking into
account both epistasis and pleiotropy.

Hall et al. conduct and environment-wide association study (EWAS) to investigate con-
tributions of environmental exposures and lifestyle choices to type 2 diabetes (T2D) in a
high-throughput manner. The study employs a combination of resources, including electronic
medical health records, the PhenX toolkit for standardized exposure measurement, and the
Diet History Questionnaire. The authors find that moderate alcohol use is associated with de-
creased risk of T2D, and that low amounts of activity during leisure time, as well as smoking
are positively associated with T2D. These relationships replicated in two independent pop-
ulations and are supported by previous literature. This paper demonstrates the importance
and practicality of standardized, high-throughput measurements of human phenotypes and
environmental exposures, a field that is critical to further study of pleiotropy in humans.
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With the rapid increase in the quality and quantity of data generated by modern high-throughput
sequencing techniques, there has been a need for innovative methods able to convert this tremendous
amount of data into more accessible forms. Networks have been a corner stone of this movement, as
they are an intuitive way of representing interaction data, yet they offer a full set of sophisticated
statistical tools to analyze the phenomena they model. We propose a novel approach to reveal and
analyze pleiotropic and epistatic effects at the genome-wide scale using a bipartite network composed
of human diseases, phenotypic traits, and several types of predictive elements (i.e. SNPs, genes, or
pathways). We take advantage of publicly available GWAS data, gene and pathway databases, and
more to construct networks different levels of granularity, from common genetic variants to entire
biological pathways. We use the connections between the layers of the network to approximate the
pleiotropy and epistasis effects taking place between the traits and the predictive elements. The
global graph-theory based quantitative methods reveal that the levels of pleiotropy and epistasis are
comparable for all types of predictive element. The results of the magnified “glaucoma” region of the
network demonstrate the existence of well documented interactions, supported by overlapping genes
and biological pathway, and more obscure associations. As the amount and complexity of genetic
data increases, bipartite, and more generally multipartite networks that combine human diseases and
other physical attributes with layers of genetic information, have the potential to become ubiquitous
tools in the study of complex genetic and phenotypic interactions.

Keywords: Pleiotropy; Epistasis; Eye Diseases; Glaucoma; Network; GWAS; Human Phenotype Net-
work; SNPs; Pathways;

1. Introduction

Genetic diseases and propensities have been at the center of the biomedical world for decades.
From simple Mendelian diseases that obey the one-gene-one-phenotype paradigm, to complex
genetic disorders, geneticists are working on developing novel methods to diagnose, treat, cure,
and even prevent these diseases. At the center of prevention lie the information and education
of patients on their personal genetic risk landscape. Because of the sheer number and com-
plexity of genetic interactions within any given organism, and with its environment, genetic
disorders and traits cannot be studied in isolation of one another or of external factors. The
cascading effects of genomic mutations can extend to entire organisms, and having a global un-
derstanding of the ramifications of these mutations, including all the affected phenotypes and
diseases, is becoming crucial. Two phenomena flawlessly illustrate the underlying complexity
of genetic variations: pleiotropy, when a single mutation affects several traits, and epistasis,
when multiple mutations in distant parts of the genome have synergetic, usually non-linear,
effects on a single phenotype. From a system’s biology perspective, the preferred visualiza-
tion methods for these interactions are networks of human diseases and traits. Networks offer
an intuitive representation of phenotypic and genotypic interactions, while at the same time
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allowing sophisticated quantitative statistical analysis of their intrinsic properties.
Although the concepts of epistasis and pleiotropy are over a 100 years old, they are widely

under-appreciated due to their perceived rarity. State-of-the-art genome-wide association stud-
ies (GWAS) most often look for individual genes with large impacts on a single phenotype.
The impact of genetic mutation cannot be studied in isolation, even if the attempt is to
bridge the gap between a single gene and a single phenotype. Predictive elements, such as
single nucleotides (SNPs), loci, genes, or entire biological pathways interact at all levels of
granularity. The pervasiveness and strength of biomolecular interactions require a step back
from reductionist biology and an acknowledgement of the importance of biological networks
and pathways.

In this work, we propose to go beyond the gene as a unit of mutation, and use SNPs as a
smaller unit, and biological pathways as a larger unit. We take a bird’s eye view of the effect
of genetic mutations on human phenotypes. It is often arduous to distinguish between certain
types of pleiotropy and epistasis. The effect of a single mutation rippling though a pathway
can be confused with the combined effect of distinct mutations. We therefore decide to study
these phenomena in unison. We propose to use bipartite networks made of both phenotypes
and predictive elements, constructed with GWAS data and other publicly available genetic
databases. These networks allow us to identify the pleiotropic and epistatic interactions at
the system’s level. By studying several types of human phenotype networks (HPNs) based on
predictive elements of different scales, we quantify the fundamental structural differences of
these networks, as well as the amount of pleiotropic and epistatic information they contain.
Finally, we magnify a specific phenotypic region of the HPN: the “glaucoma” region, which
groups the disease and all its first and second neighbors. We offer a close up view of pleiotropic
and epistatic interactions within a specific sub-network.

2. Background

In this section, we offer a cursory overview of the concepts of pleiotropy and epistasis. Fur-
thermore, we define the fundamental concepts of HPNs, how they are constructed, and how
they differ from one another (Section 2.2);

2.1. Concepts of Pleiotropy and Epistasis

Ludwig Platt and William Bateson first introduced the concepts of pleiotropy and epistasis,
respectively, to explain observed inconsistencies in Mendelian inheritance and in the one-gene-
one-phenotype paradigms.1,2 To adapt with progress with genetics, the definition of pleiotropy
has changed since it was first coined in 1910, and remains somewhat loose. A thorough history
of pleiotropy in the past 100 year can be found in Stearns’ 2010 review.3 It refers to the general
phenomenon in which a single gene dictates two or more seemingly unrelated phenotypic traits.
In some cases, the definition is limited to a single mutation in a locus that affects multiple
traits. It is however widely accepted that there is more than one type of pleiotropy. Grüneberg4

in 1938 correctly distinguished between two major types he called “genuine” and “spurious”
pleiotropy. Genuine pleiotropy refers to a single locus responsible for the production of two
distinct gene products, whereas spurious involves a single gene product utilized in two different
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ways. Furthermore, he distinguished a second form of spurious pleiotropy in which the single
primary product initiates a cascade of events with different phenotypic consequences. Spurious
pleiotropy can be said to perturb the biological pathways. Since then, more refined subdivisions
have emerged. To help us navigate the various types of pleiotropy, Hodgking’s survey offers
classifications, descriptions, and examples of seven types of pleiotropy5 (Table 1).

Table 1. A classification of different types of pleiotropy. Adapted form Hodgkin’s study5

Type Situation
Artefactual Adjacent but functionally unrelated genes affected by the same mutation
Secondary Simple primary biochemical disorder leading to complex final phenotype
Adoptive One gene product used for quite different chemical purposes in different tissues
Parsimonious One gene product used for identical chemical purposes in multiple pathways
Opportunistic One gene product playing a secondary role in addition to its main function
Combinatorial One gene product employed in various ways, and with distinct properties, depend-

ing on its different protein partners
Unifying One gene, or cluster of adjacent genes, encoding multiple chemical activities that

support a common biological function

Actual genetic mechanisms of pleiotropy are extremely diverse. Genuine pleiotropy encap-
sulates pleiotropy at the mRNA-processing level, multiple or overlapping loci reading frames,
alternative splicing, and multifunctional proteins, to mention only a few. Spurious pleiotropy
covers single loci mutations that produce deviation in the gene product affecting other genes or
regulatory elements located further down the biological pathways. Indeed, new gene products
may promote or repress the expression of other genes. They may initiate alternate gene-gene
and protein-protein interactions and alternate mRNA and microRNA productions, which may
in turn affect seemingly unrelated phenotypes. Pleiotropic genes offer a unique insight into
the complexities of biomolecular interaction networks.

In epistasis, on the other hand, the phenotypic contribution of a gene and its gene products
depends on the specific genotype of a locus at a different genomic position. From the origin
of the word, “standing upon”, we can derive the modern definition of epistasis, or epistatic
gene effects, in which the expression of an allele at one locus masks the expression of an allele
at another locus.6 Epistasis is therefore usually the result of multiple genetic mutations at
different loci. In this age of Genome-Wide Association Studies (GWAS), epistatic studies can
be conducted at the genome level, quantitatively studying the masking and combined effect
of single point mutations (SNPs).

Both epistasis and pleiotropy are exceptions to the one-gene-one-phenotype Mendelian
rules of genetics. They are, however, far from being rare deviations.7 Epistasis and pleiotropy
are ubiquitous inherent properties of biological systems, and they are necessary byproducts of
biomolecular networks.8 Most phenotypes are the result of interactions between thousands of
genes, as well as between genes and their environment. Because of the widespread connectivity
within networks, the effects of a single mutation or variation can spread through thousands
of gene-gene interactions, resulting in multiple phenotypes, or pleiotropy. The connections
through which a variant’s effects propagate define the molecular basis for epistatic interactions
and how they translate into an observed phenotype. Because of their close relatedness, it is
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not unreasonable to conclude that a similar set of quantitative tools can be applied to study
both phenomena, sometimes simultaneously. In the present study, these tools are Bipartite
Human Phenotype Networks.

2.2. Human Phenotype Network (HPN)

In recent years there has been a trend toward studying disease through network based analysis
of various systems of connections between diseases. The result is the Human Disease Network
(HDN). The nodes in the HDN represent human genetic disorders and the edges represent
various connections between disorders, such as gene-gene or protein-protein interactions, to
name only a few. The underlying connections of the HDN contribute to the understanding of
the basis of disorders, which in turn leads to a better understanding of human disease.

One study by Goh, et al.,9 explored the Human Disease Network (HDN), limiting its
analysis to the genes shared by different diseases. Another study by Li et al.10 traced the
SNPs connecting disease traits. In 2009, Silpa Suthram et al.11 found that when diseases were
analyzed by disease-related mRNA expression data in combination with the human protein
interaction network, there were significant genetic similarities between certain diseases, and
some of the correlated diseases shared drug treatments, as well. This could help us target
certain genes for treatment. In 2009, Barrenas et al.12 further studied genetic architecture of
complex diseases by doing a GWAS, and found that complex disease genes are less central
than the essential and monogenic disease genes in the human interactome.

GWAS identify common genetic variants, such as SNPs, found in the genotype of dif-
ferent individuals in association with phenotypical traits. Using GWAS data, we extend
the HDN to include not only diseases, but also general phenotypes, encompassing behav-
ioral traits and physical attributes, such as hair color, and explore large portions of non-
coding variations in the human genome. We call this more complete representation the Hu-
man Phenotype Network.13 We rely on the catalog of published GWAS maintained by the
National Human Genome Research Institute (NHGRI) at the National Institute of Health
(http://www.genome.gov/gwastudies/) as a primary source of phenotypic data. It aggre-
gates studies that report SNP(s)-to-phenotype(s) and gene(s)-to-phenotype(s) associations.
The NHGR catalog used in this study, downloaded in June 2013, reports 646 phenotypes
associated with 2,000+ genes and 6,000+ SNPs.

Over 90% of risk-associated SNPs (raSNPs) identified by the GWAS fall outside of coding
regions,14 stressing the requirement for a more global assessment of phenotypic associations.
In this work we explore methods of building the HPN that go beyond previously mentioned
gene-centric HDN approaches. An interesting side-effect of all the methods presented below
is that before obtaining a HPN, the algorithm produces a bipartite network (see Section 3),
which is the property that allows us to study the pleiotropic and epistatic information in the
genetic association data. The HPN is obtained by projecting the bipartite network onto the
phenotype space.

The following sections present our methods for building the HPNs based on different
predictive elements. We start at the smallest predictive element, the SNP, then move on to
SNP clusters, to genes, and finally to complete biological pathways. These offer varying density
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of the information contained with both the bipartite network and the projected HPN.

2.2.1. Genetic Variations based HPN

For each phenotype in the catalog (Fig. 1, Step 1), we define its risk-associated variome (RAV)
as the complete set of its associated raSNPs (Step 2). To address the low genomic coverage
provided by GWAS, we associate each raSNP with all SNPs found in linkage disequilibrium
(ldSNPs) using the HapMap project data15 (Step 3). SNPs in linkage disequilibrium form
clusters of variants that statistically tend to appear in the same patient.16 The HapMap project
aims at building a repository of describing the common patterns found in human genetic
variations (http://hapmap.ncbi.nlm.nih.gov/). The resulting imputed variome (iRAV) will
allow us to establish connections between diseases/traits that share blocks, i.e. that have
overlapping iRAVs (Step 4).
iRAV-based HPN. In a previous study, we presented a model of iRAV-based HPN which
included the phenotype-to-raSNPs association from GWAS, and added the HapMap project
data to build clusters of variants for each phenotype (iRAVs).13 Phenotypes in the iRAV-
HPN are linked when they share overlapping iRAVs. The algorithm (in Figure 1) produces a
bipartite network of phenotypes and iRAVs.

NHGRI 
Catalog

PT

PT

PT

PT1

2

HapMap 
data

3

iRAV

RAV

4

PT phenotypic trait raSNP ldSNP

Fig. 1. Step-by-step description of the method to obtain the HPN. The circled numbers correspond to the
steps of the method description above.

RAV-based HPN. Linking phenotypes that share at least one raSNP, we build the RAV-
PHPN. This approach is similar to that of Li et al.10 The phenotypes are linked based only on
shared risk variants, i.e. overlapping RAVs, not including ldSNPs/iRAVs. This approach pro-
duces a HPN that is less dense than the iRAV-HPN, identifying fewer phenotype associations.
The algorithm is similar to that described in Figure 1, omitting Step 3.
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2.2.2. Gene-based HPN

Leveraging the gene(s)-to-phenotype(s) associations contained in the GWAS catalogue, we
construct the gene-only based HPN (gHPN). Indeed, the GWAS catalog reports for each
phenotype both the associated and the mapped genes in which the SNPs fall. This approach
is analogous to that of Goh et al.9 To increase the genetic coverage of each phenotype, we
use the Broad Institute’s GeneCruiser (genecruiser.broadinstitute.org) to identify the
gene closest to a SNP, or for which SNPs fall in a known regulatory region. If this gene is
not already associated with the SNPs phenotype, we include it in the study. This method
increases the number of genes by 138, from 2,339 genes to 2,477. The algorithm is similar to
that shown in Figure 1, omitting Step 3, and white star symbols are now genes, not raSNPs.

2.2.3. Biological Pathways based HPN

Expanding on the gHPN, we build a pathway-based HPN (pHPN).17 Biological pathways
represent elaborate series of cascading biochemical reactions occurring within the cell, and
possibly receiving external signals.18 Pathways govern all major cellular functions, such as
cell cycle, cell respiration, and apoptosis (programmed cell death). Biochemical compounds,
(e.g. nucleic acids, proteins, complexes and small molecules) participating in reactions form a
network of biological processes and are grouped into pathways. KEGG Pathway (kegg.jp) is
an open-access collection of manually curated and peer-reviewed pathway database, containing
the structured information about the elements, enzymes, and genes (via their gene products)
within many known pathways.

Relying on the gene(s)-to-phenotype(s) data used to construct the gHPN, genes were
further linked to enriched pathways using KEGG. By building these associations, we were
able to link phenotypes associated with genes involved in the same pathways in the pHPN.
The algorithm is analogous to that in Figure 1, except that the white star symbols represent
genes, and the grey stars are pathways.

3. Pleiotropy and Epistasis in the Bipartite HPNs

The HPN resulting from either method described in Section 2.2 can be represented as a
mathematical object: a graph.19 In this work, the terms “graph” and “network” are used
interchangeably. Formally, a network is a collection of nodes and edges connecting them. The
degree, k, of a node is the number of edges incident upon the node. The average degree of the
network is the average of all k. The degree distribution function, P (k), of the network describes
the fraction of nodes within the network with degree k. The clustering coefficient (CC) of a
network measures the degree to which nodes tend to form closely knit communities with a
higher than average connectivity.20 The CC of networks found in nature, in particular social
and biological networks, show a higher degree of clustering than that observed in randomized
networks of identical size. The average path length of a network (APL) represents the average
of the minimum number of edges separating any two vertices. Finally, the network’s diameter
is defined as the greatest distance between any pair of vertices.

In our study, we start by building a bipartite network,21 consisting of two disjoint sets
of nodes. The nodes are connected in such a way that the nodes of one set will have no
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connections between them, but can only be connected to nodes of the other set. The use
of a bipartite network is natural when dealing with two different types of data sets (Figure
2b), in our case phenotypes (e.g. the rectangles) and RAVs, iRAVs, genes, or pathways (e.g.
the circles). This type of network gives us three distinct degree distributions, one for each
projection, and one for the bipartite network. Each degree distribution shows how many links
each node has. Nodes in a projection of a bipartite network are connected if they share at
least one node in the other group. This gives us the ability to see the interactions within each
set.
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Fig. 2. Bipartite Network schematic. A bipartite network (b) made of 2 data sets the “circles”, and the
“rectangles”. Projections in the “circle” space (a) and in “rectangle” space (c).

The data from the bipartite network can be projected onto either data space (Figure
2a,c). In both cases, the nodes are connected to one another through a vertex of the other
space. By ignoring the different types of data, all network properties described above remain
valid on the bipartite network (as a single data set network) and on either projection. We
illustrate the iRAV-HPN resulting from the projection onto the phenotype space in Figure 3.
In the context of this study, the qualitative nature of the projected HPN does not contain
much information about the phenotypic pleiotropy and epistasis. Therefore, we only show one
example of projected HPN to give a sense of the complexity of the data and the necessity for
quantitative methods.

4. Characterizing and Quantifying Pleiotropy and Epistasis in the HPNs

Early studies have made use of network theory in studying both pleiotropy and epistasis.
Global statistical properties of networks, such as the “shape” of the degree distribution and
an above average CC place gene expression networks in the small-world20 or scale-free19 family
of networks.22 This indicates that most of the nodes (genes) in the network are of a low degree
k. However, a small minority of the vertices are highly connected (hubs). Put in the context
of the present work, a few genes have extensive pleiotropic/epistatic effects, but most genes
only affect/are affected by a small number of phenotypes. The quantitative structural analyses
of the protein interaction networks of model organisms have highlighted the importance of
properties such as the diameter and the APL. Li et al.23 determined that the diameter was
∼ 4 − 5 edges, meaning that each gene in the genomes studied affected on average four or
five proteins. This finding also corroborates the conjecture that pleiotropy and epistasis are
confined to genomic modules, and cannot generally affect any pairs/set of loci in the genome.24
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Fig. 3. iRAV based Human Phenotype Network. In order to increase the readability, we have filtered out
nodes with a degree smaller than 5 (i.e. connected to less than 5 other nodes), showing only 137 nodes (about
30%) and about 45% of the actual edges. To further facilitate the readability, we have manually merged a
number of clearly redundant nodes. The nodes and labels sizes are proportional to the original degree of the
phenotype (before filtering). The edge width is proportional to the number of overlapping iRAVs.

In this work, we propose to use the information beyond the projected HPN, which is
limited as it does not contain the actual interactions between the phenotypes and the predictive
elements (SNPs, iRAVs, genes, or pathways). Instead, we will analyze the interactions between
the two layers of the bipartite networks. Because of the density and complexity of the HPNs,
the following section presents the results of a quantitative overview of pleiotropy and epistasis
as properties of the entire network. In addition, Section 5 reports the clinical implications
and the specific effects observed in a region of the HPNs centered on the “glaucoma” vertex
and its neighboring phenotypes.The variable degrees of granularity offered by the different
construction methods above result in slightly different definitions of pleiotropy and epistasis.
The SNP level provides the most detailed degree, and it defines the strictest pleiotropy and
epistasis: the same SNP is associated with multiple phenotypes, or a single phenotype is
influenced by multiple SNPs, possibly shadowing each other’s effects. At the SNP-clusters
level, we use the iRAV-HPN. The most common definition of pleiotropy and epistasis will be
used on the gHPN, where the predictive elements are complete genes. Finally, at the highest
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level, we will study the pHPN and use biological pathways to quantify pleiotropy and epistasis.
Admittedly, these interpretations of pleiotropy and epistasis may somewhat stray from the
commonly accepted definitions, but they are in line with the loose nature of the phenomena,
where both have sub-types that relate to all degrees of granularity.

Relying on the data in the bipartite HPNs, we calculate the number of phenotypes con-
nected to each predictive element. We use the average connectivity of the predictive element
as a proxy for measuring the global pleiotropy (Table 2). We also present the degree distribu-
tion of the of the predictive element subset, showing the effect of pleiotropy at each predictive
element level (Figure 4). Inversely, the average epistatic effect of predictive elements on phe-
notypes can be calculated as the average degree of the phenotype subset in the bipartite HPN
(Table 2). The degree distribution of the phenotype subset conveys the distribution of epistatic
effects that different predictive elements have on the phenotypes (Figure 4).
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Fig. 4. Pleiotropy and Epistasis Distributions. The pleiotropy distributions shows the distribution of the
number of phenotypes (PT) for each predictive element, i.e. the distribution of predictive elements influencing
multiple phenotypes (see inset). The epistasis distribution shows the number of predictive elements for each
phenotype, i.e. the distribution of phenotypes ruled by multiple predictive element (see inset).

Both pleiotropy and epistasis distributions are right-skewed with a heavy tail, which de-
notes the presence of hubs. The pleiotropy distributions show that most predictive elements
only influence a few phenotypes, however, a small minority of predictive elements influence a
large number (50+) phenotypes. Similarly, the epistasis distribution depicts that most phe-
notypes can be associated with only a few predictive elements. However, a small number of
phenotypes rely on the signaling of a large number of predictive elements. Although somewhat
simplistic, these results are, for all models, in line with the findings of Featherstone et al.22 We
acknowledge that the manner in which the average effects are computed may capture more
than just the pleiotropic and epistatic effects. However, these results, due to the their ubiquity,
reflect a biologically plausible property of the system. We run a full array of quantitative sta-
tistical analysis of the different HPNs, including the average pleiotropic and epistatic effects
(Table 2).

As the models increase in granularity, the networks become denser with more edges, de-
creasing APL and diameter. This is to be expected: as the network has more connections,
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Table 2. Quantitative Properties of the different HPNs. (PT : phenotype, GE: predictive element.)

RAV-HPN iRAV-HPN gHPN pHPN
LCC size (%nodes) 295 (45%) 401 (62%) 430 (67%) 396 (61%)
#edges 932 2845 2556 40K
avg. degree / weighted 6.31 / 10.03 14.19 / 37.54 11.88 / 16.85 204.1 / 497.6
APL / diameter 3.7 / 10 2.96 / 8 2.96 / 6 1.48 / 3
avg. CC 0.58 0.59 0.57 0.79
modularity / communities 0.62 / 26 0.55 / 24 0.49 / 10 0.10 / 4
isolate vertices 351 245 216 250
avg. pleiotropy (#PT/#GE) 1.12 1.12 1.58 27.06
avg. epistasis (#GE/#PT) 11.11 285.64 6.07 5.69

the distance between nodes decreases. The values agree with Li et al.23 findings. The above
average CC and the shape of the degree distributions (not shown here for space reasons) put
the HPNs in the scale-free region of the network topology spectrum. Additionally, we note
that the modularity and number of communities drops with increasing granularity and net-
work density. The number of isolated nodes provides an insight into how many phenotypes
have no detected genetic connection to any other phenotype. Finally, we see that the average
pleiotropy remains relatively constant until we look at the pHPN, which biological pathways
tend to affect ∼ 27 phenotypes in average. Otherwise, predictive elements do not in general
impact more than 1-2 phenotypes. This proves the necessity to apply a biologically relevant
filter to the pHPN in order to extract the “backbone” of the network, containing the most rel-
evant genetic influences.17 The average epistatic effect is also reasonably steady, except when
ldSNPs are included in the iRAV-HPN. This is due to the fact that now both raSNPS and
ldSNPs are directly associated to the phenotypes.

5. Clinical Implications: the Example of Glaucoma

As previously stated, each HPN differs in terms of the number of edges branching from each
phenotype node. Moving from the gHPN to the pHPN provides a great deal more information,
but the network itself becomes extremely complex and difficult to analyze visually. The pHPN
can help to explain the shared etiology of glaucoma and other diseases by revealing a sub-
stantial number of interactions unseen in the gHPN. Ultimately, studying predictive elements
from a global perspective, using networks, could contribute to novel discoveries in pleiotropic
drug therapies.

The HPNs confirm well-known interactions, such as between glaucoma and blood pres-
sure (BP). Studies have linked the two for years and drugs used to treat glaucoma, such as
beta-blockers and alpha-adrenergic agonists,25 are known to affect BP. In fact, patients with
cardiovascular problems are advised against taking beta-blockers, a treatment for the high
intraocular pressure (IOP) associated with glaucoma, because of its effect on heart rate and
BP.26 Moreover, many studies have shown that BP and ocular perfusion are important factors
in the pathogenesis of glaucoma. For example, studies have linked increases in blood pressure
to slight increases in IOP. Going further, the “Blue Mountains Eye Study” found that sys-
temic hypertension was significantly associated with an increased risk of primary open-angle
glaucoma (POAG), independent of the effect of BP on IOP. Systemic hypertension was the
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greatest risk factor for POAG.26 Blood pressure is a first neighbor to Glaucoma in the pHPN,
suggesting the validity of the model. They are linked by the umbrella pathways in cancer. Di-
abetes mellitus is another well-documented disease known to interact with glaucoma.27 Type
1 diabetes is a direct neighbor and Type 2 diabetes is a second (indirect) neighbor. Type 1
diabetes and glaucoma are linked by the cell cycle and HTLV-I infection pathways. Type 2
diabetes and glaucoma share common gene: CDKN2B-AS. In the gHPN, on the other hand,
Type 2 diabetes is a first neighbor, but Type 1 diabetes and blood pressure are only second
neighbors to glaucoma. Additionally, the pHPN allows us to see connections that are not in-
cluded in the gHPN, which could lead to new advances in treatments for the linked diseases.
For instance, Alzheimers disease is a second neighbor of glaucoma. Both are neurodegenera-
tive diseases and their similarities have recently begun to receive significant attention. Inoue et
al. maintain that elevated levels of biomarkers for Alzheimers are more often found in patients
with open-angle glaucoma (OAG) than in patients with cataracts.28 In addition, Alzheimer’s
and OAG share pathways such as cell death mechanisms (apoptosis), reactive oxygen species
(ROS) production, mitochondrial dysfunction and vascular abnormalities .29 Apoptosis of the
neural ganglia cells is a major issue in glaucoma. In the gHPN, the link between Glaucoma
and Alzheimers disease is not readily apparent by looking at the graph – it becomes a third
neighbor. Another interesting link is to the “smoking behavior” phenotype, although this is
only readily apparent in the pHPN where it is a first neighbor to glaucoma. The two share
the umbrella pathways in cancer. Association studies have shown that smoking behavior is
correlated with central corneal thickness in OAG and might also be a risk factor for POAG.30

6. Conclusions & Future Work

The study of genetic diseases is progressing at an unprecedented pace, thanks to modern
high-throughput sequencing technology and to the development of modeling techniques at the
crossroads of bioinformatics and mathematics. Bipartite HPN models are capable of leverag-
ing the massive amount of GWAS and other readily-accessible genetic data, and collapsing
the information into a single, manageable source. The projection of the HPN helps analyze
phenotypic interactions.13,17 The overall structure of the connections between the layers of
the bipartite HPN, on the other hand, allows us to estimate in a quantitative manner the
pleiotropic and epistatic effect at a global level, for multiple types of predictive elements.
Finally, by magnifying regions of the HPN, we are able to highlight previously documented
phenotypic interactions, supported by genes and biological pathways evidence as a proof of
concept. The bipartite HPNs are flexible, scalable, and intuitive models. HPNs are potentially
useful to study phenotypic links, as well as uncover novel pleiotropy and epistasis effects at the
single variation level, at the gene level, and all the way to the biological pathway. Future work
will involve collapsing the multiple HPNs into an aggregated model. This step will however
require the information to be filtered in a biologically sensible manner. Further refinements of
the model will include the detection of different types of pleiotropy and epistasis. Finally, we
are working on statistical and cross-validation approaches to validate the E&P significance.
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Environment-wide association studies (EWAS) provide a way to uncover the environmental mechanisms 
involved in complex traits in a high-throughput manner. Genome-wide association studies have led to the 
discovery of genetic variants associated with many common diseases but do not take into account the 
environmental component of complex phenotypes. This EWAS assesses the comprehensive association 
between environmental variables and the outcome of type 2 diabetes (T2D) in the Marshfield Personalized 
Medicine Research Project Biobank (Marshfield PMRP). We sought replication in two National Health and 
Nutrition Examination Surveys (NHANES). The Marshfield PMRP currently uses four tools for measuring 
environmental exposures and outcome traits: 1) the PhenX Toolkit includes standardized exposure and 
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phenotypic measures across several domains, 2) the Diet History Questionnaire (DHQ) is a food frequency 
questionnaire, 3) the Measurement of a Person’s Habitual Physical Activity scores the level of an 
individual’s physical activity, and 4) electronic health records (EHR) employs validated algorithms to 
establish T2D case-control status . Using PLATO software, 314 environmental variables were tested for 
association with T2D using logistic regression, adjusting for sex, age, and BMI in over 2,200 European 
Americans.  When available, similar variables were tested with the same methods and adjustment in 
samples from NHANES III and NHANES 1999-2002. Twelve and 31 associations were identified in the 
Marshfield samples at p<0.01 and p<0.05, respectively. Seven and 13 measures replicated in at least one of 
the NHANES at p<0.01 and p<0.05, respectively, with the same direction of effect. The most significant 
environmental exposures associated with T2D status included decreased alcohol use as well as increased 
smoking exposure in childhood and adulthood. The results demonstrate the utility of the EWAS method 
and survey tools for identifying environmental components of complex diseases like type 2 diabetes. These 
high-throughput and comprehensive investigation methods can easily be applied to investigate the relation 
between environmental exposures and multiple phenotypes in future analyses. 

  
1. Introduction 
 

Computational methods to assess environmental exposures are essential to elucidate the complex 
nature of common human phenotypes. Genome-wide association studies (GWAS) have allowed 
for greater understanding of the genetic component of complex traits and identification of 
numerous loci associated with these traits [1]. They have provided a high-throughput approach 
for comprehensive testing of variants across the genome. However, this approach fails to 
consider the richly diverse and complex environment with which humans interact throughout the 
life course. 
  While GWAS have uncovered thousands of single nucleotide polymorphisms (SNPs) 
associated with disease, much remains unclear about the heritability and mechanisms that lead to 
common, complex human diseases [1,2]. It is likely that environmental exposure greatly impacts 
the genetic and cellular systems at play for many complex traits [2]. Environment-wide 
association studies (EWAS) [3] provide a method to test a variety of exposures across the human 
environment in a high-throughput, unbiased manner, much like GWAS tests for genetic effects. 
The utility of the EWAS approach was demonstrated for type 2 diabetes (T2D) using an array of 
laboratory measurements to identify a diverse number of exposures associated with T2D [3]. 
Such comprehensive laboratory measurements are rare and only assess exposures at a fixed time 
point without consideration of the various exposures throughout an individual’s lifetime. Thus, 
there is a need to evaluate comprehensive and standardized survey tools that enable assessment 
of exposures and lifestyle choices over time and comparison of results across multiple studies. 

The PhenX (consensus measures for Phenotypes and eXposures) toolkit 
(https://www.phenxtoolkit.org/) was developed as a resource for collecting standardized 
measures of phenotypes and environmental exposures [4]. Measures are available across 27 
domains covering alcohol, tobacco, and other substance use; demographics; mental health; 
environmental exposures; diet; and disease, among others. In addition to providing information 
on traits, many of these measures can be used to ascertain information on environment, lifestyle, 
and environmental exposures. Other valuable resources for environmental measures include 1) 
the Measurement of a Person’s Habitual Physical Activity, a questionnaire measuring a person’s 
work, leisure, and sport activity level [5] (Baecke), and 2) the Dietary History Questionnaire 
(http://riskfactor.cancer.gov/DHQ/), a food frequency questionnaire [6,7] (DHQ).  

Electronic health records (EHR) are a growing resource for measuring health outcomes in 
individuals, as they contain vast amounts of medical data including records of diagnoses, 
procedures, and clinical laboratory measurements [8]. These data can be used, with electronic 
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algorithms, to systematically define cases and controls for numerous phenotypes of interest, such 
as type 2 diabetes. The Electronic Medical Records and Genomics (eMERGE) Network 
combines EHR data from sites across the United States and currently utilizes electronic 
phenotyping algorithms for over a dozen phenotypes [9]. The Marshfield Personalized Medicine 
Research Project Biobank (Marshfield PMRP) [10], part of the eMERGE Network, is one site 
currently employing EHR phenotyping as well as the PhenX Toolkit, the Measurement of a 
Person’s Habitual Physical Activity (Beacke), and the Dietary History Questionnaire (DHQ).  
Taken together, the PMRP is a rich phenotypic resource for genomic and environmental 
association analyses to dissect the architecture of complex traits. 

Here, we present the results of an EWAS for type 2 diabetes using survey questions from 
the PhenX Toolkit, DHQ, and Beacke surveys from the Marshfield PMRP. To seek replication of 
these results with similar survey questions when available, we used data from the National 
Health and Nutrition Examination Surveys (NHANES) [11]. To the authors’ knowledge, this is 
the first EWAS performed using EHR data. Environment-wide association studies provide a 
methodology to test environmental measures in a comprehensive, high-throughput manner. 
Integration of EWAS with phenome-wide association studies (PheWAS) [12-14] and genome-
wide association studies (GWAS) [1] will further elucidate the complex interplay of gene and 
environment in common traits as well as the ways in which exposures modulate pleiotropy. 
Using multiple exposure and outcome variables to assess environment and lifestyle factors using 
EWAS will provide a richer understanding of the architecture of complex traits.  

 
2. Methods 
 

2.1. Marshfield PMRP and Type 2 Diabetes Case Identification 
  

The Marshfield PMRP is a population based biobank with ~20,000 subjects, aged 18 years and 
older, enrolled in the Marshfield Clinic healthcare system in central Wisconsin [10]. DNA, 
plasma, and serum samples are collected at the time the enrollee completes a written informed 
consent document, with allowance for ongoing access to the linked electronic health records 
(EHR). PMRP participants also complete questionnaires, including responses regarding smoking 
history, occupation, physical activity, diet, and a variety of other PhenX measures. A subset of 
the Marshfield PMRP subjects completed the PhenX survey, the DHQ, and/or the Measurement 
of a Person’s Habitual Physical Activity (Table 1).  

The NHGRI funded eMERGE network (Electronic Medical Records and Genomics) has 
implemented robust electronic phenotyping algorithms to select cases and controls for a number 
of different phenotypes/outcomes [9]. Using an algorithm developed by eMERGE [15], T2D 
patients were diagnosed by their records from the Marshfield EHR. The Marshfield samples 
were originally selected for eMERGE based on their cataract case-control status; however, this is 
an example of the reusability of biobank samples for additional traits. T2D cases were defined as 
having the following in their EMR: a T2D ICD-9 medical billing code, information about insulin 
medication, abnormal glucose or HbA1c levels, or more than two diagnoses of T2D by a 
clinician. All T2D cases with an ICD-9 code for T1D were removed from further analyses. All 
control subjects had to have at least 2 clinical visits, at least one blood glucose measurement, 
normal blood glucose or HbA1c levels, no ICD-9 codes for T2D or any related condition, no 
history of being on insulin or any diabetes related medication, and no family history of T1D or 
T2D.  
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Table1. Marshfield Type 2 Diabetes Case/Control Sample Size for Each Questionnaire 

 Questionnaire Total Sample Size # Cases T2D # Controls 

  PhenX 2,243 433 1,810 

Total DHQ 2,606 559 2,047 

  Activity 2,571 552 2,018 

  PhenX 898 204 694 

Male DHQ 1,051 260 791 

  Activity 1,035 257 778 

  PhenX 1,345 229 1,116 

Female DHQ 1,555 299 1,256 

  Activity 1,535 295 1,240 

Age All > 50     

Ancestry All European     

  
2.2. Environmental Variable Measurements 
 
2.2.1 Phenx Toolkit 
 

The PhenX Toolkit (www.phenxtoolkit.org) was accessed to develop a self-administered 
questionnaire to assess environmental and lifestyle factors. Some of the PhenX measures were 
chosen because of the potential for gene/environment associations with age related cataract - 
which is a primary disease of interest for PMRP (smoking, alcohol, ultraviolet light exposure), 
some were chosen because of the potential for validation against prior PMRP questionnaire data 
and medical history information (demographics, physical activity, family history of heart attack, 
history of stroke) and the rest were chosen because of the potential for future research and cross-
site collaborations (hypomania/mania symptoms, hand dominance) within the network funded 
through administrative supplements to collect PhenX measures.  The time to complete the 
questionnaire ranged from 20 to 40 minutes in pre-testing, depending on how many questions 
were logical skips.  The 32-page self-administered questionnaire was mailed to all eligible 
subjects with a cover letter and return address envelope.  A second mailing was employed to 
increase the response rate.  Subjects were offered $10 for their time to complete the 
questionnaire. 

PhenX survey data were entered and merged with prior PMRP questionnaire information 
from the Marshfield Clinic electronic medical record.  For validation purposes, the electronic 
medical record was considered to be the gold standard where possible. Two hundred fifty-five 
measures from the PhenX Toolkit were included for our analysis. Questions included a range of 
topics from the following classes: alcohol use, smoking, demographics, depression, mania, 
activity, residential environment, and UV exposure.  
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2.2.2. Diet History Questionnaire 
 

Food frequency questionnaires (FFQs) are widely used to assess dietary intake in epidemiologic 
studies because they are more representative of usual intake and less expensive to implement 
than other methodologies including weighed food records and 24-hour dietary recalls because 
they are usually self-administered.  Inclusion of aids to estimate portion sizes is essential to 
improve the accuracy and validity of FFQs [7].  Self-administered food frequency questionnaires 
(FFQ) are available on approximately 2/3 of the PMRP cohort to quantify usual dietary intake of 
all major nutrients.  The selected FFQ, the Diet History Questionnaire (DHQ) 
(http://riskfactor.cancer.gov/DHQ/), was developed by researchers at the National Cancer 
Institute (NCI) and has been shown to be superior to the commonly used Willett FFQ and similar 
to the Block FFQ for estimating absolute nutrient intakes [7]. All three FFQs produce similar 
results after statistical adjustment for total energy intake.  The list of foods and portion sizes on 
the DHQ was developed from nationally representative data, the USDA’s 1994-1996 Continuing 
Survey of Food Intakes by Individuals, and is therefore most appropriate for use with this study 
population.  The DHQ comprises 124 separate food items and asks about portion sizes for most 
foods.  In addition, there are 10 questions about nutrient supplement intake. The DHQ was 
printed and scanned by National Computer Systems as has been done for all recent studies 
conducted at the NCI using the DHQ.  The completed DHQ was mailed to National Computer 
Systems for scanning.  After scanning, the data from the questionnaires are stored in ASCII 
format and then uploaded into the nutrient analysis software package.  Diet*Calc software, 
available from the National Institutes of Health, is used for the nutrient analyses of the DHQ data 
(http://riskfactor.cancer.gov/DHQ/dietcalc/).  This is the software package that was used for 
analysis of the DHQ for the Eating at America’s Table Study.  The DHQ is mailed to participants 
with their appointment reminders so that they can complete it prior to their appointment to save 
them time.  The Research Project Assistants reviews all DHQs to ensure that they have been 
completed.  Fifty-six measures of dietary intake were assessed for this EWAS that covered the 
following domains: vitamin, fat, protein, carbohydrate, fiber, cholesterol, caloric, grain, 
vegetable, caffeine, and alcohol intake. 
  
2.2.3 Measurement of a Person’s Habitual Physical Activity 
  

As with measurement of dietary intake for epidemiologic studies, there are a number of different 
validated tools that have been used in the past.  The agreement between physical activity 
questionnaire and gold standard tends to be somewhat lower than for dietary intake, but is 
reasonable for ranking relative activity levels in groups.  The researchers preferred to use a 
previously developed physical activity assessment tool to allow comparison with results from 
other study populations.  Requirements of the selected tool included: 1) self-administered, 2) 
previously validated, and 3) validated for use in a similar study population across a range of ages.  
The selected physical activity questionnaire, the ARIC/Baecke questionnaire, is self-
administered, validated for use in both men and women, and currently being used in a large, 
prospective study in the US [16].  The questionnaire has been shown to have high reliability and 
accurate assessment of both high intensity activity and light intensity activity such as walking.  It 
comprises 16 questions and generates three indices of activity: 1) a work index, 2) a sport index, 
and 3) a leisure-time index.  This one-page self-administered physical activity questionnaire is 
mailed along with appointment reminders and the Diet History Questionnaire (DHQ).  
Information from the completed physical activity questionnaires are entered twice into a 
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Microsoft Access database.  The two entries are compared to ensure accuracy of the data entry.  
The three physical activity indices (work, sport, and leisure-time) are calculated and the data 
merged with anthropometric, dietary, and demographic data for subsequent analyses.  
 
2.2.4. National Health and Nutrition Examination Surveys (NHANES) 
  

NHANES III Phase 2, conducted between 1991-1994, and NHANES 1999-2002 measures the 
health and nutritional habits of participants by collecting medical, dietary, demographic, 
laboratory, lifestyle, and environmental exposure data using questionnaire and laboratory 
measures. The data of NHANES were collected by the National Center on Health Statistics 
(NCHS) at the Centers for Disease Control and Prevention (CDC). All participants were 
consented by the CDC at the time of the survey and sample collection. 

To seek replication of the Marshfield results, we identified measures similar to the most 
significant Marshfield PMRP EWAS results in NHANES III and NHANES 1999-2002. Because 
different survey methods were utilized between Marshfield PMRP and the NHANES, measures 
were chosen when they matched a significant broad environmental “class”. For example, many 
smoking measures were included in the most significant EWAS results and any smoking 
measure found in either NHANES was included for replication. T2D case/control status was 
defined using an algorithm previously described [17]. 
 
2.3. Statistical Analysis 
 

A total of 314 environmental variables were included in our analysis of the Marshfield data. 
Logistic regression was used, adjusting for age, sex, and body mass index (BMI), with PLATO 
[18]. Control was coded as 1 and case as 2. All significant results were investigated to ensure 
that all top ranking associations had greater than 10 responses for both cases and controls. 
Results in figures 1 and 2 were plotted using PheWAS View [19]. 

For the NHANES data, logistic regression was used for all association testing, adjusting for 
age, sex, and BMI, in 46 to 3,964 samples (sample sizes varied for each measure) of European 
ancestry (self-identified non-Hispanic whites) for a total of 116 environmental variables from 
NHANES III (84) and NHANES 1999-2002 (32). All significant EWAS results were assessed to 
ensure sample size was greater than 10 for cases and controls for each variable. 
 
3. Results 
 

In this environment-wide association study of 314 variables for type 2 diabetes, we found 12 
results with a p-value less than 0.01 in the Marshfield Clinic samples. Due to the exploratory and 
hypothesis generating nature of this method, we are presenting all the results with a p-value less 
than 0.05 (31 results). Figure 1 displays the most significant EWAS associations in the 
Marshfield sample.  

All variables could be placed into seven broad environmental “classes”: smoking, alcohol 
use, mania, depression, activity, diet, UV exposure, and residence. Table 2 includes all results 
with a p-value less than 0.05 by environment class and displays the survey question for each 
measure from the PhenX Toolkit. 
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Figure 1. The most significant association results in the Marshfield sample using PhenX Toolkit, DHQ, and 
Measurement of a Person’s Habitual Physical Activity surveys. The PhenX variables are listed along the Y-Axis. 
The first track shows the results of our EWAS, with –log(10) of the p-value plotted from most significant result at 
the top and descending in order. The next track shows the magnitude and direction of the effect. Case/control status 
was coded as 1=Control, 2=Case. 
 
Table 2. EWAS Variable Classes, Specific PhenX Toolkit Questions, and the EWAS Marshfield PMRP 
results  

Class Survey: Variable PhenX Toolkit Question P-
value Beta 

 

PhenX: Alcohol 30Day 
Frequency 

Think specifically about the past 30 days, from [DATEFILL], up to 
and including today. During the past 30 days, on how many days did 
you drink one or more drinks of an alcoholic beverage? 

6E-04 -0.03 

Alcohol 
 

PhenX: Alcohol 
Withdrawal 
Hallucination 

When you stopped, cut down or went without drinking, did you ever 
experience any of the following problems for most of the day for 2 
days or longer? Did you see or hear things that weren't there? (Yes=1, 
No=2) 

0.022 -3.041 

 

PhenX: Lifetime Use In your entire life, have you had at least 1 drink of any kind of alcohol, 
not counting small tastes or sips? (Yes=1, No=2) 0.035 0.4655 

 

PhenX: Alcohol Use 
Liver Disease 

There are several health problems that can result from long stretches of 
drinking. Did drinking ever cause you to have liver disease or yellow 
jaundice? (Yes=1, No=2) 

0.037 -1.894 

 

PhenX: Smoking At 
Home 

Does anyone who lives here smoke cigarettes, cigars, or pipes 
anywhere inside this home? (Yes=1, No=2) 6E-04 -0.889 

 

PhenX: Exposure 
Smoke Childhood  

How many hours were you exposed to smoke from other people's 
cigarettes or tobacco products during childhood per day? 0.003 0.0064 

 

PhenX: Former Smoker 
Quantity 1DayB 

Former smokers who did not ever smoke every day for the at least 6 
months: when you last smoked every day, on average how many 
cigarettes did you smoke each day? 

0.006 0.2683 

 

PhenX: Exposure 
Smoke Work 

Were you exposed to smoke from other people's cigarettes or tobacco 
products during adulthood at work? (Yes=1, No=2) 0.007 -0.375 
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Smoking 
Exposure 

PhenX: Former Smoker 
More 1stHour 

Did you smoke more frequently during the first hours after waking 
than during the rest of the day? (Yes=1, No=2) 0.019 -0.689 

 

PhenX: Former Smoker 
1stSmoke Time How soon after you wake up do/did you smoke your first cigarette? 0.02 -0.202 

 

PhenX: Exposure 
Smoke Home 

Were you exposed to smoke from other people's cigarettes or tobacco 
products during adulthood at home? (Yes=1, No=2) 0.021 -0.309 

 

PhenX: Former Smoker 
Quantity 1DayA 

Former smokers who smoked cigarettes every day for at least 6 
months: when you last smoked every day, on average how many 
cigarettes did you smoke each day? 

0.039 0.0171 

 

PhenX: Exposure 
Smoke Present Time 
Hours 

At the present time, how many hours per day are you exposed to the 
smoke of others? 0.041 0.0943 

 

PhenX: Exposure 
Smoke Adulthood 
Home Hours 

How many hours per day were you exposed to smoke from other 
people's cigarettes or tobacco products during adulthood at home? 0.048 0.0046 

Diet DHQ: Caffeine(mg) NA 0.001 -0.0005 

 
Activity: Leisure Index NA 0.002 -0.27 

Activity Activity: Sports Index NA 0.003 -0.31 

 

PhenX:Leisure Activity Please check the box next to the one statement which best describes 
the way you spent your leisure-time during most of the last year. 0.014 -0.132 

 

PhenX: House Gas 
Powered Device  

Are any gas powered devices stored in any room, basement, or 
attached garage in this (house/apartment)? (Yes=1, No=2) 0.003 0.4187 

 
PhenX: House Farm Is this property actively used as a farm or ranch? (Yes=1, No=2) 0.01 0.5382 

Residence 
 
 

PhenX: Dwelling Type 
What is the type of dwelling? (1=Detached house, 2=Duplex/Triplex, 
3=Row house, 4=Low rise apartment (1-3 floors), 5=High rise 
apartment (>3 floors), 6=Mobile home / Trailer7=Other) 

0.01 0.0684 

 

PhenX: Building 
Residence Age When did you start living there? 0.024 0.0072 

 

PhenX: Air 
Conditioning Stop 
Month 

During which month (do you usually/would you) stop using air 
conditioning? 

0.028 0.1891 

Depression 
 

PhenX: Energy Level 

Please indicate the one response that best describes your energy level 
for the past seven days. (0 = There is no change in my usual level of 
energy. 1 = I get tired more easily than usual. 2 = I have to make a big 
effort to start or finish my usual daily activities (for example,shopping, 
homework, cooking or going to work). 3 = I really cannot carry out 
most of my usual daily activities because I just don't have the energy.) 

0.005 0.2365 

 

PhenX: Depression 
Number Weeks 

About how many weeks altogether did you feel this way? Count the 
weeks before, during and after the worst two weeks. The total period 
of depression/loss of interest was: 

0.044 -0.022 

Mania 

PhenX: Mania 
Increased Sex 

Please try to remember a period when you were in a "high" state. In 
such a state: I am more interested in sex, and/or have increased sexual 
desire (Yes=1, No=2) 

0.023 0.3615 

 

PhenX: Mania 
Impatient 

Please try to remember a period when you were in a "high" state. In 
such a state: I am more impatient and/or get irritable more easily  
(Yes=1, No=2) 

0.044 -0.321 

 

PhenX: Weekend Sun 
Hours Last Decade 

On a typical weekend day in the summer, about how many hours did 
you generally spend in the mid-day sun in the past ten years? 0.027 -0.158 

UV 
Exposure 

PhenX: Weekday Sun 
Hours Last Decade 

On a typical weekday in the summer, about how many hours did you 
generally spend in the mid-day sun in the past ten years? 

0.031 -0.151 

 
PhenX: Tanning Booth  Have you ever used a tanning booth? (Yes=1, No=2) 0.042 0.4621 

 
PhenX: Sunlamp Times  About how many times have you used a sunlamp in your life? 0.048 0.8917 

 

When available, similar questions from NHANES that fell into one of the above phenotype 
classes were included to seek replication. Measures were available in alcohol use, smoking 
exposure, diet, activity, depression, and mania but not in residence and UV exposure. Seven of 
the results were significant at p<0.01 and thirteen at p <0.05 with the same direction of effect as 
the related Marshfield associations (Figure 3).  
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Figure 2. Replicating results of the most significant Marshfield EWAS associations from NHANES III and 
NHANES 1999-2002. Results were considered a replication if the p-value was < 0.05 p-value and showed the same 
direction of effect as the Marshfield analyses. Controls were coded as 1 and Cases as 2. This figure is in the same 
format as Figure 1, with NHANES measurements on the y-axis ordered by descending association significance. The 
tracks show the p-value signficicance of the association in –log10(p-value) and the magnitude and direction of the 
effect.  
 
       The most significant survey questionnaire result in the Marshfield EWAS was alcohol 
frequency in the last 30 days, which was inversely associated with type 2 diabetes status. This 
relationship was also observed for two related measures in NHANES III: alcohol consumption 
questions beer and lite beer -times/month and wine, etc - times/month and one in NHANES 
1999-2002: alcohol consumption question: How often drink wine (per month). Never having 
alcohol was associated with T2D status in Marshfield and did not replicate in either NHANES, 
though a similar, but not exact, measure was available and tested. Experiencing excessive 
alcohol use symptoms like hallucination due to alcohol withdrawal and liver disease from excess 
alcohol use was associated with having T2D in the Marshfield sample. Neither of these measures 
were available in either NHANES for comparison. 
       A number of significant results in Marshfield included measurements of first and second 
hand smoking exposure. Cigarette or other tobacco smoke exposure at home or at work, and for a 
greater number of hours during childhood, adulthood, and present time were all associated with 
T2D status. Additionally, for former smokers, greater number of cigarettes per day, smoking 
more frequently during the first hours of the day, and smoking earlier in the day were also 
associated with having T2D. Two of the smoking measures replicated in NHANES III: number 
of cigarettes smoked/day when smoked and NHANES 1999-2002: how soon after waking do you 
smoke? with the same direction of effect. 
       The two most significant results from the DHQ for the EWAS in Marshfield were a metric 
of caffeine consumption: caffeine (mg), which was inversely associated with T2D status and a 
metric of the consumption of carbohydrates (g). The caffeine measurement did not replicate in 
either NHANES, though increased coffee intake has been previously reported as having an 
association with lowered risk of T2D [20]. Carbohydrate intake did not meet the significance 
threshold of p-value less than 0.05 in Marshfield, but was included in the replication analysis 
because it was the second most significant DHQ result. When this association was investigated 
in NHANES III and NHANES 1999-2002 it was the most significant result for both studies. 
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4. Discussion 
 

Using a systematic, high-throughput EWAS method, we identified and replicated novel as well 
as established associations between environmental exposures and T2D. The replicating results of 
the association between less alcohol use per month and T2D status is consistent with prior 
research that demonstrates that moderate alcohol use is associated with decreased risk of T2D 
[21,22]. The association between T2D status and the specific symptoms of hallucination and 
liver disease has not been observed in the literature, to the best of the authors’ knowledge. 
However, prior research has indicated that binge drinking and high levels of alcohol use are 
associated with increased risk of T2D [21,22]. It is possible that these results are spurious, or that 
there may be some mechanism at play by which these extreme alcohol-related measures are 
related to T2D. Comparison with other studies for this measure is necessary before conclusions 
can be drawn.  
       The relationship between increased smoking exposure and having T2D is also well 
established [23-25]. Activity level also has a well-documented link with T2D [26-28]. Here we 
observed a number of results from both Marshfield and NHANES III that demonstrate this 
association. Work activity was not significantly associated with T2D in the PhenX or Baecke 
measures. However, lower amounts of leisure and sports activity was associated with T2D status 
in Marshfield. This relationship was validated with similar measures in NHANES III: dancing, 
gardening/yard work, sports, and running or jogging in the past month. 

A number of associations from the residence, depression, mania, and UV exposure classes 
in Marshfield did not replicate in either NHANES. This could indicate that these were false 
positive findings, or it could also be due to differences in measures that were used, deviation in 
survey question wording, or low sample sizes for a given question. Additionally, many of these 
results could not be evaluated for replication in either NHANES because they were not available. 
This demonstrates the need for standardized measures of environmental exposures, as the 
utilization of these measures will allow the validation of significant results across multiple 
studies. 

Another limitation to this EWAS design is the difficulty in determining whether associations 
occurred simply due to T2D diagnosis. For instance, the activity questions measured activity for 
the past month and did not include information on activity level during childhood or if activity 
level changed when T2D symptoms were experienced. It is possible that the individuals with 
T2D participated in less leisure and sport activity due to symptoms but had greater activity levels 
earlier in life. Similarly, the inverse association observed between T2D and carbohydrate intake 
may be reflective of individuals who are restricting carbohydrate intake due to T2D diagnosis, a 
common dietary treatment for the disease [29]. This issue indicates the importance of gathering 
environmental variables that measure multiple points of an individual’s lifetime. Additionally, 
this approach does not currently consider the full spectrum of environmental exposures. 
Limitations in the types of exposures assessed, and when they are collected, restricts thorough 
understanding of all the environmental components involved in the development of complex 
diseases such as T2D. Future incorporation of biological exposure data such as toxins [30] and 
nutrients [31] will provide additional data on the exposures associated with complex traits. 

Environment-wide association studies allow the testing of multiple environmental exposures 
for association with common disease. Here, we demonstrate the utility of this approach for 
research using health record data, a novel use for this type of resource. Using this systematic 
EWAS approach, exposures will be identified as potential causative agents for complex traits. 
Significant associations can be investigated for gene-environment interactions [32,33]. 
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Incorporating genetic data will lead to a more complete understanding of the mechanisms that 
lead to complex phenotypes, such as T2D Similar to the PheWAS [12-14] method, the EWAS 
approach can be used to test for association between a diverse array of exposures and numerous 
phenotypes to discover the types of exposure that are associated with multiple traits. The search 
for interactions between environmental variables and genetic loci, as well as the independent 
exposures involved in multiple traits, will further elucidate the genetic and environmental 
architecture of complex human phenotypes. 
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DISSECTION OF COMPLEX GENE EXPRESSION USING THE
COMBINED ANALYSIS OF PLEIOTROPY AND EPISTASIS
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Global transcript expression experiments are commonly used to investigate the biological processes
that underlie complex traits. These studies can exhibit complex patterns of pleiotropy when trans-
acting genetic factors influence overlapping sets of multiple transcripts. Dissecting these patterns
into biological modules with distinct genetic etiology can provide models of how genetic variants
affect specific processes that contribute to a trait. Here we identify transcript modules associated
with pleiotropic genetic factors and apply genetic interaction analysis to disentangle the regulatory
architecture in a mouse intercross study of kidney function. The method, called the combined anal-
ysis of pleiotropy and epistasis (CAPE), has been previously used to model genetic networks for
multiple physiological traits. It simultaneously models multiple phenotypes to identify direct genetic
influences as well as influences mediated through genetic interactions. We first identified candidate
trans expression quantitative trait loci (eQTL) and the transcripts potentially affected. We then clus-
tered the transcripts into modules of co-expressed genes, from which we compute summary module
phenotypes. Finally, we applied CAPE to map the network of interacting module QTL (modQTL)
affecting the gene modules. The resulting network mapped how multiple modQTL both directly and
indirectly affect modules associated with metabolic functions and biosynthetic processes. This work
demonstrates how the integration of pleiotropic signals in gene expression data can be used to infer
a complex hypothesis of how multiple loci interact to co-regulate transcription programs, thereby
providing additional constraints to prioritize validation experiments.

Keywords: pleiotropy, genetic interaction, genetic network.

1. Introduction

The widespread adoption of genomic technologies has greatly increased the power and scope
of genetic studies. One especially fruitful approach to understanding how genetic variation
affects biological processes is the study of the genetics of gene expression.1–5 In these studies,
transcript levels are treated as panels of thousands of phenotypes that quantify the cellular
composition and gene expression of a tissue sample that is related to a physiological phenotype
such as disease. These data are commonly analyzed to identify expression quantitative trait
loci (eQTL), which are specific chromosomal regions that associate with the expression level
of a given transcript.

Associated eQTL are generally classified as local, cis-acting variants that affect the expres-
sion of a gene located near the associated variant, or remote, trans-acting variants that affect
the expression of a gene located at a distance (i.e. outside of linkage disequilibrium (LD) or on
another chromosome). The more common cis associations have the straightforward biological
interpretation of a sequence variant directly affecting the self transcript production, stability,
or splicing. However, trans associations are often more difficult to interpret. The structure of
gene regulatory networks suggests that these trans associations are caused by transcription
factors or other proteins that bind and regulate DNA or RNA. The co-regulatory structures
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Fig. 1. Hypothetical regulatory architecture of transcripts (T1, ..., T6) that serve as an endophenotype for
an organism-level trait. (A) Simple model in which all transcripts are associated with trans-acting eQTL1
and part of a single underlying biological process affecting the trait. (B) Model with transcripts grouped
into two modules that combine to affect the trait. Models (A) and (B) are indistinguishable using single-locus
association. (C) Model obtained with co-expression clustering and CAPE analysis, in which the eQTL has been
replaced by two multiple module QTL (modQTL). The genetic effects now map to the two modules distinctly,
and the modQTL are linked by a directional influence mapping feed-forward regulation from modQTL1 to the
red module via modQTL2.

of these networks, in which proteins regulate multiple transcripts in complex hierarchies,6

suggest that a genetic variation in one regulatory gene could have significant effects on the
expression of multiple target transcripts. This would generate extensive pleiotropy as many
redundantly regulated transcripts would associate with the variant. While this is pleiotropy
in the sense that one genetic variant is influencing multiple traits, it is somewhat trivial in
that the multiple traits are redundant outputs of the same regulatory module. This effect
can be efficiently modeled by first finding modules of co-expressed transcripts that map to
the common trans-acting module QTL (modQTL). Pleiotropy between modQTL, in which a
single variant is associated with multiple distinct gene modules, is more informative in the
sense of a single variant affecting multiple regulatory programs in a more complex genetic
architecture (Figure 1). Distinguishing between trivial and informative pleiotropy can be dif-
ficult for complex regulatory networks in which multiple regulatory variants combine to affect
hundreds of transcript outputs.

In this paper, we address this problem by modeling interacting trans associations for mod-
ules of co-expressed genes. We use kidney transcript data from a panel of F2 mouse intercross
progeny to dissect the genetic regulation of multiple biological processes that affect over-
all kidney function in these genetically diverse mouse models. We use co-expression analysis
to identify gene modules with correlated expression and common function and derive sum-
mary endophenotypes that describe transcriptional states. We next use a combined analysis
of pleiotropy and epistasis (CAPE7) to simultaneously assess patterns of pleiotropy and sta-
tistical interactions between trans modQTL, in order to infer the variant-to-variant ordering
of regulatory influences on the multiple processes. This approach improves the interpretation
of genetic interactions in terms of directed QTL-to-QTL influences that map how a given
locus suppresses or enhances the effects of a second locus. By integrating evidence of epistasis
across multiple phenotypes, the CAPE method can improve power to detect modQTL inter-
actions and assign directionality to the relationship. Furthermore, CAPE inherently parses
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QTL-to-phenotype associations into direct effects and effects modified through genetic inter-
actions, thereby separating the target transcripts into subsets that are influenced by distinct
combinations of modQTL. In the case of transcript data, the result is a model of how multiple
modQTL affect one another and, in turn, the regulation of multiple modules of co-expressed
genes (Figure 1C). The resulting network model provides a clearer dissection of the nature of
the observed pleiotropy and generates more specific hypotheses of variant activity and action.

2. Methods

We followed a multi-step strategy to systematically identify and model multiple gene modules
that underlie kidney health and disease. The procedure is outlined in Figure 2, and consisted
of three main steps: a preliminary eQTL analysis to identify transcripts affected by one or
more genetic factors; clustering of the affected transcripts into co-expressed gene modules;
and a network analysis to map how the gene modules are regulated by multiple interacting
genetic loci. We began with a study of gene expression related to kidney function in a mouse
intercross.8 An F2 intercross population was derived from the kidney damage-susceptible
SM/J inbred strain and the nonsusceptible MRL/MpJ inbred strain. Male SM/J mice exhibit
kidney dysfunction, as measured by an increase in urinary albumin-to-creatine ratio (ACR).
To identify causal genetic loci, ACR was measured in 173 male F2 progeny. Significant QTL
were mapped on chromosomes (Chrs) 1, 4, and 15, with an additional suggestive QTL on Chr
17.8 This established ACR as a trait affected by multiple QTL that vary between the SM/J
and MRL/MpJ lines.

2.1. Data

To identify the biological pathways and processes underlying the ACR results, mRNA was
collected from whole kidneys of the 173 F2 animals. Data generation and processing is de-

1. Transcript Selection 2. Gene Module Analysis 3. Network Derivation

Map eQTL for all
transcripts

Select candidate trans 
eQTL

Select transcripts that
map to 2+ trans eQTL

Cluster transcripts by co-
expression using WCGNA

Identify gene modules and
query for functional coherence

Compute summary profiles to
define module phenotypes

Scan module phenotypes to identify key
modules and candidate modQTL

Scan key module phenotypes to identify
interactions between modQTL

Reparametrize with CAPE to derive a 
common model for all module phenotypes

Derive network of modQTL-to-modQTL
and modQTL-to-module influences

8,144 transcripts
8 trans loci

14 gene modules
8 trans loci

33,881transcripts
258 loci

8,144 transcripts
8 trans loci

14 gene modules
8 trans loci

3 gene modules
8 interacting trans loci

Fig. 2. Overview of analytical strategy.
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scribed in depth in the initial publication8 and will be summarized here. All mice were geno-
typed using an array that contained 258 polymorphisms that were informative between the
MRL/MpJ and SM/J strains. RNA samples were labeled and hybridized to the mouse gene
1.0 ST microarray (Affymetrix, Santa Clara, California). Microarray data were imported in
R (http://www.r-project.org) and processed using the affy package from Bioconductor
(http://bioconductor.org). Normalization of the data was performed using robust multi-
array average without any background subtraction. In total, 33,881 probe sets were consid-
ered.8 Data were downloaded from the QTL Archive (http://www.qtlarchive.org).

2.2. Transcript Selection

Following the initial study, we performed eQTL scans using R/qtl9 to test the association of
every transcript with every marker. Transcript expression data were subjected to a Van der
Waerden transformation10 prior to eQTL mapping. Pseudo-markers were generated at 2 cM
spacing for each chromosome and Haley-Knott regression was performed genome-wide for each
transcript. To identify suggestive eQTL (P < 0.63), we followed the originally-reported LOD
thresholds of 2.23 and 1.44 for autosomes and the X chromosome, respectively,8 This com-
prised a set of candidate transcripts with at least one suggestive association, each potentially
regulated by one or more genetic loci. Because we were interested in analyzing overlapping
patterns of pleiotropy, we further reduced this list to a set of transcripts that were associated
with at least two distinct suggestive eQTL.

2.3. Co-Expression Modules

Since the co-regulation of multiple genes is expected to be manifest as co-expression in array
data, we next performed weighted gene correlation network analysis (WCGNA)11 to identify
gene modules. WGCNA has been widely and successfully used to parse sets of transcripts
into co-expressed modules, particularly in genetic mapping populations.12 A comprehensive
list of tutorials on WGCNA can be found at http://www.genetics.ucla.edu/horvath/

CoexpressionNetwork. WGCNA generates an adjacency matrix based on the underlying ab-
solute values of Pearson correlations among all pairs of transcripts raised to a user-defined
power β. Here, the β parameter was set to 6 in order to generate the scale-free topology cri-
terion as defined by Zhang and Horvath.13 For each module, we separately obtained the first
principal component (termed “eigengenes” in WCGNA) to represent the summary expression
pattern for that module. We hereafter refer to these quantitative expression vectors as mod-
ule phenotypes since they represent composite phenotypes (and the term eigengene may be
confused with our distinct concept of an eigentrait in Section 2.4). Modules were queried for
coherent functions using the R package GOstats.14 Both Gene Ontology annotations15 and
KEGG pathways16 were queried for functional overrepresentation. GO enrichment significance
scores were corrected for multiple tests using the decorrelation of GO graph structure.17

2.4. CAPE Network Derivation

The combined analysis of pleiotropy and epistasis (CAPE) is an approach to modeling two
or more phenotypes across a population harboring genetic variation. Detailed explanations
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of the method have been published elsewhere7 and will be briefly summarized here. CAPE
is designed to translate data from genetic studies with multiple traits into an integrated
model that accounts for variance across all phenotypes. As input, the method requires two or
more quantitative phenotypes and a matrix of genotype values at markers across the genome.
Variants can be engineered mutations such as gene knockouts or amplifications, or natural
variants that are commonly used to map QTL. In this work, the variants will be the modQTL
associated with module phenotypes. The model of variants affecting phenotypes is obtained
by multivariate linear regression followed by a novel reparametrization of the results.7 For a
given pair of genetic variants, this reparametrization recasts the set of interaction coefficients
(one for each trait) in terms of two coefficients that describe how each variant suppresses or
enhances the effects of the other. This procedure translates trait-specific interaction terms into
trait-independent, directed edges between the two variants, providing a common model of gene
action that consistently fits all traits. These quantitative, variant-to-variant influences can be
readily interpreted as genetic suppression or enhancement. When combined with the variant-
to-phenotype edges, the final output is a directed network of both direct and indirect effect
of variants on multiple traits. CAPE is available as an R package (http://cran.r-project.
org/web/packages/cape), which was used in our analysis.18

We first identified a subset of modules suitable for CAPE. Each module phenotype was
first scanned for modQTL associations,12 with candidate loci identified using a suggestive
threshold (P < 0.63) based on a null distribution generated from 100 permutations. Genetic
markers were used as loci for regression, with homozygous MRL/MpJ markers coded as 0,
heterozygous markers as 0.5, and homozygous SM/J markers as 1. CAPE modules were then
selected by identifying module phenotypes with a combination of candidate modQTL that
included both shared and unique associations, and exhibited some degree of correlation (Figure
3). These criteria are essential to the CAPE method, given that it requires biologically related
phenotypes (e.g. all modules related to kidney function) that also exhibit unique signals from
which to draw functional distinctions.

The selected module phenotypes and sample genotypes were then used as input for the
R implementation of CAPE.18 As a first step in the analysis, CAPE decomposes all pheno-
types into eigentraits using singular value decomposition (SVD). This procedure reorganizes
the phenotypes into common and distinct signals that are expected to map to common and
distinct genetic loci. Each eigentrait is scanned for its own QTL, and a user-defined number of
eigentraits are selected for further analysis. This allows one to filter non-genetic signals in the
data and maximizes efficiency in the analysis. In this case, the eigentraits were linear combi-
nations of the module phenotypes. A suggestive threshold was used (P < 0.63, determined via
200 permutation tests) and the union of all suggestive markers comprised the set of markers
to undergo pair-wise association tests.

Pair-wise regression models were derived and reparametrized following the CAPE
method.7,18 In all except specified instances, default CAPE parameters were used. To avoid
effects due to LD, we omitted marker pairs with genotypes showing Pearson correlation above
0.6. Effects from QTL to eigentraits are then recomposed to map modQTL-to-phenotype influ-
ences. We performed 100,000 permutations to generate empirical P values for each parameter
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in the model, and then performed a false discovery rate (FDR) correction19 to compute q

values. For the final network model, we used a significance cutoff of q < 0.05 on both variant-
to-variant and variant-to-phenotype influences.

3. Results

3.1. Selected Transcripts

We performed eQTL scans on 33,881 probe transcripts across 254 independent genetic markers.
This procedure yielded 53,134 suggestive associations for 26,097 transcripts, including both
cis- and trans-acting loci (Table S1). In order to restrict our analysis to pleiotropic loci,
we identified the number of trans eQTL per chromosome. This varied from 5977 transcripts
associated with Chr 1 to 1101 transcripts associated with Chr 10. Since we were particularly
interested in the loci associated with the ACR phenotype we concentrated our analysis on the
top eight chromosomes, which comprised 60% of the associations. As in the previous study,8

Chrs 1, 4, 15, and 17 were among the top trans chromosomes. With our weak significance
cutoff, we also found four additional candidate chromosomes (Chrs 2, 6, 7, and 11). These
patterns suggested widespread co-regulation of hundreds of genes by a few genetic loci. To
explore potential pleiotropic effects, we selected the 8,144 transcripts associated with two or
more of these chromosomes in order to analyze how these loci affect transcripts both jointly and
distinctly. This provided us a large number of overlapping endophenotypes while maintaining
focus on a tractable number of biological processes.

3.2. Gene Modules Analysis

WCGNA was performed on the 8,144 transcripts identified in the previous step. We obtained
14 distinct modules, which were automatically assigned color identifiers by the software. The
number of genes per module ranged from 25 to 1299 (Table S2). We queried each module for
functional overrepresentation and found GO and KEGG associations for nearly all modules
at a significance of P < 10−4 (Table S3). We observed a diversity of processes across mod-
ules, which included small organic molecule metabolism, macromolecule metabolism, immune
processes, and structural development. However, the largest modules were concentrated in
metabolic and transcriptional processes. These module results generally matched the KEGG
pathways identified in the original analysis of the data,8 which were obtained through a dif-
ferent analytical procedure.

We next assessed correlations between module phenotypes. Since the CAPE method relies
on moderately correlated data, we sought pairs of modules with similar, but not redundant,
profiles. The module phenotypes exhibited absolute Pearson correlations ranging from 0.001
to 0.8 (Figure S1).

3.3. Single-Locus Genome Scans

We performed single-locus scans on the 14 module phenotypes to assess common associations
and pleiotropic loci (Figure S2). As expected, most (82%) of the suggestive (P < 0.63) modQTL
were located on the eight chromosomes that were pre-selected for associations with individual

Pacific Symposium on Biocomputing 2014

217



Table 1. Summary of gene modules used in CAPE analysis.

Suggestive
Module Genes modQTL Representative GO Function Representative KEGG Pathway

blue 969 2,4,7,9,11,15 oxoacid metabolic process (6 × 10−13) fatty acid metabolism (8 × 10−8)
grey 1299 1,4,9,11,17 oxidation-reduction process (1 × 10−4) oxidative phosphorylation (3 × 10−3)
turquoise 1228 1,17 translational initiation (8 × 10−5) cell cycle (5 × 10−5)

transcripts. Chrs 1, 4, 11, and 17 had the greatest number of associations, suggesting a strong
biological overlap with the ACR phenotype. The number of suggestive modQTL ranged from
one locus (magenta module) to eight loci (brown module).

3.4. Pair-Wise Scans and Interaction Network

We next performed two-locus interaction scans and CAPE reparametrization to derive a net-
work of pleiotropic effects on gene modules. We selected modules with partial pleiotropy and
correlation for further analysis, since modules with simpler genetic associations would not re-
quire genetic dissection with CAPE. We selected the three largest modules for CAPE analysis,
summarized in Table 1. These modules met the criteria of exhibiting moderate correlations
(Figure 3A) and had suggestive associations with one or more pleiotropic modQTL (Table 1).
They comprised 78% of the annotated genes in all modules together, thereby accounting for
the vast majority of expression variance in the data set. All modules had multiple significantly
enriched annotations (Table S3). The blue module contained specific acid metabolic processes
and transport genes. The grey module was concentrated in metabolic processes, programmed
cell death, and catabolism. Although WCGNA assigns the grey color to transcripts that do
not belong to any other module based on correlated expression, and therefore might not be
co-expressed in some cases, our pre-selection of transcripts based on eQTL associations gener-
ated a grey module phenotype with sufficient common signal to generate modQTLs and a gene
set with common functional annotations. Genes in the turquoise module were associated with
gene expression and RNA metabolism, and other cell cycle processes. While it would have been
feasible to include additional modules in the analysis, many of the modules had relative weak
associations and poor correlation with other modules (Figures S2 and S3), suggesting CAPE
analysis would provide little additional information. Furthermore, the addition of phenotypes
associated with non-pleiotropic modQTL will likely have distinct genetic etiology, and thus
can weaken significance of CAPE results by adding genetically independent variance.7

We performed SVD on the three selected module phenotypes to obtain three eigentraits
(Section 2.4), which represent linear combinations of the three module phenotypes (Figure
3B). We scanned each eigentrait for QTL associations and found that most of our candi-
date modQTL were associated with the first and/or second eigentrait, suggesting that the
genetically-driven variance is captured by these two composite phenotypes. Additionally, the
first two eigentraits are of comparable weight and together account for 87% of the global vari-
ance. We therefore used these two eigentraits in our analysis, which is the default for CAPE.18

A total of 54 candidate markers were identified by pooling those markers with suggestive ef-
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fects, leading to 1303 marker pairs tested after removing pairs in LD. After performing the
interaction analysis (Section 2.4) we transformed the eigentraits back to the original mod-
ule phenotypes. This transformation does not change modQTL-to-modQTL influences.7 An
adjacency matrix of significant results for all marker pairs is shown in Figure 4. This non-
symmetric matrix maps directed edges from each source marker to each target marker or
target phenotype (rightmost columns).

A summary interaction network is shown in Figure 5. To avoid redundant interactions and
nodes due to adjacent markers within a given modQTL, each modQTL-containing chromosome
is represented by a single node. Although the pleiotropic modQTL and genetic interactions
consistently map to the same regions on the indicated chromosomes (Figures 4 and S4), the
relatively large intervals preclude reliable identification of candidate genes and therefore we
simply represent the modQTL with chromosome names. Network nodes represent the effect of
the SM/J allele at each modQTL. Thus the modQTL-to-phenotype edges represent the effects
of a SM/J allele at the modQTL, and negative modQTL-to-modQTL interaction represents
the presence of a SM/J variant at one locus suppressing another SM/J variant at a second
locus. All interactions between modQTL were negative, consistent with the vast majority
of findings in intercross experiments.20 This may be due to functional redundancy between
modQTL, suggesting that variants within pathways underlie the interactions.21–23 In sum, we
detected six significant modQTL-to-modQTL interactions between chromosome pairs and 15
significant modQTL-to-phenotype interactions.

Our interaction network most prominently detected interactions between Chr 1, 4, and 15.
These correspond to QTL previously associated with ACR and kidney health,8 and also com-
prised the most significant influences in our analysis. The co-suppression observed between
Chr 1 and Chr 15 and between Chr 4 and Chr 15 suggest candidate genes of similar function
underlie these modQTL. This genetic co-suppression was frequently observed for knockdowns
of genes in the same pathways in a previous study of fly cell proliferation,23 and is a conse-
quence of highly redundant effects when SM/J alleles are present at both loci. We also note
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Fig. 3. Correlation structure of the three module phenotypes selected for CAPE analysis. (A) Pearson cor-
relations and scatter plots of each pair of module phenotypes. (B) The three module phenotypes decomposed
into orthogonal eigentraits, showing phenotype composition and global variance fraction for each eigentrait.
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that upon conditioning on interaction effects, these modQTL are pleiotropic, with each sig-
nificantly influencing both the blue and grey modules. Interestingly, the turquoise module is
primarily influenced by a network of interactions between modQTL on Chrs 7, 9, and 17.
The Chr 9 modQTL suppression of the Chr 17 modQTL is an example of how the CAPE
method can identify indirect effects between loci, in that the Chr 9 SM/J-derived effects on
the turquoise and grey modules are mediated via the presence of an SM/J allele at the Chr 17
locus. The hypothesis is that Chr 9 allele indirectly acts to suppress the Chr 17 allele, and this
conditional dependence on the Chr 17 modQTL renders the Chr 9 modQTL only marginally
significant when considered in isolation (Figure S2).

4. Discussion and Conclusions

The CAPE method has been developed to map networks of how multiple genetic variants
interact to affect multiple phenotypes, thereby identifying shared and distinct genetic etiology
of complex traits. Here, we have applied this approach to address the regulation of kidney
gene expression in an inbred mouse intercross. This required a focused approach to identify-
ing patterns of co-expressed genes, followed by an application of the CAPE algorithm that
separated the co-regulation of those genes in a network of causal genetic loci.
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Fig. 5. Summary interaction network derived with R/cape, with interacting modQTL labeled by chromosome
location on white nodes and gene modules on nodes colored by WCGNA assignments. Width of positive (green)
and negative (red) edges represent significance in terms of standardized effect size.

4.1. Co-Expressed Gene Modules as Complex Pleiotropy

By clustering transcripts into modules, we efficiently identified common trans-acting modQTL
that regulate multiple co-expressed genes.12 Although this strategy will not detect the majority
of cis eQTL, which can be readily detected through direct associations of each individual
transcript, it quickly identifies trans modQTL that exhibit pleiotropy by affecting multiple
gene modules. Furthermore, the coherent expression patterns within each gene module were
used as summary traits representing the activity levels of multiple biological processes. This
allowed the use of the CAPE approach to map an interacting network of causal gene variants,
providing an enhanced view of how multiple genetic variants commonly and differentially
affected multiple gene expression patterns in the kidneys of genetically diverse mice.

4.2. How Genetic Interactions Modify Pleiotropic Effects

By simultaneously analyzing genetic interactions across multiple module phenotypes, we were
able to identify cases in which pleiotropic modQTL are directly associated with a module and
cases in which the modQTL was indirectly affecting a module via interaction with a second
modQTL. This separation provides an improved genetic model of how the modQTL might
affect overall kidney health through two or more processes. The interaction cascade observed
for Chrs 7, 9, and 17 suggests a series of co-dependent effects from the SM/J variant at these
loci (Figure 5). When all three modQTL are inherited from SM/J, the model implies that the
Chr 9 and Chr 17 modQTL are suppressed and ineffective, leading to an overall Chr 7 positive
effect on the expression of the turquoise and blue modules. However, changing this scenario
with an MRL/MpJ allele at the Chr 9 modQTL implies the Chr 17 modQTL counteracts the
effect of the Chr 7 modQTL on the turquoise module, leaving the primary effect of the Chr 7
modQTL on the blue module only and therefore diminishing its pleiotropic effect. Examples
of epistasis-dependent pleiotropy are a key element of hypotheses generated from CAPE, and
their inference requires a systematic integration of both epistasis and pleiotropy in a single
model of genetic effects.
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4.3. Overlapping Patterns of Pleiotropy to Model Complex Traits

At the core of the CAPE method is the use of multiple QTL with partially overlapping patterns
of pleiotropy over a panel of complex traits. The information coded in these patterns is used
to constrain models of genetic interactions and, at the same time, map pleiotropic effects as
either independent or dependent on other QTL. Thus the appropriate choice of phenotypes in
analysis is essential. The most direct method is to perform single-locus scans for all phenotypes
to identify shared QTL regions, with the assumption that the causal variant is common to
all phenotypes. However, the sensitivity of QTL significance on limited sample numbers can
rarely preclude that a QTL that falls slightly below a significance threshold is in fact causal.

In this work, we have surmounted this problem by allowing highly permissive significance
thresholds for pre-selection of potentially interacting loci. Nevertheless, some of our modules
exhibited few suggestive modQTL or unique loci, such as the distal Chr 6 locus that dominates
the magenta module scan (Figure S2). An alternative, related approach is to select phenotypes
with moderately correlated values across all samples, such as Pearson correlations of 0.3-0.8.
Excessive correlation among phenotypes generates redundant genetic associations, which are
ineffective for the CAPE approach, while a lack of sufficient correlation between phenotypes
introduces too many conflicting signals to arrive at a common genetic model. Finally, we note
that an excess of complex phenotypes can reduce the ability of CAPE to find a common
genetic model. While the number of phenotypes that can be co-analyzed is theoretically un-
limited, the core of the analysis is based on a dimensional reduction of a series of epistasis
coefficients (one for each phenotype) to two influence parameters describing how a pair of
QTL influence each other in either direction.7 While the method maximizes the amount of
phenotype information in two degrees of freedom independently for each locus pair, conflicting
data can weaken the interaction signal. Indeed, in an earlier study of global transcript data
that directly modeled principal components instead of more focused co-expression modules,
it was found that simultaneously modeling more than three components diluted the power to
detect interactions.7 This finding applies whether the additional components are interpreted
as experimental noise or additional biological signal.

4.4. Potential Extensions and Validation

The genetic models obtained by CAPE are formulated in terms of inferred influences that
quantify the associated effects of variants on (1) all phenotypes; and (2) the effective weight of
other variants on the phenotypes. The resulting networks structure provides a hypothesis of
regulatory architecture, but does not provide any direct evidence of molecular binding. When
available, the network can be used as a template for the integration of complementary molec-
ular interaction data, with candidate regulatory interactions limited by the sign and direction
of each variant-to-variant influence.24 In systems lacking existing molecular interaction data,
the inferred networks can serve to direct experimental validation to specific combinations of
loci. For example, the binding sites of a candidate transcription factor may be predicted to be
modified by the presence of a second trans-acting variant. This could be directly assayed with
chromatin immunoprecipitation experiments performed with and without the second vari-
ant. This framework can guide follow-up investigations by providing additional constraints to
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prioritize candidate regulators.

Supplementary Material

Tables S1-S3 and Figures S1 and S2 are located at http://carterdev.jax.org/psb2014.
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Genotyping and large-scale molecular phenotyping are already available for large patient cohorts and will 
soon become routinely available for all patients. Exome or complete genome sequences are being 
increasingly collected and are explored as newborn screening technologies. These data are setting the 
stage for rapid advances in personalized medicine, enabling better disease classification, more precise 
treatment, and improved disease prevention. Robust statistical and computational methods for analyzing 
these data are critical to realizing the promise of genome-based medicine. The challenges span from 
accurate low level analyses of high throughput datasets to identification of causal links between different 
layers of molecular information, and incorporating them into diagnostics. Important analysis problems 
include accurate phenotypic characterization, identifying and correcting for latent structure, dealing with 
missing data, deciding at what level to test (e.g. single base pair values, sets of polymorphisms, exonic 
regions, etc.), data heterogeneity, the problem of multiple testing, integrating various modalities, deducing 
functional consequences in silico, addressing data quality, and making sense of new data types as they 
become available. 
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For example, in genome-wide association studies, population structure and family relatedness can reduce 
power and cause spurious associations. In gene expression and epigenetic studies, experimental artifacts 
and environmental influences have been shown to corrupt results of naive analyses.  All of these problems 
can be tackled by various classes of latent variables, such as those related to Principal Components 
Analysis and probabilistic variations thereof, linear and non-linear mixed models. These models learn 
latent factors from the large scale of the data---that is, patterns which permeate many of the features, and 
therefore speak to wide-spread “contamination”. By removing these broad patterns, we hope to be left 
with the true associations; however, being certain of this is difficult [1-14]. 
 
Using patient genotype to inform treatment in the clinic is limited by our ability to accurately predict the 
impact of genetic variation, and the lack of models for its mechanistic effect. While whole genome 
sequencing has been successfully used to identify causal mutations for severe developmental disorders 
and other Mendelian diseases, use of genotype information has not yet permeated clinical practice, save 
for a handful of single locus tests [15]. Personalized approaches, however, are becoming increasingly 
common in applications to cancer treatment, albeit these are at present mostly limited to a research setting. 
Questions that remain are whether to treat the sequence data as clinical test, and only report known causal 
locus results for any phenotype under heavy regulation, or whether to broadly disclose any incidental 
findings. Many found variants are of unknown effect, and precise statistical models, as well as convenient 
software are needed to help practitioners make decisions [16]. To this end, efforts such as Critical 
Assessment of Genome Interpretation [17,18] are performing controlled experiments to probe the limits 
of our ability to predict phenotype from genotype. 
 
The path from genotype to disease state goes through intermediate phenotypes [19]. To modulate the 
disease risk or trait, one of the molecular intermediates must be changed in a controlled way using small 
molecules or changes in environment, but one current limitation is finding out the right targets for these 
interventions. A first level of understanding should come from genetic mapping studies - to which extent 
do the loci responsible for heritable disease risk affect intermediate traits? Some progress has been made 
on this front over the last years, especially for RNA levels [20,21], but also protein and metabolite 
abundances [22,23], with much remaining to be done. The next task is distinguishing the actual drivers of 
ailment from traits that do respond to genotype, but do not cause disease. Causal models, such as 
Mendelian randomization methods, will play a crucial role in separating out the molecular causes of 
disease from the high-dimensional state of the organism [24,25]. 
 
Clinical grade confidence in data and methods to use genome information for providing better treatment 
has been difficult to establish, with heterogeneous and imperfect medical records also remaining a real 
bottleneck. However, each year brings more rigor and agreement in applications of genome-based 
personalized medicine in the field. Still, much work is required in all areas, from basic discovery of 
molecular mechanisms of disease pathology, to statistical methods of causality and publicly available 
computational infrastructure to deliver on the promise of genetic information in the clinic. The payoffs 
will be large. 
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Session contributions 
 
The session keynote is given by Robert Gentleman, who has spearheaded the use of computational 
methods in biology and medicine [26], and is currently employing them to design cancer therapeutics. 
 
The availability of inexpensive partial genotype data, and increasingly cheaper full genome sequencing to 
complement traditional diagnostic markers has fuelled the promise of personalised genomic medicine. 
However, genetic tests inform the diagnosis and treatment for only a minority of heritable disease cases in 
clinic today. This is partly due to low explanatory power of common small effect variants that underlie 
the common disease risk, but also due to larger effect alleles not being well captured by standard 
genotyping arrays as they have low frequency. In our session, Martin et al. analyse the performance of 
different genotyping platforms for imputing rare coding variation. Perhaps somewhat surprisingly, they 
find that genotyping arrays dedicated to measuring rare exome variants can be less useful in imputing 
unobserved rare variants than dense common variant arrays. This occurs because the latter are actually 
able to tag unmeasured variants (including rare ones) better than the specialized rare variant chips.  
 
Interpreting incidental findings in whole-genome sequencing is difficult, and can take up considerable 
time of clinicians and genetic counselors. Daneshjou et al. will present PATH-SCAN, a publicly 
available tool that automatically annotates the variants that have been designated as pathogenic by 
ClinVar. The tool is expected to accelerate the analysis of genes that have been recommended by the 
American College of Medical Genetics and Genomics to be followed up and reported to the patient. 
 
Also in our session, Zhe et al. tackle the problem of employing genotype and endophenotypes 
(intermediate phenotype) in disease diagnosis. Focussing on dissecting the genetic basis of Alzheimer’s 
disease, a neurodegenerative disorder, they apply a latent variable model to the genotypes, magnetic 
resonance imaging, and diagnosis label where all the three types of observed features are sparse 
manifestations of a single continuous underlying disease state. After learning the model parameters, they 
then use them to predict disease state in a patient cohort, achieving better performance compared to 
current alternatives, and also uncovering several potentially causal links between genotype and the 
measured endophenotypes. 
 
An important role for personalized medicine is in predicting frequency of drug side effects from genotype. 
Oetjens et al. genotyped 34 genes for 127 heart transplant recipients, 35 of whom had an adverse reaction 
to an immune suppressor. Incorporating data from electronic medical records, known predisposition to 
chronic kidney disease, and broad variance components in the genotype, the authors identified a single 
non-synonymous variant that significantly increased the risk of renal failure. Their study serves as a nice 
proof-of-principle that even with limited sample size and number of genotyped loci, genotype-dependent 
side effects can be identified using statistical analyses of longitudinal data. 
 
Parikh et al. consider the problem of simultaneously inferring gene expression networks from a series of 
evolving conditions (e.g., healthy tissue versus cancer stages) to identify functional roles of individual 
genes and pinpoint the causal changes. They propose a model that finds a sparse representation of the 
gene co-expression patterns sharing information across the different stages in a principled manner, and 
one which accounts for potential differences in the network structures. 
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Finding individual-specific contributors to immune response can help inform therapy of viral infections. 
In our session, Perina et al. propose a bag of words model to describe the distribution of epitopes 
presented by cells that are targeted by immune surveillance mechanisms. Their approach is able to better 
explain the correlations between individual epitopes compared to alternatives. For a clinical application, 
they test the models on a cohort of HIV patients to find links between distribution of epitopes and the 
viral load. 
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The American College of Medical Genetics and Genomics (ACMG) recently released guidelines regarding the 
reporting of incidental findings in sequencing data. Given the availability of Direct to Consumer (DTC) genetic testing 
and the falling cost of whole exome and genome sequencing, individuals will increasingly have the opportunity to 
analyze their own genomic data. We have developed a web-based tool, PATH-SCAN, which annotates individual 
genomes and exomes for ClinVar designated pathogenic variants found within the genes from the ACMG guidelines. 
Because mutations in these genes predispose individuals to conditions with actionable outcomes, our tool will allow 
individuals or researchers to identify potential risk variants in order to consult physicians or genetic counselors for 
further evaluation. Moreover, our tool allows individuals to anonymously submit their pathogenic burden, so that we 
can crowd source the collection of quantitative information regarding the frequency of these variants. We tested our 
tool on 1092 publicly available genomes from the 1000 Genomes project, 163 genomes from the Personal Genome 
Project, and 15 genomes from a clinical genome sequencing research project. Excluding the most commonly seen 
variant in 1000 Genomes, about 20% of all genomes analyzed had a ClinVar designated pathogenic variant that 
required further evaluation. 
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1.  Background and Significance 

The era of personalized genomics received a jumpstart in 2007, when 23andMe, deCODEme, and 
Navigenics began to offer Direct to Consumer (DTC) personal genetic testing.1 Reports from these 
companies include genotyping of up to hundreds of thousands of loci with phenotypic 
interpretation for dozens to hundreds of traits and conditions based mainly upon genome wide 
association studies (GWAS).2,3 The use of such genetic information in a clinical setting has been 
slower to develop, although several academic medical centers have established genomic medicine 
programs.4 Moreover, with the falling price of next generation sequencing, the number of whole 
genomes and exomes being sequenced is steadily increasing.4,5 Whole genome or exome 
sequencing provides much more data than genotyping, especially with regards to rare and private 
mutations. As a consequence, incidental findings in an individual’s genome beyond the scope of 
the research or clinical question are likely to exist. There is some debate surrounding the handling 
of the so-called “incidentalome”, particularly since novel, rare, or private mutations may be 
difficult to interpret and a full interpretation is cost prohibitive in most settings.6 Recently, the 
American College of Medical Genetic and Genomics (ACMG) put out a report with 
recommendations on which incidental findings should be specifically analyzed and reported.7 In 
this case, “incidental findings” refer to pathogenic or potentially pathogenic variants discovered in 
a subset of genes during whole genome or exome sequencing, regardless of the reason sequencing 
was ordered.7,8 The list of 57 genes covering 24 conditions put forward by the ACMG are those 
that have medically actionable outcomes. For example, the list includes BRCA1 and TNNI3, 
mutations in which can lead to breast cancer and hypertrophic cardiomyopathy, respectively.7 
Currently, it is not known exactly what percentage of individual genomes will carry such variants, 
and an understanding of the pathogenic burden will allow researchers to better understand the 
resources required to evaluate such variants. Here, we present a publicly available tool, PATH-
SCAN, which annotates genomes for ClinVar designated pathogenic variants in the list of genes 
recommended by the ACMG.7  

2.  Methods 

PATH-SCAN allows a researcher or individual to analyze and annotate individual exomes or 
genomes for a set of pathogenic variants identified in the ClinVar database in the genes put 
forward by the ACMG. These annotations are presented in a report with genomic information and 
links to additional information. Due to the consequences of many of these variants, security and 
privacy are mainstays of the PATH-SCAN program. PATH-SCAN maintains complete privacy by 
performing all analyses on an individual’s local machine, similar to a previously described 
genotype analysis tool, INTERPRETOME.9 PATH-SCAN offers an option to anonymously 
submit data to our research group allowing us to use crowd sourcing to determine the prevalence 
of pathogenic variants found in the ACMG gene list. 

2.1.  Pathogenic Variant Selection 

Pathogenic variants were selected from the National Center for Biotechnology Information’s 
(NCBI) ClinVar variant call file (VCF). From this database of variants, those variants with at least 
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one submission as “pathogenic” were extracted and annotated with links to other clinically 
relevant databases. Since the ClinVar database is a collaborative database with potentially variable 
quality in individual variant results, we filtered out any variant that was tagged with a “variant 
suspect” code. A variant might be labeled as such for several reasons, including being called from 
an old genomic alignment or a suspected paralog. From this list, we then extracted only the 
variants that mapped to the 57 genes listed in the ACMG report. Gene boundaries were determined 
using GRCh37.p10.10 In total, ClinVar had records for 994 variants designated as pathogenic 
across 57 genes.  These variants are included in the PATH-SCAN package. The original ClinVar 
VCF can be found here http://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/. The 
use of other databases is allowed in case an individual wishes to use an alternative database for 
annotation (see Appendix).  

2.2.  Analysis Tool 

Our cross-platform program, PATH-SCAN, utilizes a database of 994 variants to scan personal 
genomes and annotate them. The annotations produced by PATH-SCAN are made available to the 
end user or researcher as a local html page with a simplified user interface for increased 
accessibility and transparency. To assist interpretation of this information and provide a model for 
future genome interpretation tools, each recognized variant and annotation is presented alongside 
links to relevant educational resources, including ClinVar, OMIM, and consolidated Gene 
Reviews from the National Center for Biotechnology Information (NCBI).  

Crowd sourcing data collection was accomplished by making a submission link available that 
transfers de-identified anonymous information back to our data collection server. In order to 
prevent any privacy concerns regarding this data collection, PATH-SCAN only transmits the total 
number of pathogenic variants annotated for each gene (e.g. the total pathogenic burden per gene 
of an individual genome) as well as a unique key to prevent duplicate submissions from unwary 
users. Additional information such as ancestry is optional to transmit. The unique key is calculated 
by PATH-SCAN automatically by hashing the personal genome file using the SHA-2 family of 
cryptographic functions. In addition to these security measures, a privacy message is presented 
before the user can submit their data. For the personal genomes we had direct access to, the full 
annotations made by PATH-SCAN were used to collect data on individual diseases and variants as 
well as aggregate distributions of pathogenic variants across individuals. 

PATH-SCAN is a command line utility that was developed in Python 2.7.5 and has no external 
dependencies. The PATH-SCAN program comes pre-loaded with the existing database of 
pathogenic variants. We also have the ability to load updated databases pending re-releases of the 
ACMG recommendation or for custom made variant databases. PATH-SCAN will automatically 
detect and process variant call files (VCFs), tab-separated variant (TSV) files from Complete 
Genomics, and SNP chip results from 23andMe. Because 23andMe only genotypes SNPs, PATH-
SCAN will not scan data in this form for indels. For a whole genome VCF file that is 336 MB, 
PATH-SCAN runs in 24 seconds on a machine with 16GB of RAM and a 2.3 ghz processer. The 
script and database are bundled and available for download online at: 
http://montgomerylab.stanford.edu/pathscan.zip. 
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2.3.  Applying PATH-SCAN to existing datasets: 1000 Genomes, Personal Genomes Project, 
and a clinical sequencing project 

We pilot tested PATH-SCAN on the 1092 individuals from the 1000 Genomes project publicly 
available low coverage (~4x) genomes.11 We also investigated how ancestry affected the number 
of variants found in each population. Additionally, we tested PATH-SCAN on exome chip data 
for 2123 individuals from the 1000 Genomes project. These individuals overlap with the 1092 
whole genome data.11 

We also tested our tool on 163 Genomes downloaded from the Personal Genomes Project, 
which were in the Complete Genomics format (www.personalgenomes.org/community.html).12 
We only considered variants called with high quality. High quality variants are called on 
homozygous calls with a quality score greater than or equal to 20 and heterozygous calls with a 
quality score greater than or equal to 40 under the maximum likelihood variable allele fraction. 

In addition to the larger scale, low-coverage studies previously discussed, we tested our tool 
on a clinical sequencing project consisting of 15 individuals (3 trios and 4 unrelated individuals).  

3.  Results 

3.1.  Pathogenic variants studied 

By filtering ClinVar for variants with evidence of pathogenicity in the subset of ACMG guideline 
genes, we selected 994 variants that our tool evaluates. These variants include 651 single 
nucleotide polymorphisms (SNPs) and 343 small insertions/deletions (indels). 65.5% of the 
pathogenic variants evaluated were SNPs, evenly distributed across all 12 non-synonymous 
nucleotide-to-nucleotide transversions. Variants were not evenly distributed across the 57 genes, 
with BRCA1 and BRCA2 having the largest number of variants (Figure 1). An example of the 
output of PATH-SCAN can be seen in Figure 2.  
 

ACTC1	   8	   KCNQ1	   26	   PKP2	   2	   STK11	   12	  
APC	   16	   LMNA	   47	   PMS2	   5	   TGFBR1	   7	  
APOB	   12	   MEN1	   11	   PRKAG2	   10	   TGFBR2	   15	  
BRCA1	   121	   MLH1	   18	   PTEN	   20	   TMEM43	   1	  
BRCA2	   159	   MSH2	   12	   RB1	   12	   TNNI3	   13	  
CACNA1S	   8	   MSH6	   2	   RET	   56	   TNNT2	   9	  
COL3A1	   17	   MYBPC3	   6	   RYR1	   34	   TP53	   23	  
DSG2	   5	   MYH7	   40	   RYR2	   10	   TPM1	   6	  
DSP	   10	   MYL3	   3	   SCN5A	   38	   TSC1	   9	  
FBN1	   37	   NF2	   13	   SDHAF2	   1	   TSC2	   14	  
GLA	   39	   NTRK1	   12	   SDHB	   11	   VHL	   20	  
KCNH2	   20	   PCSK9	   3	   SDHD	   18	   WT1	   15	  

 
Figure 1: Total number of pathogenic variants found per gene in ClinVar. In total there were 994 variants distributed 
across the 57 genes specified by the ACMG recommendations. 
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Figure 2: Sample output of PATH-SCAN. Information regarding the affected variant (including chromosome, 
position, rsID, and gene) are displayed alongside relevant information including what condition this variant is 
expected to have pathology in and links to clinical reviews and publications regarding the condition. A crowd-
sourcing form is available at the bottom of the page if users wish to submit de-identified information to our servers. 

3.2.  PATH-SCAN identifies variants in 1000 Genomes Data 

Out of 1092 individuals with low coverage genome data, 633 have at least one ClinVar designated 
pathogenic variant reported in one of the ACMG genes. Out of the 2123 exome-chipped 
individuals (which overlaps with the 1092 individuals with whole genomes), 997 individuals had 
at least one variant reported. The most common variant seen was rs1805124 (SCN5A), which was 
seen in 41.2% of individuals (Table 1). This variant has an allele frequency of about 20% in the 
1000 Genomes population. Excluding this very common variant, out of 1092 low coverage 
genomes, 225 individuals had at least one pathogenic variant in one of the ACMG genes, and 237 
individuals had at least one pathogenic variant in the exome chip data.  
 
Table 1: Variants and individual frequencies seen in the 1000 Genomes Project Data. Absent data from the exome 
chip columns due to incomplete sequencing coverage in those individuals. Frequencies represent frequency of 
individuals with at least one copy of the variant and not allele frequencies. 

Gene Disease  rsID 4x Genome  
(1,092 indv.) 

Freq. Exome Chip  
(2,123 indv.) 

Freq. 

APC Familial 
adenomatous 

polyposis  

rs137854567 2 0.002 - - 
 rs1801166 8 0.007 - - 

DSP Arrhythmogenic 
right-ventricular 
cardiomyopathy 

rs121912998 4 0.004 - - 

LMNA Hypertrophic 
cardiomyopathy, 

dilated 
cardiomyopathy 

rs57830985 1 0.001 - - 

MSH6 Lynch syndrome rs2020912 11 0.010 13 0.006 
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SCN5A Romano–Ward long 
QT syndrome types 
1, 2, and 3, Brugada 

syndrome 

rs1805124 450 0.412 852 0.401 
 rs41261344 26 0.024 72 0.034 
 rs45620037 1 0.001 - - 
 rs7626962 26 0.024 65 0.031 

SDHB Hereditary 
paraganglioma– 

pheochromocytoma 
syndrome 

rs11203289 19 0.017 - - 
 rs33927012 17 0.016 30 0.014 

SDHD Hereditary 
paraganglioma– 

pheochromocytoma 
syndrome 

rs11214077 20 0.018 - - 
 rs34677591 13 0.012 - - 

STK11 Peutz–Jeghers 
syndrome 

rs59912467 28 0.026 61 0.029 

TP53 Li–Fraumeni 
syndrome  

rs28934576 1 0.001 - - 

TSC1 Tuberous sclerosis 
complex 

rs118203576 48 0.044 - - 

  rs118203657 5 0.005 - - 
 

3.3.  PATH-SCAN identifies variants in the Personal Genomes Project 

We applied PATH-SCAN to 163 genomes in Complete Genomics format. 77 of these individuals 
were found to have at least one variant. The most common variant, once again, was rs1805124 
(Table 2). Excluding this variant, 27 individuals had at least one variant in one of the ACMG 
guidelines genes.  
 

Table 2: Variants and counts seen in 163 Personal Genomes 
Gene Disease rsID PGP Genomes  

(163 individuals) 
APC Familial adenomatous polyposis  rs1801166 5 

DSG2 Arrhythmogenic right-ventricular 
cardiomyopathy 

rs193922639 2 

FBN1 Marfan syndrome, Loeys–Dietz 
syndromes, and familial thoracic 

aortic aneurysms and 
dissections 

rs137854475 1 

KCNQ1 Romano–Ward long QT 
syndrome types 1, 2, and 3, 

Brugada syndrome 

rs267607197 1 

RET Multiple endocrine neoplasia 
type 2; Familial medullary 

thyroid cancer 

rs77724903 1 

SCN5A Romano–Ward long QT 
syndrome types 1, 2, and 3, 

Brugada syndrome 

rs1805124 62 
 rs41261344 1 
 rs137854610 1 

SDHB Hereditary paraganglioma– 
pheochromocytoma syndrome 

rs33927012 7 

SDHD Hereditary paraganglioma– rs11214077 5 
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pheochromocytoma syndrome 
  rs34677591 1 

STK11 Peutz-Jeghers syndrome rs59912467 1 
TNNT2 Hypertrophic cardiomyopathy, 

dilated cardiomyopathy 
rs121964857 1 

TSC1 Tuberous sclerosis complex rs118203657 1 

 

3.4.  Analyzing variant burden across populations 

 
We looked at the variant detection in the different 1000 Genomes populations (Table 3). Because 
of the high allele frequency of rs180524, we looked at the frequencies with and without this SNP.  
 
Table 3: Number of variants seen in the different 1000 Genomes populations. ACB- African Caribbean in Barbados; 
ASW - HapMap African ancestry individuals from Southwest US; CDX- Chinese Dai in Xishuangbanna, China; CEU 
– Utah residents with Northern and Western European ancestry; CHB - Han Chinese in Beijing; CHD - Chinese in 
metropolitan Denver, CO; CHS – Southern Han Chinese; CLM - Colombian in Medellin, Colombia; FIN -HapMap 
Finnish individuals from Finland; GBR - British individuals from England and Scotland; GIH - HapMap Gujarati 
India individuals from Texas; IBS - Iberian populations in Spain; JPT – Japanese in Tokyo, Japan; KHV - Kinh in Ho 
Chi Minh City, Vietnam; LWK - Luhya individuals in Webuye, Kenya; MKK- HapMap Maasai individuals from 
Kenya; MXL - HapMap Mexican individuals from LA California; PEL - Peruvian in Lima, Peru; PUR- Puerto Rican 
in Puerto Rico; TSI – Tuscans from Italy; YRI- Yoruba from Ibadan, Nigeria 
Population 4x Genome 

Samples 
(1092 total) 

Avg. variant 
count/ person  
4x Genome  

Avg. variant 
count/person 
4x Genome 
w/o rs180524 

Exome Chip  
Samples 

(2123 total) 

Avg. variant 
count/person  
Exome Chip  

Avg. variant 
count/person 
 Exome Chip  
w/o	  rs180524 

ACB 0 - - 98 71/0.72 20/0.20 
ASW 61 44/0.72 12/0.20 97 63/0.65 10/0.10 
CDX 0 - - 100 36/0.36 24/0.24 
CEU 85 45/0.53 13/0.15 104 41/0.39 5/0.05 
CHB 97 44/0.45 20/0.21 100 44/0.44 20/0.2 
CHD 0 - - 1 0/0 0/0 
CHS 100 35/0.35 21/0.21 150 44/0.37 35/0.23 
CLM 60 47/0.78 21/0.35 107 52/0.46 2/0.19 
FIN 93 45/0.48 13/0.14 100 40/0.4 4/0.04 

GBR 89 53/0.60 13/0.15 101 54/0.53 9/0.09 
GIH 0 - - 93 42/0.45 4/0.04 
IBS 14 18/1.29 4/0.29 147 87/0.59 12/0.08 
JPT 89 35/0.39 10/0.11 100 37/0.37 10/0.1 
KHV 0 - - 118 56/0.47 38/0.32 
LWK 97 64/0.66 9/0.09 100 64/0.64 6/0.06 
MKK 0 - - 31 22/0.71 1/0.03 
MXL 66 47/0.71 26/0.39 100 35/0.35 5/0.05 
PEL 0 - - 104 46/0.44 0/0 
PUR 55 49/0.89 21/0.38 111 62/0.56 3/0.02 
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TSI 98 69/0.70 22/0.22 100 57/0.57 9/0.09 
YRI 88  85/0.97 25/0.28 161 129/0.80 24/0.15 

 
In 1092 Genomes, the average number of variants per genome ranged from 0.35 (CHS) to 1.29 
(IBS). Without rs180524, the average number of variants per person ranged from 0.09 (LWK) to 
0.39 (MXL). Populations that were closely related had similar average variants per person (Figure 
3). Particular populations, such as LWK, had a much lower variant count than other populations 
when rs180524 was not taken into consideration.  

 
Figure 3: Average variants per individual in 1092 Genomes (with rs1805124 removed due to high allele frequency in 
all populations). 

3.5.  Applying PATH-SCAN to a clinical genome sequencing project 

In a clinical genome sequencing project consisting of 15 individuals, 2 subjects had 2 ClinVar 
pathogenic variants, 5 subjects had 2 ClinVar pathogenic variants, and 8 subjects had 0 ClinVar 
pathogenic variants. The variant list was not directly reported to us due to IRB constraints. 

4.  Discussion 

Since the ACMG report on incidental findings was published, there has been much debate around 
explicitly searching for and reporting variants in the ACMG’s gene list.8,13 Issues have included 
the difficulty of substantiating which variants are pathogenic, the cost of additional screening, and 
the lack of information about how often variants are seen and how many each individual could 
possibly carry. Here, we present a tool, which serves as an example of how technicians, 
researchers, clinicians, and individuals may screen for potentially pathogenic and actionable 
variants. Furthermore, we have applied this tool on existing datasets and have made it available for 
public use in order to gauge the frequency that potentially pathogenic variants in the ACMG genes 
are observed.  
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4.1.  Variant Selection 

One of the major issues was outlined in the original ACMG report: “The Working Group 
recognized that there is no single database currently available that represents an accurately curated 
compendium of known pathogenic variants, nor is there an automated algorithm to identify all 
novel variants meeting criteria for pathogenicity.”7 For the purposes of this project, we selected 
the ClinVar database, because the variants submitted come directly from patient data. We selected 
only those variants that had at least one submission indicating that the variant was pathogenic in 
nature. A limitation of this approach is the inclusion of variants that may have conflicting 
submissions listing the variant as pathogenic and benign, and issues such as sample size and study 
population can contribute to this confusion about variant interpretation. However, the ClinVar 
curators are making an effort to review submissions.  We recognize that variants labeled as 
pathogenic by ClinVar may not be viewed as so when analyzed by a clinical laboratory, genetic 
counselor, or clinician. However, their presence in a genome or exome will warrant evaluation in 
order to determine if they should be acted upon. Thus, understanding the frequency of such 
variants will allow us to draw conclusions about the amount of resources required to properly vet 
variants in the ACMG guidelines genes.  

Another limitation of our database choice is that we do not pick up novel, rare, or private 
mutations that are not currently annotated in ClinVar. However, since we could not reliably make 
any inference about the pathogenicity of such variants, we selected not to include them in our 
publicly available tool. Finally, because most research studies are done in individuals of European 
descent, there is likely an overrepresentation of variants that are pathogenic in populations of 
European descent.14 

We do note that the pathogenic variants in the ClinVar database are not evenly distributed 
between genes. The number of pathogenic variants reported in a gene can be influenced by several 
factors – including the length of the gene, the amount of selective pressure, and the number of 
studies focusing on the gene. Interestingly, BRCA1 and BRCA2 had the largest number of 
pathogenic variants. This could be due to the extensive studies on these genes and their role in 
hereditary breast and ovarian cancer.  

4.2.  Findings in the 1000 Genomes Data and Personal Genomes Project 

Our successful application of PATH-SCAN to the 1000 Genomes data sets confirmed the ability 
of our tool to process whole genomes. In 1092 low pass genomes, 566 individuals had a 
pathogenic variant in one of the ACMG genes.  

The most observed variant was rs1805124 (H558R), seen in 41.2% of individuals. The 
population allele frequency of this variant is about 20% in 1000 Genomes. This is a prime 
example of the challenge with implementing an automatic system to follow up on potentially 
pathogenic variants in ACMG genes. SCN5A H558R has been associated with atrial fibrillation 
and changes in cardiac conduction.15,16 Multiple studies have also demonstrated that the presence 
of this variant combined with other rare SCN5A variants perturbs heart electrophysiology.17–19 
However, there are also studies in which this variant may mitigate the effects of a particular 
mutation that causes Brugada syndrome.20 Finally, it should be noted that this variant is quite 
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common in the general population. As Klitzman et al. noted in response to the ACMG Guidelines, 
‘pathogenic’ variants with a high frequency in the population but a low corresponding disease 
prevalence may cause unnecessary alarm.13 Because this variant can affect disease risk when other 
mutations are also present, its presence would require evaluation of the entire gene and family 
history by an experienced genetic counselor or clinician. This example supports the need for 
comprehensive follow up of variants that are thought to be pathogenic.  

Excluding rs1805124 (H558R), 233 individuals out of 1092 carried an incidental finding. 
These other variants were less common, with less than 5% of individuals carrying any single 
variant. These variants included risks for such conditions as colon cancer (rs1801166) and 
cardiomyopathy (rs121912998), which can profoundly impact health and lifestyle. 21,22  

When we looked across the populations, we saw that there were differences in the average 
number of variants per person. Because many of these variants were derived from studies done in 
individuals of European ancestry, differences could be attributed to this selection bias.14 
Furthermore, different populations likely have different variants driving their total variant counts 
due to differences in population allele frequency. In the case of LWK, which had a very low 
average variant per person count when the most common variant was removed, we are likely 
missing population specific pathogenic variants. Another complex issue brought up by ancestry is 
pathogenicity – variants that may be causative and pathogenic in one population may not have the 
same penetrance or impact in another.14 With our crowdsourcing tool, ancestry will be an option 
that individuals can submit; we hope that this will allow us to get a more accurate picture of the 
distribution of these variants across individuals of different and mixed ancestries. 

We also note that since these are low coverage genomes (~4x), some variants reported could 
be false. Genomes sequenced to clinical standards would have much higher coverage and have 
more confident calls. Thus, this data may be skewed by false positives. 

To evaluate our tool on Complete Genomics data and higher coverage genomes, we applied 
PATH-SCAN to 163 genomes made publicly available from the Personal Genomes Project. Once 
again, rs1805124 (H558R) was the most common variant. However, excluding this variant, 17% 
of genomes had variants of interest. Overrepresentation of certain variants may occur if 
individuals in the Personal Genome Project are related. Several of these variants were low 
frequency at a population level, as they did not appear in the 1000 Genomes data. Our tool assists 
in the evaluation of such variants by pinpointing them within minutes of scanning a genome.  

4.3.  Using PATH-SCAN on Clinical Genomes 

Finally, we ran PATH-SCAN on a clinical genome sequencing cohort of fifteen individuals. The 
output provided a starting point for the evaluation of variants in the project. Previously, people 
used a gene-based approach to look at all variants in a gene of interest and then used manual 
curation to select variants for further evaluation. 

4.4.  PATH-SCAN as a quantitative evaluation tool 

PATH-SCAN is a publicly available tool; individuals using it can choose to anonymously submit 
their pathogenic burden (i.e. the number of variants seen in their genome) and ancestry to our 
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server. Over time, we aim to use crowdsourcing to get a more accurate number of how often 
potentially pathogenic variants are seen and how ancestry affects these numbers.  

The current iteration of our tool serves as the foundation for additional functionalities in 
development. Because ClinVar designated pathogenic variants may not truly be pathogenic, we 
are currently working on adding variant effect prediction scores, such as PolyPhen and SIFT to 
our tool.23,24  

We have found that even with the most common pathogenic variant removed, a substantial 
percentage of individuals still carry variants in ACMG guidelines genes that require additional 
investigation. Of course, due to the limitations of the ClinVar database, many of these variants 
may be benign. However, we feel that each variant needs to be evaluated in the context of other 
mutations, clinical history, and family history by a clinician or genetic counselor. While not all of 
these variants may be ultimately reported back, evaluating these variants will require additional 
resources. Thus, understanding how often such variants occur is key to assessing the resource 
utilization of following the ACMG Guidelines. In the past few months, there has much debate 
surrounding the ACMG Guidelines and their implementation. Our tool PATH-SCAN aims to 
streamline the identification of variants in ACMG recommended genes that warrant further 
investigation and to provide data on how often each variant is seen. 
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6. Appendix A 

PATH-SCAN Manual 
Download http://montgomerylab.stanford.edu/pathscan.zip  
Requirements: Python 2.7.5; a web browser 
Command Line Interface 
A full description of the CLI for PATH-SCAN follows: 
$ python pathscan.py <genome file> [--suppress | --db <database>] 
<genome file> is either a VCF file, a Complete Genomics TSV file, or a 23andMe SNP file.  
--suppress If this flag is specificed PATH-SCAN will only report data on the command line. 
--db <database file> Can be used to specify a different database file.  The database format is a TAB-
delimited file with 9 columns, all required.  First column is chromosome, second is position, third 
is RSID, fourth is the reference allele, fifth is the alternate allele, sixth is the gene name, seven is 
the gene review ID numbers (can be replaced with a '.'), eight is the OMIM ID number (can be 
replaced with a '.', and the ninth is the clinical significance code from ClinVar (can be replaced 
with a '.').          
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A striking finding from recent large-scale sequencing efforts is that the vast majority of variants in the human 
genome are rare and found within single populations or lineages. These observations hold important implications 
for the design of the next round of disease variant discovery efforts—if genetic variants that influence disease risk 
follow the same trend, then we expect to see population-specific disease associations that require large samples 
sizes for detection. To address this challenge, and due to the still prohibitive cost of sequencing large cohorts, 
researchers have developed a new generation of low-cost genotyping arrays that assay rare variation previously 
identified from large exome sequencing studies. Genotyping approaches rely not only on directly observing 
variants, but also on phasing and imputation methods that use publicly available reference panels to infer 
unobserved variants in a study cohort. Rare variant exome arrays are intentionally enriched for variants likely to 
be disease causing, and here we assay the ability of the first commercially available rare exome variant array (the 
Illumina Infinium HumanExome BeadChip) to also tag other potentially damaging variants not molecularly 
assayed. Using full sequence data from chromosome 22 from the phase I 1000 Genomes Project, we evaluate 
three methods for imputation (BEAGLE, MaCH-Admix, and SHAPEIT2/IMPUTE2) with the rare exome variant 
array under varied study panel sizes, reference panel sizes, and LD structures via population differences. We find 
that imputation is more accurate across both the genome and exome for common variant arrays than the next 
generation array for all allele frequencies, including rare alleles. We also find that imputation is the least accurate 
in African populations, and accuracy is substantially improved for rare variants when the same population is 
included in the reference panel. Depending on the goals of GWAS researchers, our results will aid budget 
decisions by helping determine whether money is best spent sequencing the genomes of smaller sample sizes, 
genotyping larger sample sizes with rare and/or common variant arrays and imputing SNPs, or some combination 
of the two. 
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1.  Introduction 

The ability to measure human genetic variation on a genome-scale reliably and inexpensively in 
research settings has fueled and shaped the movement toward personalized medicine in health care. A 
prominent strategy for discovering genetic variants underlying disease susceptibility is through 
genome-wide association studies (GWAS), in which a subset of genetic variation is observed or 
inferred via linkage disequilibrium (LD), and correlated with disease state. GWAS have been 
successful in identifying thousands of reproducible associations with complex disease, which have 
had some utility in clinical practice1,2. However, most variants identified in GWAS with genotyping 
arrays are of small effect and fail to explain a large portion of genetic variation, even when the disease 
is estimated to be highly heritable3. Population genetics and neutral theory suggest that common 
variation might be less important than rare variation in these cases because selective pressure has had 
more time to eliminate deleterious alleles. With the advent of next generation sequencing technology, 
large consortia seeking to identify nonsynonymous coding changes have emerged. A salient result of 
these large-scale projects is that the vast majority of genetic variation is rare and exhibits little sharing 
among diverged populations4–6. The sequencing costs for an exome still outweigh those of genotyping 
arrays, however, and large sample sizes are required to detect rare variants. This creates a budget 
dilemma for GWAS researchers trying to explain the genetic basis of disease regarding the number of 
individuals they can afford to study with sequencing versus genotyping methods. 

As a consequence of these findings, researchers have designed a next generation genotyping array 
that enriches for nonsynonymous rare coding variants. More than 15 labs with exome sequencing data 
from ~12,000 individuals contributed to the ascertainment of SNPs to include in the first rare variant 
array. The current design of the first publicly available next generation array, the Illumina Infinium 
HumanExome BeadChip, consists of only ~250,000 variants, a fraction of the sites that most common 
variant arrays currently assay. The vast majority of sites are rare coding variants; the remaining sites 
include randomly selected synonymous single nucleotide polymorphisms (SNPs), Native American 
and African ancestry informative markers, GWAS tag SNPs, HLA tags, common scaffold SNPs, and 
~2,000 variants from other functional classes. A potential way to bolster the number of sites is 
through statistical inference of variants not molecularly assayed on the genotyping array through 
phasing and imputation guided by publicly available reference panels4,7,8. Phasing and imputation 
methods rely on the correlated inheritance between neighboring alleles or linkage disequilibrium (LD) 
between assayed alleles. LD is substantially reduced between variants on the rare exome array 
overall, however, because the number of scaffold SNPs is substantially reduced compared to other 
GWAS arrays (5,286 SNPs total compared to hundreds of thousands on common variant arrays). 
Admixture mapping, an approach often used when ancestry confounds GWAS associations, also 
relies heavily on a dense scaffold of linked markers. For example, results from HapMix, a method for 
inferring local ancestry across chromosomes, indicated that accuracy is reduced with fewer than 
50,000 scaffold markers even when admixture is recent9. 

In order to better understand the amenability of rare exome variant arrays to existing phasing and 
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imputation methods, we have performed evaluations of multiple LD-based methods as well as 
parameters that influence imputation accuracy, including sample size and population. We find that 
imputation with common variant arrays is more accurate across both the exomic and genomic regions 
of chromosome 22, highlighting the importance of contextual variants in imputation and suggesting 
that the Illumina Infinium HumanExome BeadChip is not ideal for imputation purposes. 
 
2.  Methods 

2.1.  Evaluation overview 

We based all our evaluation on the data provided by the phase I 1000 Genomes project10, wherein 
1,092 individuals from 14 distinct populations were genome sequenced, exome sequenced, and 
genotyped to produce an integrated variant call set. These populations include three African 
populations, three East Asian populations, five European populations, as well as three populations 
from the Americas. We created a pipeline (Figure 1) to perform phasing and imputation using three 
methods: BEAGLE v3.3.211,12 for both phasing and imputation, MaCH-Admix8 v2.0.198 for both 
phasing and imputation, and ShapeIt13,14 v2.r644 for phasing followed by Impute215,16 v2.2.2 for 
imputation (process abbreviated as SHAPEIT2/IMPUTE2). 

To fairly evaluate phasing and imputation performance we compared one rare and one common 
variant array of approximately the same SNP density (the Illumina Infinium HumanExome BeadChip 
and Illumina Infinium HumanHap 300v1 containing ~250K and ~300K SNPs, respectively). To 
evaluate performance versus cost trade-offs, we also included two higher-cost, higher-density 
common variant arrays, the Affymetrix Genome-Wide Human SNP Array 6.0 and Illumina Human 
Omni2.5 BeadChip containing 1M and 2.5M SNPs, respectively. To generate the phasing and 
imputation results for each array, we sampled individuals into a reference panel and a test set. The 
reference panel contained all of the sequence calls on chromosome 22, while the test set was further 
filtered to the markers on each of the corresponding arrays (Table 1). We generated a known truth set 
from the full phase I integrated call set and imputed set using the imputed sites not on each of the 
evaluated arrays for each run for accuracy evaluation.  
 
Table 1 - Arrays evaluated in this study and number of sites across all of chromosome 22 versus exomic regions of 
chromosome 22. Exome sites were filtered using sites annotated with EXOME in the phase I 1000 Genomes integrated 
call set info fields and are a subset of Genome sites. Minor allele frequency (MAF) distributions are as assessed in the 
1000 Genomes phase I samples across all chromosome 22 sites and are drawn for each array from a frequency of 0 – 0.5. 
“Dark sites” are the sites that are on the array but not in the 1000 Genomes phase I reference panel. 

Array Genome Exome MAF 
distributions 

Mean 
MAF 

Dark sites 
(%) 

Illumina HumanOmni2.5 BeadChip 33,188 1,631 

 

0.173 6.99 
Affymetrix Genome-Wide Human SNP Array 6.0 11,739 262 0.208 1.01 
Illumina Infinium HumanHap 300v1 5,376 240 0.272 0.99 
Illumina Infinium HumanExome BeadChip 3,442 3,009 0.050 69.81 
Total reference panel sites 475,372 16,885    
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Simulated data from each of the four arrays were run through the phasing and imputation pipeline. 
The reference panel for each run was used as an input to the pipeline to inform the phasing and 
imputation algorithms. The pipeline first phased the incomplete genotypes in the test set, then 
imputed markers up to the reference panel markers using the same test set markers as in the phasing 
step as a scaffold (Figure 1). In order to speed up computational run time, we split the reference panel 
sites into 5 Mb windows with 250 kb flanking on either ends that were removed in post-processing to 
reduce edge effects between windows. We ran separate instances of imputation for each chunk in 
parallel, enabling the pipeline to run with reasonable memory and in reasonable time. At the end of 
each run, we extracted the imputed genotypes and each algorithm’s confidence score (R2 in the cases 
of BEAGLE and MaCH-Admix and informative measure in the case of Impute2). We calculated 
diploid and haploid error for each imputed site from the known truth data. 
	  

	  
Figure 1 - Phasing and imputation pipeline. Inputs files are subsetted based on varying parameters specified, and for each 
set of parameters phasing and imputation was performed using three methods. 

2.2.  Sampling strategy for test/reference size analyses 

Previous studies have assessed imputation accuracy on single chromosomes, including 
chromosomes 10 (~135 Mb), 20 (~62 Mb), and 22 (50 Mb), and have found highly consistent 
results7,15,16, indicating that they are representative. As such, we used full sequence data from 
chromosome 22 for computational efficiency from all 1,092 individuals and sampled them randomly 
into two groups: A reference panel and a test set. To study the effect of different reference panels and 
GWAS study sizes on the accuracy of imputed haplotypes, we investigated 13 different 
configurations of test set and reference panel sizes: a test set of size 92 with varying reference panel 
sizes of 63, 125, 250, 500, and 1000; and test panel sizes of 300 and 500, each with reference panels 
of 62, 125, 250, and 500.  

Using the reference panel to inform phasing and imputation, we ran the pipelines for each of the 
three common variant arrays and the rare exome array and collected the results. The results were 
compared to the true calls found in the unfiltered genotypes of individuals in the test set. 

Software Pipeline
0) Preprocess input        
Phasing     Imputation     Accuracy & R2  
1) BEAGLE    BEAGLE       
2) MaCH     MaCH      Merged across runs 
3) SHAPEIT2    IMPUTE2       

Input
VCF with all individuals’ 
genotypes
Reference panel IDs
Test panel IDs
Test set markers

Varying Parameters
Array (Common/Exome)

Ancestry
Sample size
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2.3.  Sampling strategy for population analyses 

We used full sequence data from all of the 1,092 individuals and separated them into 14 
populations. Four different sampling strategies were employed to identify biases when different 
reference sets are used for each of the 14 populations, resulting in 56 sets of samplings, as follows. 
The first two samplings assessed imputation accuracy when a test population is not or is included in 
the reference panel, respectively. We created a test set with all individuals in each population and 
sampled 900 individuals from the rest of the genomes available in the 1000 Genomes project (strategy 
A, Figure 3). As a control for the presence of a population from the reference panel, we created 
another test set with half of all the individuals in each population and put the remaining half of the 
population in the reference panel, then added individuals from other populations randomly until the 
reference panel contained 900 individuals (strategy B). 

The other two population samplings focused on the significance of having individuals from the 
same continent in the reference panel. We created a test set with 33 individuals in the population and 
sampled 148 from all other individuals from the same continental group (strategy C). These numbers 
were chosen for uniformity across populations in order to represent the smallest continental group in 
the data. We performed this evaluation for each population and considered four continental groups: 
Africans, Asians, Europeans, and Native Americans.  As a control, we created another test set with 30 
individuals in the population and sampled 148 from all other individuals regardless of origin (strategy 
D). 

2.4.  Phasing and imputation summaries and analysis 

Using the reference panel to inform phasing and imputation, we ran the pipelines for each of the 
three common variant arrays and the rare exome array. The imputed genotypes were compared to the 
true calls in the unfiltered sequences of individuals in the test set. Data summaries for all three 
algorithms reported an informative metric (R2), which were generated by the imputation algorithms. 
Because each algorithm calculates R2 differently, we calculated diploid and haploid error, as well as 
minor allele frequency (MAF), in order to fairly compare the algorithms directly. We define the 
diploid error as any discordance between the most likely imputed and true calls, which is affected by 
MAF and therefore only used to compare method performances. In this scenario, if the true variant is 
homozygous reference, heterozygous or homozygous non-reference imputation dosages count equally 
toward the error. We also calculated haploid error, where in the previous scenario, a heterozygous call 
counts half as much toward the error as a homozygous non-reference call, which was highly 
correlated (>99%) with diploid error. We note that the diploid and haploid errors are critical to 
examine but that they are highly influenced by MAF. For example, at a site where a very rare variant 
exists in the reference panel, error is very low because the imputation algorithm frequently fills in the 
major allele, even in the absence of any surrounding variants. In contrast, when a common variant 
exists, the imputation algorithms require more neighboring information to correctly impute the 
variant. For these reasons, we assess imputation accuracy as R2 as previously15, except where 
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otherwise noted. In order to compare MAF versus imputation accuracy, we performed local 
regression weighted by least squares. Unless otherwise noted, the span was 0.75. 

3.  Results 

We first compared the performance of three phasing and imputation algorithms, BEAGLE, 
MaCH-Admix, and SHAPEIT2/IMPUTE2 under multiple conditions. The informative measure 
metrics are defined slightly differently for each algorithm7, and in all cases SHAPEIT2/IMPUTE2 
reports the highest informative measures (data not shown). In order to determine which method was 
performing most accurately based on known truth data, we compared their performance via mean 
diploid error across all test panel sizes, reference panel sizes, and the four arrays we evaluated, as 
outlined in Methods. In each case, BEAGLE had the highest error, SHAPEIT2/IMPUTE2 performed 
comparably with MaCH-Admix, and MaCH-Admix resulted in the lowest error, which highlights the 
importance of using a directly comparable metric to assess method performance. Table 2 shows the 
average diploid error across chromosome 22 across all reference and test panel sizes using the 
Affymetrix Genome-Wide Human SNP Array 6.0 for each, which showed the same trends with other 
arrays (data not shown). Because MaCH-Admix resulted in the lowest imputation error, all following 
analyses show results using this method. 
	  
Table 2 - Diploid error across multiple sample sizes. Reported values are mean percentages across all variant sites in the 
phase I 1000 Genomes Project on chromosome 22 using sites on the Affymetrix Genome-Wide Human SNP Array 6.0 as 
test markers. Individuals in the test and reference panel are the same across methods for each comparison. Imputation R2 
values are shown for each algorithm, which are defined differently for each algorithm. Note that BEAGLE R2 averages 
are calculated only for values that are not “NaN,” which likely increases the R2 reported with respect to other algorithms. 

Test 
panel size 

Reference 
panel size 

BEAGLE 
(%) 

MaCH-
Admix (%) 

Shapeit+Impute2 
(%) 

BEAGLE 
(R2) 

MaCH-
Admix (R2) 

Shapeit+Impute2 
(R2) 

500 500 6.36 4.21 4.35 .7349 .3762 .5604 
500 250 6.37 4.27 4.38 .7329 .3333 .4735 
500 125 6.63 4.41 4.56 .6820 .2959 .4048 
500 62 6.77 4.63 4.74 .7403 .2464 .3175 
300 500 6.31 4.16 4.32 .7387 .3724 .5348 
300 250 6.60 4.39 4.56 .7392 .3279 .4567 
300 125 6.57 4.37 4.53 .7344 .2954 .3928 
300 62 6.87 4.66 4.79 .7331 .2513 .3191 
92 1000 6.36 4.13 4.30 .7653 .3503 .4655 
92 500 6.49 4.25 4.45 .7637 .3401 .4482 
92 250 6.37 4.17 4.33 .7467 .3081 .3978 
92 125 6.59 4.51 4.65 .7481 .2799 .3540 
92 63 6.68 4.40 4.59 .7123 .2506 .3033 
	  

We next evaluated the impact of test and reference panel sizes on imputation accuracy, as 
assessed by R2, for the four arrays described previously (Figure 2). We compared three test panel 
sizes (92, 300, and 500) and find that in all cases, larger test panels have greater imputation accuracy, 
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indicating that phasing and imputing a full study set together improves imputation accuracy. We also 
find that reference panel size has a greater impact on imputation accuracy than test panel size when 
the test panel contains greater than 92 individuals. These results indicate that large reference panels 
are necessary to accurately impute variants. 

	  
Figure 2 - Imputation accuracy across varying reference and test panel sizes. Phasing and imputation was performed using 
MaCH-Admix. Test panel markers were ascertained on chromosome 22 using sites from four arrays in the following 
colors: green – Illumina HumanOmni2.5 BeadChip, red – Affymetrix Genome-Wide Human SNP Array 6.0, blue – 
Illumina Infinium HumanHap 300v1, purple – Illumina Infinium HumanExome BeadChip. On the x-axis, the first number 
indicates the number of individuals included in the test panel, and the second number is the number of individuals 
included in the reference panel.  

The effect of reference panel size on imputation accuracy is especially pronounced when fewer 
markers are assayed. For example, imputation accuracy is not substantially reduced for most common 
sites across chromosome 22 (MAF > 5%) when the reference panel size is reduced from 500 
individuals to only 62 individuals using the dense Illumina HumanOmni2.5 BeadChip, and most 
common sites maintain an R2 of ~0.9. In contrast, the accuracy drops considerably between a 
reference panel size of 500 versus 62 with the sparser Illumina Infinium HumanHap 300v1 (e.g. 
reduction of 13% from R2=0.772 to 0.669 at MAF=0.3) and Illumina Infinium HumanExome 
BeadChip arrays (e.g. reduction of 26% from R2=0.146 to 0.108 at MAF=0.3). We also find that 
accuracy plateaus as a function of minor allele frequency (MAF). Additionally, invariant reference 
panel SNPs likely drive the number of “dark sites” on each array (Table 1). Interestingly, the MAF at 
which accuracy peaks is array-specific. For example, the Illumina Infinium HumanHap 300v1 array 
has a similar number of sites on chromosome 22 as the Illumina Infinium HumanExome BeadChip 
(Table 1); however, accuracy peaks around MAF=0.3 on the Illumina 300k array and around 
MAF=0.5 on the exome array. Interestingly, imputed exome rare variant array sites from genome-
wide arrays are imputed more accurately than across all chromosome 22 sites for varying allele 
frequencies (Figure 4A-C versus Figure 4I-K), likely because scaffold sites on genome-wide arrays 
are enriched near exonic regions, improving imputation accuracy. 
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Previous work has indicated that reference panels that share more haplotypes with the study panel 
improve imputation accuracy compared to a random panel17. We compared multiple population 
stratifications as described is Section 2.3 (Figure 3). In all scenarios, imputation performs the poorest 
in individuals of African descent. This is likely due to the reduced LD structure in African 
populations18 and European ascertainment bias in genotyping arrays19. Imputation with both global 
reference panel strategies with a larger number of reference individuals, albeit from more distantly 
related populations overall (Figure 3A and Figure 3B), outperforms imputation with smaller 
continental reference panels (Figure 3C and Figure 3D). Low frequency alleles are imputed with 
greater accuracy when the reference panel includes individuals from the same population compared to 
when it does not (Figure 3B versus Figure 3A). This is especially true in European populations with 
the exception of TSI individuals, which likely arises from the greater genetic diversity and more 
complicated demographic history present in Italy compared to other European populations presented 
here20,21. 

 

	  
Figure 3 - Variability in imputation accuracy across populations. All simulations were performed using the Affymetrix 
Genome-Wide Human SNP Array 6.0 markers from chromosome 22 in the test set. Lines are local regression fits to the 
data, and local peaks near MAF=0 in A and B for the GBR and TSI, respectively, are simply due to smoothing edge 
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effects. A) Strategy A. B) Strategy B. C) Strategy C. D) Strategy D. Diagrams drawn under loess curves are cartoons of 
sampling strategies, as outlined in section 2.3. Abbreviations are as follows: ASW=HapMap African ancestry individuals 
from SW US, LWK=Luhya individuals, YRI=Yoruba individuals, CEU=CEPH individuals, FIN=HapMap Finnish 
individuals from Finland, GBR=British individuals from England and Scotland, TSI=Toscan individuals, CHB=Han 
Chinese in Beijing, CHS=Han Chinese South, JPT=Japanese individuals, CLM=Colombian in Medellin, Colombia, 
MXL=HapMap Mexican individuals from LA California, PUR=Puerto Rican in Puerto Rico. 

Figure 4 - Imputation accuracy across three common variant and one rare exome variant arrays in genomic, exomic, and 
imputable exome rare variant array regions of chromosome 22. Colors correspond with arrays, as in Figure 2. All 
subpanels show smoothened scatter plots with an overlaid local regression fit, and the proportion of sites imputed with R2 
> 0.8 is reported, which are consistent with previous results22. Span was adjusted to 0.5 in order to keep the fits within the 
bounds of the data. A-D) genomic regions of chromosome 22; E-H) exomic regions of chromosome 22; I-K) Imputation 
accuracy for imputable exome rare variant sites using each of the genome-wide common variant arrays.  

We next compared imputation accuracy across three common variant and one rare exome variant 
genotyping array platforms. As expected, the common variant arrays impute sites across chromosome 
22 more accurately than the Illumina Infinium HumanExome BeadChip. Surprisingly, all three 
common variant arrays also outperform the exome array in imputing the exome-only regions, though 
their accuracy is substantially reduced in the exome compared to the genome (Figure 4). Imputation 
accuracy is the poorest with the rare variant exome array, even though the Illumina 300k common 
variant array has slightly fewer assayed variants on chromosome 22 (Table 1). Aside from the exome 
array, accuracy improves with arrays tagging more variants, as expected. The accuracy in the rare 
variant exome array is increased in the exomic regions compared to all chromosome 22 variants 
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(Figure 4H and Figure 4D, respectively). As shown in Figure 4, the imputable exome variant sites are 
imputed with similar accuracy as all sites across chromosome 22 with common genome-wide arrays 
as a scaffold. While the “dark sites” on the exome chip will be missed, other imputable sites, which 
are enriched for biomedically relevant SNPs, are imputed with similar accuracy as any similar 
frequency SNP. 

4.  Discussion 

We have evaluated multiple factors that influence imputation accuracy, including test and 
reference panel size, phasing and imputation methods, populations, and genotyping arrays. We find 
that both larger reference and test panels lead to greater imputation accuracy, and that reference panel 
size is more important than test panel size in most GWAS scenarios. Larger reference panels, 
regardless of population, aid imputation performance for common variants, while more closely related 
reference panels are critical for accurately imputing rare variants. Comparing three methods, our 
simulations revealed that BEAGLE was both the most computationally costly method (e.g. ~48 hours 
to run and 10.5G of memory for chromosome 22 with a reference size of 500 and test size of 500) and 
had the least accurate performance. SHAPEIT2/IMPUTE2 and MaCH-Admix were comparable in 
terms of computationally efficient (2 hours to run and 2G of memory versus 3.5 hours to run and 1G 
of memory with the same test and reference panel as in the BEAGLE case). These computational 
costs are consistent with previously reported values8.	  

It is important to note that there is an obvious bias in imputation accuracy across populations, with 
the lowest accuracy in African populations. Greater accuracy in out-of-Africa groups is likely due to 
ascertainment bias as well as longer haplotypes from the serial founder effect during the peopling of 
the globe. We see improved imputation accuracy at the rare end of the allele frequency spectrum 
when the reference panel includes the same population as the test panel. These results suggest that 
nearby reference panels are especially important for large outbred groups. 

Imputation with common variant arrays substantially outperforms imputation with the Illumina 
Infinium HumanExome BeadChip. This reduction in accuracy is apparent for all frequencies, 
including rare alleles, suggesting that covariance between rare and nearby alleles is low, and alleles 
are tagged poorly. This is likely in part due to the uneven distribution of variants on the exome array 
across the chromosome, reducing LD on the array. A scaffold of genomic variants will likely aid 
imputation accuracy in exome arrays. One potential way to assay a large number of rare variants 
accurately without losing important rare variant information is to combine arrays, coupling the exome 
array with one of the common arrays we evaluated, for example. The improved imputation accuracy 
by the exome array in exomic regions is likely due to denser markers and greater LD in this region. 
The reduction of imputation accuracy in exomic regions with the common variant arrays may be due 
to greater sequencing depth in the 1000 Genomes Project in the integrated call set, which contains, 
genotyping, genome-, and exome-sequencing data, leading to more low frequency calls passing 
variant filters. 
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Finally, alternative algorithms for phasing23,24 that rely on identity-by-descent (IBD) structure 
preferentially rather than LD have recently been published. These methods take advantage of 
haplotypic structure and will likely aid imputation differentially depending on the degree of sharing 
within a population and the potential to improve phasing accuracy. A question for future work, for 
example, might compare phasing accuracy using LD-based and IBD-based methods in endogamous 
African populations where imputation with traditional arrays performs poorly but where cryptic 
relatedness is more likely to exist. 

5.  Conclusions 

The next generation of genotyping arrays intends to capture rare, coding variation that is likely to 
contain more pathogenic variation than randomly ascertained SNPs. Here, we assess the ability of a 
commercially available rare variant exome array to adequately tag variation that has not been directly 
assayed, compared to common variant arrays. We assess multiple methods, sample sizes, and 
populations, and find that imputation accuracy is substantially reduced with the rare variant exome 
array compared to common variant arrays. This result is true both in genomic and exomic regions of 
chromosome 22, although the difference in imputation accuracy between common and exome arrays 
is reduced in exomic regions. We also find that the European ascertainment bias in common variant 
arrays is reflected in imputation accuracy across populations, with most European variants imputed 
more accurately than those of other continental groups. Additionally, closely related populations are 
critical in reference panels for low frequency variants. Finally, we compare three phasing and 
imputation methods and find that BEAGLE is the least accurate, and SHAPEIT2/IMPUTE2 performs 
slightly less accurately than MaCH-Admix for all reference and test panel sizes. This research 
provides guidelines for GWAS researchers to avoid the current design of exome rare variant arrays 
when imputing genotype data. We acknowledge, however, that these next generation arrays have 
potential utility when fine-mapping a variant that is suspected to be coding and not tagged by 
common variant genotyping arrays. 
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Appendix 
 
All code written to run phasing and imputation simulations on a Sun Grid Engine can be downloaded 
here: https://github.com/armartin/compare_impute. 
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Calcineurin-inhibitors CI are immunosuppressive agents prescribed to patients after solid organ 
transplant to prevent rejection. Although these drugs have been transformative for allograft survival, 
long-term use is complicated by side effects including nephrotoxicity.  Given the narrow therapeutic 
index of CI, therapeutic drug monitoring is used to prevent acute rejection from underdosing and 
acute toxicity from overdosing, but drug monitoring does not alleviate long-term side effects. 
Patients on calcineurin-inhibitors for long periods almost universally experience declines in renal 
function, and a subpopulation of transplant recipients ultimately develop chronic kidney disease that 
may progress to end stage renal disease attributable to calcineurin inhibitor toxicity (CNIT).  
Pharmacogenomics has the potential to identify patients who are at high risk for developing 
advanced chronic kidney disease caused by CNIT and providing them with existing alternate 
immunosuppressive therapy.  In this study we utilized BioVU, Vanderbilt University Medical Center’s 
DNA biorepository linked to de-identified electronic medical records to identify a cohort of 115 heart 
transplant recipients prescribed calcineurin-inhibitors to identify genetic risk factors for CNIT We 
identified 37 cases of nephrotoxicity in our cohort, defining nephrotoxicity as a monthly median 
estimated glomerular filtration rate (eGFR) <30 mL/min/1.73m2 at least six months post-transplant 
for at least three consecutive months.  All heart transplant patients were genotyped on the Illumina 
ADME Core Panel, a pharmacogenomic genotyping platform that assays 184 variants across 34 
genes.  In Cox regression analysis adjusting for age at transplant, pre-transplant chronic kidney 
disease, pre-transplant diabetes, and the three most significant principal components (PCAs), we did 
not identify any markers that met our multiple-testing threshold.  As a secondary analysis we also 
modeled post-transplant eGFR directly with linear mixed models adjusted for age at transplant, 
cyclosporine use, median BMI, and the three most significant principal components.   While no SNPs 
met our threshold for significance, a SNP previously identified in genetic studies of the dosing of 
tacrolimus CYP3A5 rs776746, replicated in an adjusted analysis at an uncorrected p-value of 0.02 
(coeff(S.E.) = 14.60(6.41)).  While larger independent studies will be required to further validate this 
finding, this study underscores the EMRs usefulness as a resource for longitudinal pharmacogenetic 
study designs. 

1.  Introduction 

Calcineurin-inhibitors (CI), such as tacrolimus and cyclosporine, are immunosuppressants prescribed to 

recipients of allographs to reduce the risk of rejection by the immune system.  These drugs function by 
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dampening IL-2 signaling pathway in T-cells and avoid the vigorous inflammation and tissue damage 

typical of an alloresponse.  While these drugs have led to dramatically improved survival among heart 

transplant recipients, the nephrotoxic side-effects of these drugs continue to diminish the long-term survival 

rates among patients [1;2].  CI are dosed in a narrow therapeutic window requiring close monitoring of 

serum drug levels to prevent allograft rejection while minimizing the risk of adverse events.   

Post-transplant, patients undergo continuous monitoring of their serum creatinine and glomerular 

filtration rates (GFR) to determine impact of the immunosuppressants on kidney function.  A decline in 

kidney function is nearly universal among heart transplant recipients with significant variability in the 

development of severe kidney disease.  Patients are frequently faced with the development of chronic 

kidney disease (CKD) which is classified into 5 stages of increasing severity, each defined by the estimated 

GFR.  In a retrospective study 352 heart transplant recipients, 3% developed end-stage renal disease or 

CKD Stage 5 by 5 years and 12% by 10 years [3].  Clinical risk factors for developing post-transplant CKD 

include pre-transplant GFR, pre-transplant diabetes mellitus, a female cardiac donor, gender of the 

recipient, and post-operative renal replacement therapy [3].   

Despite vast structural differences, the pharmacokinetics of cyclosporine and tacrolimus are 

surprisingly similar, and both agents are targets of the P-gp efflux pump ABCB1 and the cytochrome p450 

CYP3A family of enzymes [4].  These genes are polymorphic for functional alleles, and variants have been 

examined in several pharmacogenetic studies of calcineurin-inhibitor dosing and nephrotoxicity in renal 

transplants [5-8].  Despite a large number of candidate gene studies on the effects of these variants on 

immunosuppression therapy, many of these analyses are narrow in their scope of genes tested.   In this 

study, we explored the roles of other pharmacokinetic genes outside the CYP3A family and ABCB1 on the 

development of calcineurin inhibitor nephrotoxicity CNIT.  For our study, we identified 127 heart 

transplant recipients in BioVU, Vanderbilt University Medical Center’s DNA biorepository linked to de-

identified electronic medical records. From data collected in this patient population, we developed a 

longitudinal pharmacogenetic study to test the impact of ADME Core variants on the development of CNIT 

[9].   

2.  Methods 

2.1.  Study Population 

As stated above, our study population of heart transplant recipients was obtained from BioVU.  A full 

description of BioVU as a resource, including its ethical, privacy and other protections has been described 

in detail elsewhere [10].  In brief, BioVU extracts and stores DNA from blood collected from routine 

clinical testing that is scheduled to be discarded after a three-day waiting period at the Vanderbilt 

University Medical Center (VUMC) in Nashville, TN.  DNA samples are linked to a de-identified version 

of the patient’s electronic medical record, known as the Synthetic Derivative (SD), which can be accessed 

by investigators for research purposes after approval by the local internal review board and BioVU Review 

Committee.  Patients eligible for possible inclusion into BioVU are those with an out-patient laboratory 
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blood draw, have signed the consent to treatment form, and have not made a formal indication to opt-out 

[11].   

Using the SD, we identified initial candidates for our study by screening for patients who met the 

following criteria:  a) a heart transplant documented with three or more ICD9 code V42.1 (heart replaced 

by transplant) and/or one CPT code 33945, b) one or more mention of an immunosuppressant, c) DNA 

available in the biorepository and genotyped on the Illumina ADME Core Panel, and d) the patient was 

over the age of 15 at the date of the transplant operation.  This initial screen identified 152 potential 

candidates.  We then manually extracted the date of the transplant operation from each record.  We 

excluded 10 patients with an ambiguous transplant operation date in the record or miscoded with a kidney, 

lung, liver, or multiple heart transplants during his/her lifespan.  We extracted immunosuppressant data 

from the de-identified records of this heart transplant sample population with MedEx.  MedEx extracts 

medications and their signature mentions from free-text entries in the EMRs.  We used only medications 

with at least one mention of a dose, route, frequency or strength to limit the medications to those the patient 

was actually prescribed.  A more detailed description of the software has been published elsewhere [12].   

We also extracted additional clinical information from the SD.  For quantitative measurements such as 

body mass index (BMI, kg/m
2
), serum creatinine (mg/dl), and systolic and diastolic blood pressure 

(mmHg), monthly medians were calculated.  Prior to transplant chronic kidney disease and diabetes 

mellitus were defined by ICD9 codes before the transplant date.  Chronic kidney disease was defined by 

three or more mentions of the following ICD9-codes:  403, 585.1, 585.2, 585.3, 585.4, 585.5, 585.6, and 

585.9. Patients were considered to have diabetes mellitus pre-transplant if they had three or more mentions 

of the following ICD-9 codes:  250.3, 250.32, 250.2, 250.22, 250.9, 250.92, 250.8, 250.82, 250.7, 250.72, 

250.6, 250.62, 250.5, 250.52, 250.4, 250.42, 250, and 250.02. Pre-transplant hypertension was defined as 

median systolic blood pressure > 140 mmHg, systolic  and /or > 90 mmHg diastolic, or prescribed one of 

the following hypertension medications: hydralazine, minoxidil, renin antagonist, central alpha agonists, 

ACE inhibitors (ACEI)/angiotensin receptor blockers (ARB), aldosterone antagonists, diuretics, K-sparing 

diuretics, loop diuretics, alpha antagonists, calcium channel blockers (CCB), beta blockers (BB), 

thiazide/BB, thiazide/ACEI/ARB, thiazide/aldosterone antagonist, thiazide/renin antagonist, and diuretic 

combinations, all before the transplant date.   

2.2.  Phenotype Definition 

The outcome of interest was time to develop severe nephrotoxicity clinically attributed to CNIT, which 

we defined in our patient population as the development of CKD stage 4 or 5 in the setting of CI use.  To 

assess kidney function over the course of immunosuppression therapy, we estimated the glomerular 

filtration rate from the “four variable” Modification of Diet in Renal Disease formula [13]: 

186 × Serum Creatinine
-1.154

 × Age
-0.203

 × [1.212 if Black] × [0.742 if Female]                   (1) 

All patients who entered into the SD by the time of their transplant date were included in this study.  

Patients who entered the SD post-transplant were included if their initial eGFR measurement upon entering 

the SD was > 30 mL/min/1.73m
2
, this included patients with CKD stages 1, 2, and 3.  These patients were 

assumed not to have CKD 4 or 5 in the setting of CI prior to their entry into BioVU and were entered into 

the analysis at their heart transplant date.  Patients who entered the SD after their heart transplant date with 
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an eGFR < 30 were excluded from the analysis.  Our definition of severe chronic kidney disease 4 was a 

monthly median eGFR of < 30 mL/min/1.73m
2
 for three consecutive months.  This threshold is adapted 

from the National Kidney Foundation’s definition for CKD stage 4: GFR of 15-29 and CKD Stage 5: GFR 

<15 or dialysis [14].   

2.3.  Genotyping 

DNA samples from a total of 115 heart transplant recipients were genotyped on Illumina’s ADME 

Core Panel as part of Vanderbilt Electronic Systems for Pharmacogenomic Assessment (VESPA).  In short, 

Illumina’s pharmacogenetic-targeted ADME Core panel is designed for the genotyping of 184 markers in 

34 genes.  A full description of the panel’s content and performance has been published elsewhere [9].  

Genotyping for this study was conducted at the Center for Human Genetics Research DNA Resources Core 

at Vanderbilt University.  Genotype calling was performed with ADME Module Version 1.0.0.3.  

Formatting of the ADME Core Panel data set and quality control of the markers was performed with 

PLATO and PLINK [15;16].  SNPs were filtered from the analysis if the allele frequency was below 5%, 

genotyping efficiency <95%, or a statistically significant deviation from Hardy Weinberg expectations (p < 

0.001) in the European American population.  After filtering, 49 SNPs remained in our analysis. A 

principal components analysis (PCA) was performed with the Eigensoft software using available genome-

wide data in the full dataset and in the subset of European Americans [17].  We tested for relatedness of 

individuals in subsets of samples stratified by race/ethnicity.  One sample from a related pair of European 

Americans was removed.  The genome-wide inflation factor for this study was 1.  We extracted 333,804 

overlapping markers from the samples’ genotype data from the following platforms:  18 individuals on 

Illumina’s HumanOmni5-Quad, 109 on the HumanOmni1-Quad, and four on Illumina’s 1M-Duo 

BeadChip.  

2.4.  Statistical Analysis 

Cox proportional hazard models were calculated using the date of the heart transplant as the starting 

time in a time-to-event analysis.  Genotypes were modeled additively against development of CKD stage 4. 

Factors that were associated with renal function in univariate analyses (p < 0.05) were included in the final 

multivariable model.  Patients who did not develop CKD stage 4 were censored from the analysis at their 

final eGFR measurement.  For the linear mixed effects modeling of post-transplant eGFR, we used the R 

package, nlme.  SNPs and covariates that met a 0.05 threshold in univariate analyses were included as fixed 

effects and the subject identifier was included as a random effect.  The within subject correlation was 0.70 

and we chose to account for it in our models with an autoregressive-moving average model with one 

autoregressive and one moving average parameters. Plots were generated with STATA 11 and RStudio 

Version 0.97.551 
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3.  Results 

3.1.  Demographics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 presents the clinical characteristics of our study population identified in BioVU.  Overall, this 

is an ancestrally cosmopolitan cohort where 80.8% of the patients were administratively assigned [18] as 

of European descent, while the remainder was reported as African American with the exception of one 

    

Patients 115 

European Descent (%) 86.0 

Female (%) 33.9 

Transplant Operation at VUMC (%) 80.8 

Pre-transplant Diabetes Mellitus (%) 10.4 

Median Systolic (mmHg) 100.2, IQR: 94.3-107.0  

Median Diastolic (mmHg) 64.0  IQR: 59.9-66.9        

Pre-transplant Hypertension (%) 66.0 

Pre-transplant Chronic Kidney Disease 9.56 

Median Age at Tx (years) 52.5, IQR: 40.5-58.1 

Required Dialysis Post-Transplant (%) 18.2 

Median Post Tx Follow up Time (years)  8.8, IQR: 4.8 – 12.2 

Median Pre-eGFR (mL/min/1.73m
2
) 68.0, IQR: 57.4-87.2 

Median Body Mass Index (kg/m
2
) 27.4, IQR:24.6-31.1 

Died (%) 21.7 

Cyclosporine Only (%) 35.7 

Tacrolimus Only (%) 25.2 

Cyclosporine and Tacrolimus (%) 39.1 

Table 1:  Clinical Characteristics of heart transplant samples.  
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sample reported as Hispanic.  The median age at transplant was 52.5 years of age.  This is a slightly 

overweight population with the median body mass index of 27.4 kg/m
2
.  Prior to transplant, 10.4% and 

60.6% patients had evidence of diabetes mellitus and hypertension, respectively.  A majority of patients 

(52.7%) had their heart transplant at VUMC.  Twenty-five patients died during post-transplant follow up.  

All patients were prescribed a calcineurin-inhibitor:  35.7% were prescribed cyclosporine alone, 25.2% 

tacrolimus alone, and 39.1% were prescribed a combination of the two (at different times). 

 

 
 

 
Figure 1.  Post-transplant eGFR measurements plotted on the thresholds of the five stages of 
chronic kidney disease.  Individual post-transplant eGFR measurements are plotted on the y-axis 
against time in months after transplant on x-axis as grey dots.  The dashed line represents a 
polynomial function fit to all eGFR measurements collected in the study. Ten randomly selected 
patient’s eGFR profiles have fitted with loess lines and colored in red if the patient developed Chronic 
Kidney Disease (CKD) Stage 4 or below.  Thresholds for the 5 stages of CKD are indicated: CDK1 >90, 
CKD2 60-89, CKD3 30-59, CKD4 15-29, and CKD5 <15 mL/min/1.73m2.  

 

As expected for this patient population, the eGFR prior to transplant was lower than would be expected 

for a healthy population (median = 68.0 mL/min/1.73m
2
).  Follow up time for these patients varied (Figure 

1):  median time to the final eGFR measurement in the SD was 8.8 years, and the median frequency of 

follow-up was 5.5 (IQR: 4.2-7.5) eGFR measurements per year.  Kidney function continued to decline over 

time (Figure 1).  In the second year (12-24 months) post-transplant 14.0, 31.4, 50.0, and 4.6 percent of 

individuals had median eGFR measurements that corresponded with the first four stages of CKD, 

respectively.  By the fifth year (60-72 months), the distribution shifted towards lower median eGFR levels: 

3.4, 22.4, 62.0, and 12.0  percent of individuals were observed with median eGFRs in range with the first 
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four stages of CKD.   At year ten, 11.7 and 11.7 percent of patients median eGFR measurements 

corresponded to CKD stages four and five, respectively. 

3.2 Time to CKD Stage 4 and 5 Survival Analysis 

Figure 2 displays the development of CNIT in this study population in months post-heart transplant.  

Thirty-seven out of 115 patients (25.2) in this heart transplant cohort met the CNIT case definition.  By 

twelve months, eight individuals (7.0%) met the criteria for CNIT, 19 (16.5%) by 60 months, and 28 

(24.3%) by 120 months.   From among the various clinical variables tested for an association with CNIT 

(the three most significant PCAs, gender, systolic and diastolic blood pressure, pre-transplant diabetes, pre-

transplant hypertension, pre-transplant chronic kidney disease, age at transplant, pre-transplant eGFR, BMI, 

and prescribed calcineurin inhibitor), only pre-transplant eGFR, pre-transplant CKD status, pre-transplant 

diabetes mellitus status,  and age at transplant met a significance threshold of p < 0.05  (Table 2).   

 

 

Figure 2.  Kaplan-Meier plot describing the proportion of non-nephrotoxic heart transplant 
recipients over time.  The y-axis indicates the proportion of event-free subjects and tick marks on 
the plot indicate where individuals are censored from the analysis. 
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Predictor Hazard Ratio (95% CI) P-value 

 

Univariate Clinical Variable Model 

  

Recipient Age per year 1.05 (1.01-1.08) 9.85 x 10
-3

 

Pre-transplant CKD 3.69 (1.36-10.01) 0.01 

Pre-Transplant eGFR per ml/min/1.73m
2
 0.96 (0.94-0.98) 1.03 x 10

-3
 

Prior Diabetes Mellitus 6.92(2.64-18.54) 8.33 x 10
-5

 

   

Multivariable Genetic Model    

DPYD rs1801265 0.45 (0.22-0.93) 0.03 

UGT2B17 rs1902023 2.23 (1.21-4.11) 0.01 

SLCO1B1 rs4149056 0.38(0.14-0.96) 0.03 

SLC22A1 rs34305973 2.14(1.18-3.90) 0.01 

 

First, in the European American subset (n=99 heart transplant recipients with 35 cases of CKD stages 4 

and 5) we tested the 49 Illumina ADME Core Panel markers that passed quality control for association with 

CNIT outcome.  In unadjusted analysis, no markers were associated with CNIT after adjustment for 

multiple testing (p < 1.02 x 10
-3

).  Variants in SLC22A1 rs34305973 and UGT2B17 rs1902023 trended 

toward significance in the unadjusted model (p = 0.02 and p=0.02, respectively).  In models adjusted for 

pre-transplant CKD, pre-transplant diabetes mellitus, age at transplant, and the three most significant PCAs, 

UGT2B17 rs1902023 was the most significant (p = 0.01) among all the tested ADME Core Panel markers 

(Table 2).  Secondly, we expanded our analysis to the full dataset regardless of race/ethnicity (n=115 heart 

transplant recipients with 37 cases of CKD stage 4 and 5) and the results were largely unchanged (data not 

shown).   In the adjusted models for the full dataset, DPYD rs1801265 was the most significant (p = 9.24 x 

10
-3

, HR: 0.39, CI: 0.19-0.79) among all the tested ADME Core Panel markers.  No marker was associated 

with CNIT in unadjusted or adjusted models after correction for multiple testing when the data were limited 

to cyclosporine treated only patients (n=95 heart transplant recipients with 27 cases of CKD stage 4 or 5) or 

tacrolimus treated only patients (n=79 heart transplant recipients with 18 cases of CKD stage 4 or 5; data 

not shown).   

Table 2:  Results of CNIT Analysis in European Americans 
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3.2 Modeling Post-Transplant eGFR  

As a secondary analysis of post-transplant kidney function, the repeated eGFR measurements were 

analyzed directly using mixed effects models to account for the within subject correlation.   In univarate 

analyses of covariates among European Americans, only cyclosporine use (coef(S.E) = -17.05(7.13), p = 

0.02), median BMI (coef(S.E) = -1.27(0.62), p<0.05), and age at transplant (coef(S.E) = -1.01(0.15), p = 

1.55x 10
-8

) were associated with eGFR over time.  No SNP met the significance threshold for multiple 

testing in unadjusted or adjusted analyses.  However, in unadjusted analyses, two of the three SNPs that 

met a threshold of 0.05 have previously been associated with post-transplant renal function: CYP2C19 

rs4244285 (coef(S.E) = 13.28(6.17),p = 0.03) and CYP3A5 rs776746 (coef(S.E) = 21.94(8.37),p = 0.01).  

SNP CYP2A6 rs28399433 also met the 0.05 threshold (coef(S.E) = 20.91(3.46), p = 0.02) in unadjusted 

analyses.  Two of these associations maintained significance at the 0.05 threshold in the multivariate 

models CYP3A5 rs776746 (coef(S.E) = 14.60(6.41), p = 0.03) and CYP2A6 rs28399433 (coef(S.E) = 

17.14(8.24), p = 0.04)[19].  In analyses extended to the full dataset regardless of race/ethnicity, only 

CYP2A6 rs28399433 (coef(S.E) = 17.46(6.70), p = 0.01) approached significance in the adjusted analysis 

(data not shown). 

4.  Discussion 

4.1.  Summary and Relevance 

We used a biorepository linked to de-identified electronic medical records to identify heart transplant 

patients for pharmacogenomic studies.  The two outcomes of interest in the present pharmacogenomics 

study was the development of advanced nephropathy (CKD Stage 4 or 5) in the setting of calcineurin-

inhibitor therapy post-transplant and post-transplant eGFR over time.   In this study, we have demonstrated 

that EMR-based cohorts linked to DNA samples provide ample opportunity to identify adverse drug 

reactions (ADR).  This specific study focused on a common ADR to calcineurin-inhibitor therapy among 

heart transplant recipients.  While there are several studies that have explored the relationship between a 

patient’s genetic profile and calcineurin-inhibitor dosing [5;20;21], this is the first study of our knowledge 

utilizing an EMR-based cohort of heart transplant patients to examine the pharmacogenetics of calcineurin-

induced nephrotoxicity. 

Our most significant result in the time to CNIT survival analysis was DPYD rs1801265, which 

approached our corrected p-value (p = 9.24 x 10
-3

) in the full dataset regardless of race/ethnicity.  DPYD 

rs1801265 defines the DPYD *9A haplotype and encodes a cysteine to arginine missense mutation in the 

29
th
 position of the protein that some studies have suggested to be without significant enzymatic activity 

[22].  The gene is located in the centromeric region of chromosome one between 1p22 and 1q21 [23].  

While the variant did not meet our multiple-testing threshold, larger studies may confirm its role in CNIT.  

It is interesting to note that CYP3A5 variants, which have been strongly associated with tacrolimus dosing 

in multiple studies [5], were not associated with CNIT but one marker in this gene trended towards 

significance in modeling eGFR directly.  This marker rs776746 defines the CYP3A5*3 allele, a non-

expressing variant of the gene found a high frequency in populations of European descent[24].   In this 

study we found the functional CYP3A5*1 allele, which we found at comparable frequency to other studies 

(MAF = 0.06), to be positively associated with eGFR post-transplant [25]. 
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The application of a heart transplant cohort for the pharmacogenetics of calcineurin-inhibitor 

nephrotoxicity has advantages over kidney and liver transplantations, as it eliminates the potential for 

donor-recipient gene interactions.  The donor genetic information of kidney and liver transplant may play 

crucial roles in the susceptibility of nephrotoxicity.  The liver is the primary site of drug metabolism, and in 

the case of liver transplants, the donor’s genome becomes the driver of metabolism. Its own unique genetic 

variation may lead to a different pharmacokinetic profile of calcinineurin-inhibitor metabolism compared 

with the recipient.  The donor genome in the case of kidney transplant may also be a factor in developing 

nephrotoxicity [26].  Therefore studies designed at identifying these interactions are presented with 

experimental design challenges unlikely to be overcome in blood sample focused biorepository [27].   

4.2.  Limitations 

Small sample size is a pervading challenge to pharmacogenetic study design.  Even in an immense 

resource such as BioVU with over 160,000 samples as of July 2013, we were only able to identify 167 

patients who met the study criteria, and of those, only 35 of those samples developed CKD stage 4 over the 

course of calcineurin drug therapy.   This finding highlights the need for very large repositories when 

studying uncommon outcomes of medical interest.  While survival analysis did afford us more power 

opposed to treating the data as strict case-control and performing logistic regression, we were still 

underpowered to detect an association.  For example, assuming a dominant genetic model with an allele 

with a frequency of 0.5, a sample size of 191 cases of CKD stage 4 would be required to detect an 

association with a moderately sized hazard ratio of 1.5 at an alpha of 0.05 [28] .   

Heterogeneity marked another challenge when defining this study population and modeling the 

association.  Clinically, heart transplant recipients are a very diverse population in regards to co-morbidities 

and medications.  Further complicating the issue is that CNIT is not the only cause of CKD in this 

population: other factors include the decline of kidney function with age, diabetes, hypertension, heart 

disease, other medication exposures, and latent infection of the BK virus [29].  In this study, we ignored 

phenotypic heterogeneity to increase the sample size and overall power of the study.   Also, to avoid 

increasing the type II error rate, we were parsimonious in our covariate selection for our statistical model to 

maximize statistical power [30].  Indeed, large multi-center studies may be required to fully model the 

relationship between heart disease and kidney function.    Large studies will also be required to fully 

address the phenotype heterogeneity problem or to explore more susceptible subpopulations such as high 

dose patients, a strategy successfully used to identify genetic variants associated with statin-induced ADRs 

[31].   

4.3.  Conclusions 

Despite the relatively small sample size for a genetic association study, the current study represents a 

fairly large sample size for pharmacogenomics studies of ADRs.  We have demonstrated here that the 

EMR, rich in clinical data, is an excellent and logical resource to establish pharmacogenomics studies for 
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less common ADRs such as CNIT.  While the genetic association results presented here require replication 

and downstream functional and biological interpretation, the existence of other biobanks linked to DNA 

samples in the United States [32] and across the world [33] makes this future direction possible for CNIT 

as well as other ADRs with a suspected genetic risk factor. 
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Simultaneously reverse engineering a collection of condition-specific gene networks from gene ex-
pression microarray data to uncover dynamic mechanisms is a key challenge in systems biology.
However, existing methods for this task are very sensitive to variations in the size of the microarray
samples across different biological conditions (which we term sample size heterogeneity in network
reconstruction), and can potentially produce misleading results that can lead to incorrect biological
interpretation. In this work, we develop a more robust framework that addresses this novel problem.
Just like microarray measurements across conditions must undergo proper normalization on their
magnitudes before entering subsequent analysis, we argue that networks across conditions also need
to be ”normalized” on their density when they are constructed, and we provide an algorithm that
allows such normalization to be facilitated while estimating the networks. We show the quantitative
advantages of our approach on synthetic and real data. Our analysis of a hematopoietic stem cell
dataset reveals interesting results, some of which are confirmed by previously validated results.

Keywords: gene network reconstruction, dynamic, sample size heterogeneity

1. Introduction

Capturing and understanding the differential usage (i.e. rewiring) of cellular pathways and reg-
ulatory structures as a result of various biological processes and responses to external stimuli
is an important problem in systems biology. Some examples include embryonic development,
cell cycle, differentiation, and carcinogenesis. One promising technique to help uncover com-
plex gene interactions governing these processes is to use computational methods to reverse
engineer gene networks from microarray data. The macro-topology of the recovered network
as well as the individual interactions among the genes can then be analyzed to shed more light
into the underlying regulatory mechanisms.

To model the evolving nature of these phenomena, it often does not suffice to reconstruct
one static snapshot of the underlying regulatory structure since this cannot uncover dynamic
functional roles played by various genes in different cellular stages or at different times. Con-
sider an example of the human hematopoietic system shown in Figure 1. Hematopoietic stem
cells (located at the root) differentiate into more specialized cells along the lineages, eventually
becoming red blood cells, platelets, or white blood cells. It would be inappropriate to pool
together various samples to reconstruct a single network representing a common regulatory
structure for different cell states, e.g., red and white blood cells, since they have distinct mor-
phologies and play completely different roles in biological systems, and thus their respective
regulatory structures must also be considerably different. Instead it is more suitable to re-
construct a collection of networks, one for each cell state. Different functional roles of various
genes across the different cell states can then be analyzed.
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However, the problem of simultaneously recovering a collection of networks over different
cell states poses unique challenges that do not appear in the static recovery case. The key
challenge we face in this work is that different cell states have different numbers of microarray
samples, which we term sample size heterogeneity in network reconstruction. This phenomenon
is quite common in biological datasets due to a variety of reasons such as samples having to
be discarded if the quality of the microarrays is poor, or constrains on acquisition of certain
biomedical samples.

Even though sample size heterogeneity can pose considerable challenges for many existing
network reconstruction methods in different ways, in this work we choose to focus on ad-
dressing its effect on a class of state-of-the-art methods that are based on sparse, regularized
regression.1–3 These methods are designed for the high dimensional setting common in biology,
where the number of genes can be substantially larger than the number of samples, and allow
us to uncover more sophisticated dependencies than can be obtained by measuring simpler
quantities such as correlation or mutual information. Building upon the regularized regression
based network learning paradigm, several methods4–6 have recently proposed leveraging simi-
larities of multiple networks corresponding to biological conditions considered to be related for
more accurate multi-network joint estimation, under evolving network scenarios. This strategy
is very valuable in the scenario we consider in this work, where the number of samples for
each cell state is small (e.g., as few as 4 per cell state, clearly statistically insignificant for
inferring a network alone), and thus information sharing between related cell states is crucial
and can increase the effective sample size and consequently the power of network learning.
Such methods have helped reveal the dynamic interactions in embryonic development4 as well
as cancer progression and reversion.6

Despite being statistically powerful, network learning approaches based on regularized
regression can suffer from sample size heterogeneity, which can substantially bias the density
of the networks recovered. In particular, with existing sparse regression methods, cell states
with more samples will tend to have considerably denser networks than those with fewer
samples, a phenomena depicted in Figure 1. Intuitively, this is because the algorithm is more
confident about estimating networks with more samples and thus these networks are denser.

The resultant artificial difference may be acceptable in certain applications (e.g. features for
a downstream classifier). However, in many cases, we are interested in a comparative analysis
of the networks, both in terms of macro-topology (e.g. density, centrality) or micro-topology
(e.g. neighborhoods of individual genes). In this scenario, sample size heterogeneity can lead to
misleading biological conclusions, since it will be unclear which differences among the networks
are manifestations of the actual changes in regulatory mechanisms across different cell states
and which are the artifacts due to sample size heterogeneity.

One simple approach to handle sample size heterogeneity is to make each cell state have
the same number of samples by discarding excess samples in some states. The downside of
this approach is the waste of the precious data in the small-sample-size scenarios common in
biological studies. For example, in the hematopoietic stem cell dataset we consider, using this
strategy would lead to a reduction of the total sample size by approximately 40 percent.

Another approach is to post-process the networks to be more calibrated, e.g. normalizing
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all the edge weights across the cell states and then applying some threshold. However, this
may produce adverse effects. Namely, since edges can only be deleted, and not added during
post-processing, the original networks learned using sparse regression have to be denser than
desired, and then further sparsified via post-processing. The resulting edge set from this pro-
cedure would then be suboptimal compared to the edge set constructed by just learning a
sparser network with the regularized regression.

1.1. Our Contribution

7 samples

ge
n

es

NETWORK RECONSTRUCTION ALGORTIHM

14 samples 20 samples

Fig. 1. Illustration of a hematopoietic stem cell ge-
nealogy and how more samples bias existing reconstruc-
tion methods to give artificially denser networks. a

In this work, we identify a novel problem
of sample size heterogeneity, which to our
knowledge has not been systematically an-
alyzed or addressed before. Although it can
affect many classes of network estimation
algorithms, we focus on a class of sparse
regression methods for dynamic network
reconstruction, and propose a solution to
address the challenge in this paradigm. In
particular, we propose a novel regulariza-
tion technique to ensure the resulting net-
works are balanced and thus more easily
comparable. We refer to our approach as
ROMGL (RObust Multi-network Graphical
Lasso).

The important novelty we emphasize
here is that our network calibration is
not introduced as a post-processing of the
inferred networks, but an integral part
within the network inference procedure, in
the form of a new and calibrated network

estimator, and therefore more effective and statistically justifiable.
The rest of the work is outlined as follows. We first present the general framework of recon-

structing gene networks via sparse regression methods and concretely illustrate the problem
that sample size heterogeneity poses. We then present our robust method. Lastly, we evaluate
our approach on synthetic data as well as on a human hematopoietic stem cell dataset.

2. Background: Recovering Gene Networks via Gaussian Graphical Models

Consider the problem of modeling a set of gene regulatory networks, denoted by Z (where |Z| =
Z), each corresponding to a different cell state z ∈ Z with Sz i.i.d. microarray measurements
of all genes in cell state z. Z could represent a set of networks over time or over a genealogy.
Let G(z) = (V, E(z)) represent a network in cell state z, where V denotes the set of p genes
(fixed for all z), and E(z) denotes the set of edges over vertices. An edge (u, v) ∈ E(z) can

a
http://www.siteman.wustl.edu/CancerDetails.aspx?id=661&xml=CDR257990.xml
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represent a relationship (e.g., influence or interaction) between genes u and v in cell state z.
Let X(s,z) = (X

(s,z)
1 , . . . , X

(s,z)
p )′, where s ∈ {1, . . . , Sz}, be a vector of gene expression values

that are real valued and standardized, such that each dimension has mean 0 and variance 1.
A gene network can be represented by a probabilistic graphical model.7,8 While there are

many other ways to represent gene networks, the advantage of using graphical models is that
the graph structure encodes conditional independence relations among the genes, and is thus
able to model more nuanced relationships than simple statistical quantities such as correlation
or mutual information. In this work, we assume that X(z) follows a multivariate Gaussian
distribution with mean 0 and covariance matrix Σ(z), so that the conditional independence
relationships among the genes can be encoded as a Gaussian graphical model (GGM).9 It is
well known that for GGMs, edges in the graph correspond to non-zero elements in the inverse
covariance matrix (known as the precision matrix), which we denote by Ω(z) := (ω

(z)
uv )u,v∈[p].

Thus, estimating the graph structure is equivalent to selecting the non-zero elements of the
precision matrix.

As commonly done, instead of directly estimating the precision matrix elements ω(z)
uv , we

estimate the partial correlation coefficients ρ(z), which are proportional to the precision matrix
elements: ρ(z)

uv = − ω
(z)
uv√

ω
(z)
uuω

(z)
vv

. Thus, ρ(z)
uv is zero if and only if ω(z)

uv is zero. Thus the network

resultant from the non-zero ρ(z)
uv is equivalent to that from the nonzero ω(z)

uv . Furthermore, the
partial correlation is intuitive in the sense that a high positive value of ρ(z)

uv indicates that the
genes u and v are strongly positively correlated (conditioned on the other genes), while a low
negative value indicates the genes are strongly negatively correlated (conditioned on the other
genes), and ρ

(z)
uv = 0 for all (u, v) 6∈ E(z). As a result, we simply consider estimating the partial

correlation coefficients and designate these as the edge values in G(z): E(z) = {ρ(z)
uv : |ρ(z)

uv | > 0}.

2.1. Neighborhood Selection

Estimating ρuv is challenging because biological data is often high dimensional (tens of thou-
sands of genes) while the number of samples is small (in the tens). One approach is neighbor-
hood selection2 based on `1-norm regularized regression, which has strong theoretical guaran-
tees and also works well in practice. We first discuss it in the context of estimating a collection
of networks independently, which is also the foundation of existing approaches on time-varying
network estimation that leverage information among similar states.4–6

Here the neighborhood of each gene u is estimated independently and the neighborhoods
are then combined to form a network. In every neighbor estimation step, gene u is treated
as a response variable, all the other genes are the covariates, and the regression weights
are proportional to the partial correlation coefficients between the other genes and u. More
formally, let X\u indicate the p − 1 vector of the values of all genes except u. Similarly,
β\u := {βuv : v ∈ V \ u}. It is a well known result , that the partial correlation coefficients can

be related to the following regression model10 : X(z)
u =

∑
v 6=uX

(z)
v β

(z)
uv + ε

(z)
u , u ∈ [p], where

ε
(z)
u is uncorrelated with X(z)

\u if and only if β(z)
uv = −ω

(z)
uv

ω
(z)
uu

= ρ
(z)
uv

√
ω

(z)
vv

ω
(z)
uu

. Some algebra gives that

ρ
(z)
uv = sign(β

(z)
uv )

√
β

(z)
uv β

(z)
vu . The above equations basically indicate that we can solve for the

regression coefficients using a linear regression, where the response variable corresponds to
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Xu and the covariates correspond to X\u. The corresponding partial correlation coefficients
can be recovered via the algebraic relations. An `1 penalty is applied to encourage a sparse
solution, as in the lasso.1 We can estimate the neighborhood of gene u for all cell states z ∈ Z
using this strategy, as depicted in Eq. 1.

β̂
(1)
\u , ..., β̂

(Z)
\u = argmin

β
(1)

\u ,...,β
(Z)

\u

∑
z∈Z
Lu(X(z),β

(z)
\u ) + λ

∑
z∈Z
‖β(z)

\u ‖1 (1)

where Lu(X(z),β
(z)
\u ) :=

∑Sz

s=1

(
x

(s,z)
u −

∑
v 6=u β

(z)
uv x

(s,z)
v

)2
. Note that the optimization problem

decouples into Z separate problems. This procedure is repeated to estimate the neighborhood
of every gene u ∈ V. It has been shown that under certain conditions, one can obtain an
estimator of the edge set E that is sparsistent,2,11 i.e. the correct network structure can be
attained as a function of the number of genes, samples, and topology of the network.

2.2. Neighborhood Selection and Sample Size Heterogeneity

However, applying the same λ to all z ∈ Z such as in Eq. 1 can be problematic under sample
size heterogeneity. Consider two cell states z1 and z2 and assume that Sz1 > Sz2 . This implies
that Lu(X(z1),β

(z1)
\u = 0) will generally be larger than Lu(X(z2),β

(z2)
\u = 0). Applying the same λ

to both of them will then tend to lead to a more sparse solution for z2 than z1. This is because
networks with different sample sizes should be learned with different amounts of regularization.

At first glance, it seems simple scaling/normalization (such as dividing Lu(X(z),β
(z)
\u )

by Sz) would be sufficient. Asymptotic theory12 dictates that in addition to dividing each
Lu(X(z),β

(z)
\u ) by Sz, λ should be divided by

√
Sz as shown in Eq 2:

β̂
(1)
\u , ..., β̂

(Z)
\u = argmin

β
(1)

\u ,...,β
(Z)

\u

(∑
z∈Z

1

Sz
Lu(X(z),β

(z)
\u ) +

∑
z∈Z

λ√
Sz
‖β(z)

\u ‖1
)

(2)

However, this scaling is based on several theoretical assumptions on the underlying model. As
a result, it may behave erratically in practice on microarray data as we show in Section 7.
Even when all the theoretical assumptions hold, the

√
Sz factor is correct only asymptotically,

and not necessarily for smaller sample sizes. To illustrate the problem, we present an example
shown in Figure 2. (More quantitative results will be given in Section 6.) Here, a single
network with 100 vertices and 200 edges was randomly generated. Then, 10 sets with 20
samples, 10 sets with 30 samples, and 10 sets with 40 samples were generated, all from the
same network. We vary the sparsity parameter λ, and plot the mean edge count for each
sample size. Figure 2(a) shows the results of optimizing Eq. 1 without scaling a. As one can
see, although all the samples were generated from the same network, the networks learned
from the 40 samples have many more edges than those from fewer samples. Figure 2(b) shows
the results for optimizing Eq. 2 (with scaling). This works better, but networks learned from
the 40 samples still have considerably more edges than those from 20.

One possible strategy is to assign each network a different regularization parameter and
tune these manually according to known biological interactions. Unfortunately, this requires

aMB stands for Meinshausen and Buhlmann who proposed neighborhood selection2 for GGMs.
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that we have enough prior knowledge about all the networks, which is unlikely for many
systems. Instead, it is preferable to develop an approach that only requires prior knowledge
about a small subset of the networks for the purposes of parameter tuning.

3. A More Robust Formulation
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Fig. 2. Comparison of non-robust vs. robust approaches on a simple exam-
ple. Our robust approach, ROMGL, produces networks that are much more
balanced than the naive and scaled methods (MB Naive and MB Scaled). See
text for details.

In order to calibrate the
networks to mitigate
the artifacts caused by
sample size heterogene-
ity, we propose the fol-
lowing approach. We
require that the sum
of the absolute edge
weights to be the same
for all networks recon-
structed. This is in
some sense similar to

the assumptions made in microarray data pre-processing via normalization which rely on
less than ideal yet necessary assumptions in order to remove systematic dye bias from the
data, e.g., quantile normalization in RMA assumes an identical distribution of gene expres-
sion values in all samples in a dataset.13,14

Rather than post-processing the networks, we integrate this assumption into our network
algorithm, thus allowing for a more principled and effective approach.

Unfortunately, it is difficult to directly modify neighborhood selection described in the pre-
vious section to incorporate this assumption, because we are constraining the entire networks
to have the same sum of absolute edge weights, rather than the individual neighborhoods. The
former assumption is much more realistic, since the latter implies all the nodes have similar
degrees. However, since neighborhood selection estimates each neighborhood independently,
it cannot incorporate this assumption in its procedure. Instead, we build our solution from
SPACE15 which is a procedure that simultaneously performs neighborhood selection on all
neighborhoods. First define,

M(X(z),ρ(z),σ(z)) :=
∑
u∈V

Sz∑
s=1

x(s,z)
u −

∑
v 6=u

β(z)
uv x

(s,z)
v

2

=
∑
u∈V

Sz∑
s=1

x(s,z)
u −

∑
v 6=u

ρ(z)
uv

√
σvv
σuu

x(s,z)
v

2

(3)

Then, using SPACE to estimate each network z ∈ Z separately will give the following opti-
mization problem:

ρ̂(1), ..., ρ̂(Z) = argmin
ρ(1),...,ρ(Z)

(∑
z∈Z

1

Sz
M(X(z),ρ(z),σ(z))

∑
z∈Z

λ√
Sz
‖ρ(z)‖1

)
subject to ρ(z)

uv = ρ(z)
vu ∀z,∀u 6= v (4)

Similar to the previous sections, the objective above decouples into Z separate problems.
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Here σ(z)
uu = 1/var(ε

(z)
u ), where ε(z)u was defined in Section 2.1. Note that SPACE estimates

ρ directly instead of β. This is because while ρ
(z)
uv = ρ

(z)
vu , β(z)

uv 6= β
(z)
vu due to the relation in

Section 2.1.
Note that SPACE has the same problem as neighborhood selection with varying sample

sizes. However, because we estimate all the neighborhoods jointly, we can propose a new
formulation that enforces our assumption. This can be done by requiring the `1 norm of the
absolute value of the edge weights to be equal to C for all z ∈ Z.

ρ̂(1), ..., ρ̂(Z) = argminρ(1),...,ρ(Z)

∑
z∈Z

1
Sz
M(X(z),ρ(z),σ(z))

subject to ρ
(z)
uv = ρ

(z)
vu ∀z,∀u 6= v, ‖ρ(1)‖1 = C, ‖ρ(2)‖1 = C, ..., ‖ρ(Z)‖1 = C (5)

The formulation above represents the foundation of our approach, which we call ROMGL
(RObust Multi-network Graphical Lasso). Note that this formulation is different than that in
Eq. 4, because if we write it in Lagrangian form with λ’s instead of constraints, then it is
equivalent to a different λ for each constraint

ρ̂(1), ..., ρ̂(Z) = argmin
ρ(1),...,ρ(Z)

(∑
z∈Z

1

Sz
M(X(z),ρ(z),σ(z)) +

∑
z∈Z

λz‖ρ(z)‖1
)

subject to ρ(z)
uv = ρ(z)

vu ∀z,∀u 6= v (6)

Moreover, without solving the optimization problem, the correspondence between C and
the set of equivalent {λz}z∈Z is unknown. Thus, the advantage of our approach is that we only
have to explicitly set one parameter C instead of a different λ for each z ∈ Z (since |Z| might
be quite large). We demonstrate our approach in Figure 2. Unlike the non-robust methods,
our approach returns edge counts that are more similar across the different sample sizes.

4. Sharing Information Across States

So far, we have discussed robustly estimating a collection of networks without sharing infor-
mation among different cell states. However, in the small-sample-size scenarios prevalent in
regulatory genomics, this can result in poor estimation quality of the networks. For exam-
ple, in the hematopoietic stem cell dataset we consider, some of the cell states have only 4
microarray samples, which is clearly statistically insufficient for reliable network estimation.
However, since in many cases the gene networks are related, such as in a time series or a
genealogy, we can leverage this interconnectedness of the networks for more accurate network
reconstruction.

We assume we have prior knowledge of which networks are biologically related, and this
information is encoded as a graph over the cell states Z, which we denote by H = (Z,Γ).
H is constructed such that cell states closer to one another in the graph are assumed to be
more biologically similar than those farther apart. For cells over a tree genealogy (e.g. stem
cell differentiation), H represents a tree, and cell state z is connected to its parent and sibling
cell states. As stated earlier, several methods4–6 have recently proposed leveraging similarities
of multiple networks for more accurate multi-network estimation. KELLER4 proposes kernel
smoothing, which estimates a given network by pooling a weighted average of related samples.
TESLA and Treegl propose total variation regularization.5,6
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However, these methods do not account for sample size heterogeneity. In fact, when sharing
information among related states, robustness to sample size heterogeneity is even more crucial.
This is because different cell states may have different numbers of neighbors in H, and thus
some may be able to share more information than others.

For simplicity, we only discuss how our robust formulation can be incorporated with kernel
smoothing. Consider a smoothing kernel Kh(z, y) that defines a similarity between cell state

z and cell state y. We use the Epanechnikov kernel: Kh(z, y) = 1 −
(
d(z,y)
h

)2
if d(z,y)

h ≤ 1, and

0 otherwise. Here we define d(z, y) to be the shortest path from z to y in H. Intuitively, this
means that cell states closer to one another in the graph are assumed to be more biologically
similar than those farther apart. Note that this is a more general setting than Song et al.,4

who merely consider smoothing over time. We can then estimate a network for a cell state
using a weighted average of samples from all cell states via the kernel:

ρ̂(1), ..., ρ̂(Z) = argmin
ρ(1),...,ρ(Z)

∑
z∈Z

∑
y∈Z

Kh(z, y)M(X(y),ρ(z),σ(z))

subject to ρ(z)
uv = ρ(z)

vu ∀z,∀u 6= v, ‖ρ(1)‖1 = C, ..., ‖ρ(Z)‖1 = C (7)

We term this approach ROMGL-Smooth (an abbreviation for Kernel-Smoothed ROMGL).

5. Optimization

We briefly describe how to optimize Eq. 7. The objective is separable in z ∈ Z, and thus each
{ρ(z),σ(z)} pair can be optimized separately from the other z′ 6= z. However, Eq. 7 is not jointly
convex in both ρ(z) and σ(z). Fortunately, given a fixed σ(z) = σ̄(z), the problem is convex in
ρ(z). Similarly, given a fixed ρ(z) = ρ̄(z) we can update σ(z). Thus, we proceed by alternatively
updating ρ(z) and σ(z).

To optimize ρ(z) given a fixed σ̄(z), we use a projected gradient method, where after
updating the current value of ρ(z) in the direction of the gradient, it is projected back onto
the constraint set. For our constraint, the projection can be done very efficiently in O(n log n)

time using the method of Duchi et al.16 Updating σ(z) given a fixed ρ̄(z) can be done using a
similar update to traditional SPACE: 1

σ̄
(z)
u

← 1∑
y∈Z Kh(z,y)

∑
y∈Z Kh(z, y)Mu(X(y), ρ̄(z), σ̄(z)).

6. Synthetic Evaluation

We first focus on synthetic data where the modelling assumptions hold. Our ROMGL-Smooth
(Eq. 7 ) can naturally be compared with a Gaussian Graphical Model (GGM) version of
KELLER4 which also uses kernel smoothing. We find that in this case the

√
Sz scaling (Eq. 2)

performs better than the naive approach (Eq. 1), and therefore only compare our approach
to GGM KELLER with scaling (which we refer to as MB-Smooth Scaled) in this section.

We performed the experiments with two types of graphs: Erdos Renyi random graphs and
sparse graphs with hubs. For each type, we generate a sequence of graphs of length 25. Each
graph in the sequence has 100 vertices and 200 edges, and is created by randomly deleting
and adding 10 edges from the previous graph. The sample size is 30 for the first five graphs,
35 for the next 5, and so on up to 50 for the last 5 graphs. Note that all graphs have the same
number of edges (even though they are not identical). We run both methods for h = {2, 3},
for a variety of regularization parameters, and repeat each experiment for 5 different graph
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Fig. 3. Comparison of our robust approach, ROMGL-Smooth (blue circles), with an existing non-robust
method, MB-Smooth Scaled (red triangles), on synthetic Erdos Renyi random graphs. See text for details.
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Fig. 4. Comparison of our approach, ROMGL-Smooth (blue circles), with an existing non-robust method,
MB-Smooth Scaled (red triangles), on synthetic sparse graphs with hubs. See text for details.

sequences. The methods are evaluated on two different criteria. To measure accuracy of the
approaches in recovering the structures we plot precision/recall curves. The precision is defined
as prec = 1

Z

∑
z∈Z

Ê(z)∩E(z)

|Ê(z)|
and the recall is defined as rec = 1

Z

∑
z∈Z

Ê(z)∩E(z)

|E(z)| .

We also propose a quantitative measure of robustness. Let ê = (|Ê(1)|, ..., |Ê(Z)|) be the
vector of edge counts of the networks recovered by a method. Intuitively, if a method is robust
to sample size heterogeneity, the variance of ê should be small, since all the true graphs have
the same number of edges. Thus, we propose the quantity var(ê)/mean(ê) as a measure of
robustness (scaling by mean(ê) provides for easier comparison).

The precision/recall curves show that both methods perform comparably according to this
metric (Figures 3(a), 3(c), 4(a), and 4(c)), indicating that our new robust approach generates
results with comparable accuracy as the scaling method. However, our new approach yields
results with considerably lower variance, indicating that it is more robust than the scaling
method (Figures 3(b), 3(d), 4(b) and 4(d)). This is especially true when the recovered
graphs are sparser, since MB-Smooth Scaled has very high variance in this case. This is the
most prevalent scenario, since on many real biology datasets, the sample size is small, so we are
more likely to select sparse graphs. Furthermore, as we will see, the scaling method performs
much worse on real data than synthetic data.

7. Application to the Hematopoietic Stem Cell Dataset
We applied our method to the human hematopoietic stem cell dataset analyzed in Novershtern
et al.17 There are 38 cell states in the tree-shaped multi-lineage stem cell genealogy. We focus
on a subset of 732 genes from the entire dataset for the experiments in this section.

First, we quantitatively compare our approach (ROMGL-Smooth) to the non-robust ap-
proaches: naive (MB-Smooth Naive) and scaling (MB-Smooth Scaled). The bandwidth for
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these algorithms was fixed to 5. For a given setting of the regularization parameter (λ or C),
we plot the average edge count over all the 38 cell states on the x-axis and the difference be-
tween the largest edge count and the smallest edge count on the y-axis. As shown in Figure 5,
the non-robust methods produce networks with very different sizes, e.g., some of the networks
have less than 100 edges while others have thousands. Our robust approach produces much
more calibrated results.
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Fig. 5. Our approach, denoted by ROMGL-Smooth
(blue) compared with MB-Smooth Scaled (red) and
MB-Smooth Naive (green) on the hematopoietic stem
cell dataset. Our approach returns networks that are
much more calibrated with more similar edge counts.

To examine these differences further,
we show cell-specific networks for two cell
states, granulocytes (GRAN3) and com-
mon myeloid progenitors (CMP), recov-
ered by the three approaches in Figure 6.
GRAN3 is a leaf in the cell genealogy; it
has few neighbors and the lowest effective
sample size (14.92) when the smoothing
kernel is applied. In constrast, CMP is an
internal node in the genealogy that can
differentiate into megakaryocytes, erythro-
cytes, granulocytes, and monocytes, and
thus has many neighbors; it has the high-
est effective sample size (60.52). As one can

see, for the naive approach (Figures 6(a) and 6(b)), sample size heterogeneity is such a prob-
lem that the GRAN3 network has zero edges while the CMP network has 4532. Similarly, the
scaling approach also performs poorly. The GRAN3 network has only 72 edges (Figure 6(c))
while the CMP network has 2944 edges (Figure 6(d)). Thus, with both of these approaches,
it is practically impossible to analyze the GRAN3 network in relation to the other networks.
In contrast, our approach gives much more balanced results; the GRAN3 network has 1269
edges (Figure 6(e)) while the CMP network has 1614 edges (Figure 6(f)).

Next, we examined the results generated by our robust approach in more detail. Nover-
shtern et al.17 discovered various gene modules and their corresponding regulators active in
different cell states in the hematopoietic stem cell dataset. It is unknown, however, how genes
in these modules interact with one another. We compare and contrast our results to theirs
on the two modules 721 and 817 described in Novershtern et al.17 The former module is in-
duced in granulocytes and monocytes (GRAN/MONO), while the other in B cells, T cells,
and granulocytes (BCELL/TCELL/GRAN).

The subnetworks corresponding to the GRAN/MONO 721 module we recovered in the
granulocytes and monocytes are shown in Figure 7 (a) and (b). It can be seen that we recovered
all the genes in the module for both subnetworks, which include both experimentally verified
ones (shown in dark purple and dark green) and unverified ones (light green). Note almost
all of the proposed genes in the module are within 2-3 hops from the regulators CEBPD and
MNDA in the GRAN3 and MONO2 subnetworks. Moreover, our results reveal interaction
patterns of the genes in these subnetworks (only a list of genes in the module was shown in
Novershtern et al.17). A closer examination of the two subnetworks reveals that they contain
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Fig. 6. The cell-state-specific networks for granulocytes (GRAN3) and common myeloid progenitors (CMP)
recovered by the three approaches. The robust approach (ROMGL-Smooth), shown in (e) and (f), produces
substantially more balanced networks than the other two approaches.

two modules with similar gene interaction patterns, one is a large 10-gene module with MNDA,
CREB5, VDR, RAB31, NOD2, CEBPD, CFP, MYCL1, WDFY3, and VENTX, and the other
is a small 2-gene module with HBEGF and ATF3. Interestingly, 7 out of these 12 genes were
also proposed by Novershtern et al.
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Fig. 7. The ROMGL-Smooth reconstructed subnetworks corresponding to (a) module 721 in granulocytes
(GRAN3), and (b) module 721 monocytes (MONO2) (c) PIAS1 module in B cells (BCELLa3), (d)PIAS1
module in T cells (TCELL3), and (e) PIAS1 module in granulocytes (GRAN3). Purple represents genes that
are regulators of the module and were experimentally validated in Novershtern et al.17 Dark green represents
other genes in the module that were experimentally validated. Light green represents the genes in the module
which were not experimentally validated. All the other genes are colored gray.

Finally, we examined the reconstructed subnetworks in B cells (BCELLa3), T cells
(TCELL3), and granulocytes (GRAN3) corresponding to the BCELL/TCELL/GRAN 817
module in Novershtern et al.17 (Figure 7 (c),(d),(e)). In this case, the topologies of the subnet-
works are very different. The only gene module shared between the BCELLa3 and TCELL3
subnetworks is HNF4G–PIAS1–BCLAF1. In addition, the topology of the GRAN3 subnet-
work corresponding to the BCELL/TCELL/GRAN 817 module is distinctly different from the
BCELLa3 and TCELL3 subnetworks. These findings are consistent with the fact that both B
cells and T cells are lymphocytes and closer in the genealogy than granulocytes.

8. Discussion

In conclusion, we have identified the problem of sample size heterogeneity in multi-network
reconstruction and proposed a principled solution that works well in practice. Our method
assumes that all networks have approximately the same number of edges. However, more
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complex assumptions are possible if we have prior knowledge about the network densities.
For example, we can assume cell states in a certain category each have sum of absolute edge
weights equal to C1, while cell states in another category are associated with parameter C2.
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In case-control studies of rare Mendelian disorders and complex diseases, the power to 
detect variant and gene-level associations of a given effect size is limited by the size of the 
study sample. Paradoxically, low statistical power may increase the likelihood that a 
statistically significant finding is also a false positive. The prioritization of variants based on 
call quality, putative effects on protein function, the predicted degree of deleteriousness, and 
allele frequency is often used as a mechanism for reducing the occurrence of false positives, 
while preserving the set of variants most likely to contain true disease associations. We 
propose that specificity can be further improved by considering errors that are specific to the 
regions of the genome being sequenced. These problematic regions (PRs) are identified a-
priori and are used to down-weight constitutive variants in a case-control analysis. Using 
samples drawn from 1000-Genomes, we illustrate the utility of PRs in identifying true variant 
and gene associations using a case-control study on a known Mendelian disease, cystic 
fibrosis(CF).  
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1.  Introduction 

Exome sequencing is a potentially powerful tool in detecting variants and genes responsible 
for both simple and complex diseases. Recent successes in identifying the causal variants of 
several Mendelian or monogenic disorders1-4 have highlighted the utility of heuristic 
methods of variant filtering and prioritization in the discovery process. These methods often 
preferentially retain or prioritize variants based on novelty, functional impact, putative 
effects in the protein coding regions (i.e. missense/nonsense substitutions, coding indels, 
and splice site-acceptor and donor sites), population frequency, and/or concordance with a 
subjective assessment of phenotypic features5. This biologically informed reduction in the 
number of variants helps maintain statistical power by reducing the number of formally 
tested hypotheses and the subsequent impact of multiple testing correction procedures 
required in high-throughput experiments6. 

While these strategies may enrich the set of disease-associated variants based on 
variant/functional-level information and disease phenotype, they do not directly address the 
occurrence of false positives stemming from sequencing inaccuracies. Exome sequencing 
coverage varies greatly across the genome7-8 with some regions under-covered due to areas 
of low-complexity, areas of high GC content, and the occurrence of segmental duplications 
and homopolymers9-10. In case-control studies investigating variant-disease associations, 
alignment and mapping errors in these problematic regions (PRs) reduces the sensitivity to 
detect true associations in these regions and may introduce false positive associations in 
instances where cases and controls have differential coverage depths11. The integration of 
PR information in a case-control analysis may help identify false discoveries not readily 
identified by other commonly used methods of variant prioritization.  

Using a well-characterized set of samples drawn from 1000-Genomes12 we illustrate the 
utility of PRs in resolving known causal variants in cystic fibrosis (CF). Combined with other 
variant prioritization methods, the use of PRs improves the specificity of both standard 
variant association tests and gene-level collapsing methods in identifying true associations 
despite limited sample sizes.   

2.  Methods 

2.1.  Subject Samples 

All DNA samples were drawn from the 1000Genomes project. Samples were drawn from a 
pool of subjects broadly identified as Caucasian and known to be affected (cases) or 
unaffected (controls) with CF. Information regarding ethnicity, sex, and known mutations in 
this group of samples, including those samples harboring the ΔF508 common founder 
mutation, were obtained from the CFTR Human Gene Mutation Panel records at the Center 
for Disease Control13 and Coriell Institute for Medical Research14 websites. Cases and 
controls were sequenced separately using identical platforms and technologies. Raw 
sequencing data were aligned and variants were called simultaneously for all case and 
control samples. 
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2.2.  Genomic Library Construction, Exome Sequencing, Alignment and Variant Calling 

DNA libraries were prepared using Illumina TruSeq Genomic DNA High throughput Sample 
Prep Kits (Illumina, San Diego, CA) and exome enrichment (targeting 62Mb) was 
accomplished using the TruSeq Exome Target Enrichment kit (Illumina, San Diego, CA) 
according to manufacturer’s protocols. Sequencing was performed using Illumina Hiseq2000 
or HiSeq2500 sequencers with single lane, paired-end 2X100bp reads.  DNA fragments were 
generated and amplified using Clonal Single Molecule Array technology (Illumina, San Diego, 
CA). The sequences were determined using the Clonal Single Molecule Array and 
Sequencing-by-Synthesis using Illumina’s proprietary instrumentation and Reversible 
Terminator Chemistry.  Sequencing reads of at least 2x100bp in length for a total of at least 
8Gb of sequence data per sample were generated for each sequenced sample.  

Raw sequence data were in FASTQ format and were analyzed in multisample mode with 
standard (Sanger) Phred-scale quality scores. The Pipeline then uses an integrated set of 
proprietary and public analysis tools to align and variant call genomic sequencing data.  
Gapped alignment is performed using the popular Burrows-Wheeler Aligner (BWA) 
combined with Picard and the Genome Analysis Toolkit (GATK) to improve sequence 
alignment and to correct base quality scores. Data was aligned to the hg19 genome, 
producing standard, compressed Binary Alignment Map (BAM) format files.  

GATK’s Unified Genotyper module provides the Pipeline’s core set of SNV calls and their 
accompanying quality metrics. Calls are enhanced by proprietary SNV accuracy software 
which incorporates both genomic context and sequence alignment information into a model 
that corrects miscalled loci. All calls are made on BAM files that have been recalibrated by 
GATK’s base quality score recalibration (BQSR). SNV and small indels are reported in VCF 
format. Reference calls and no-call information is returned in BED files. 

Variants were annotated using the Personalis Annotation Engine, which applied 
population frequencies, genetic region information, effect on genes, protein impact, protein-
protein interactions and additional structural and functional features to the variants.  

2.3.  Problematic Regions of the Genome 

Based on a previous study of discordant variant calls among multiple sequencing 
platforms8,15 and further work in elucidating the mechanisms underlying these errors16, a 
database of PRs was constructed. PRs are comprised of regions having >3X the average error 
rate seen among variant calls deemed high-quality by VQSR (i.e. largely PASS calls). PRs 
included those regions of the genome with high GC content, low coverage, degeneracy due to 
redundant paralogous sequences, low complexity repetitive elements, segmental 
duplications, and compression regions17 for which large amounts of discordance in variant 
calls were previously observed.  It also includes HLA regions and breakpoint library regions 
for structural variants (BreakSeq18). While PR regions are not always mutually exclusive in 
terms of their categorization, the bulk of PRs (~70%) are due to 100bp regions having >70% 
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GC content, degenerate 100bp single reads, and simple repeats > 100bp long. Variants called 
in the case-control analyses were mapped onto the PR database and were flagged as 
potentially problematic variant calls if they fell into a PR region. 

2.4.  Case Control Analysis 

Eighteen unrelated subjects with CF were matched to 54 unrelated and unaffected subjects 
based on sex and broad ethnic category (i.e. Caucasians) to form a 1:3 case-control study 
design. In a second case-control analysis, the case-group was redefined to only include the 
subset of CF-affected individuals without the ΔF508 founder mutation. These 8 case-subjects 
were again compared to the same 54 unaffected control subjects to form a ~1:7 case-control 
match. Analysis was performed independently in each of these case-control studies to 
investigate variant and gene associations with CF.  

In each study, variants were removed from analysis if they failed our internal QC 
requirements. These QC standards required that 1) no more than 10% of the data was 
missing across case samples and/or control samples and 2) the multi-sample variant call 
from GATK’s Variant Quality Score Recalibration (VQSR) was “PASS”- indicating that there 
was sufficient evidence that the site was really variant in one or more samples. In order to 
reduce the likelihood of false discoveries when reporting CF-associated variants and genes, 
variants were also filtered to retain only those that were protein-coding. These filtering 
criteria were used when reporting variant-level associations with CF and as input criteria 
when testing for gene-level associations. 

Remaining variants were assessed for association with disease-status using Fisher’s 
Exact Test. Effect size was summarized as the Odds Ratio (OR) calculated from the 
conditional maximum likelihood estimate of a 2x2 contingency table containing alternative 
and reference allele counts in cases and controls assuming an additive model. Significance 
testing of the null of conditional independence (OR=1) used a two-tailed test.  

Analysis of the second case-control study, in which all cases with the ΔF508 founder 
mutation were removed, was done to investigate the occurrence of PRs in studies where 
smaller effect sizes among causal variants could be expected. This required detection 
strategies that could accommodate the genetic heterogeneity of the remaining affected 
individuals- since known causal variants were interspersed throughout the CFTR gene13-14. 
Given the challenges in detecting rare variant enrichment with a limited number of 
heterogeneous case samples, we collapsed the variant-level associations based on gene-
membership. An implementation of the Combined Multivariate and Collapsing (CMC) 
method19 was used to assess the combined association of variants within the same gene to 
CF. Variants were binned into groups based on their respective gene membership and 
further binned (rare vs. common) based on a 1000-Genome derived minor allele frequency 
(MAF) cutoff of 5%. A multivariate test, Hotelling T-squared, was performed on the counts 
within all bins to determine differences among the cases and controls with asymptotic p-
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values calculated based on the F-distribution. The method of Storey20 was used to calculate 
FDR-adjusted p-values (i.e. q-values). 

3.  Results 

The application of filtering criteria related only to QC-criteria (i.e. variant-call quality and 
missing data) among the 18 cases and matched controls, resulted in 541,119 variants for 
which association with CF was tested. Distribution of observed -log10(p-value) revealed 
departure from the expected distribution and severe inflation of type-1 error (Figure 1). 
Filtering of variants to include only those that were protein-coding reduced the number of 
variants 10-fold (54,178) and improved data characteristics.   

 

Figure 1. Q-Q Plot comparing the expected normal distribution of –log(p-values) to the observed 
distribution revealed inflated Type-I error when only data quality filters are applied (left). Filtering 
variants to include only those that are protein-coding (right) improves the data characteristics and 
revealed significant (p<10-5) true associations (ΔF508), false positives occurring in problematic 
regions (PR), and false positives that would have been removed based on low allele frequency 
requirements (F). 

Given the number of variants available after QC-criteria and protein-coding filters were 
applied, an exome-wide significance threshold was set at a p-value of 10-5. At this level, five 
variants were significantly associated with CF-status, including the known causal variant 
ΔF508 (rs199826652) that was present in eight affected individuals. Three variants, all 
indels, occurred in PR regions (Figure 1, “PR”), and one SNP was a missense mutation in the 
gene DOK3 (Table 1). For variants occurring in PRs of the genome, the underlying presence 
of simple repeats (POU4F2, KIAA0664) or interspersed repeats (COPB1) caused sequencing 
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errors. The SNP, rs3749728, had an allele frequency of 14% according to 1000-Genomes, 
and would have been identified as a likely false positive based on low frequency 
assumptions often used for rare, Mendelian disorders (Figure 1, “F”). 

Table 1. Five variants significantly (p<10-5) associated with CF-status after applying QC criteria and 
and protein-coding filters. Also show are the associated frequencies (MAF) and occurrences in PRs  

dbSNP/Gene Chromosome 
Position 

Ref/Alt Allele MAF PR p-value 

POU4F2 Chr4: 
147560457 

TGGCGGCGGCGGC/ 
TGGC,TGGCGGCGGCGGCGGC,TGGCGGC,T 

 Yes 4.0x10-9 

COPB1 Chr11: 
14521144 

CGTA/C  Yes 4.2x10-6 

rs3749728/     
DOK3 

Chr5: 
176936819 

C/G 14% No 7.7x10-6 

rs199826652/ 
CFTR 

Chr7: 
117199644 

ATCT/A 1% No 7.7x10-6 

KIAA0664 Chr17: 
2595272 

GCCCCCGCCACGCCCCCGCCGCGCACCTG/
G,GCCCCGCCGCGCACCTG 

 Yes 1.0x10-5 

Aside from the ΔF508 mutation, no other variants in the CFTR gene occurred in more 
than 3 case samples, reflecting the genetic heterogeneity of CF. Since an analysis of only 
case-samples not harboring the ΔF508 founder mutation would be severely underpowered 
to detect the smaller effect sizes of the remaining CFTR variants, we aggregated variant 
effects based on gene-membership (i.e. collapsing). Subsequent association testing of 10522 
genes with CF-status revealed 15 genes with FDR-controlled p-values (q-values) < .05. Of 
these, CFTR was ranked the 4th gene by p-value. Table 2 summarizes these 15 genes, the 
nominal p-values derived from the CMC test-statistic, the number of variants contributing to 
the test statistic, the percentage of those variants found in PRs and the predominant PR type. 
Collectively, out of the 27 variants occurring in PRs and contributing to these collapsing 
results, the majority (14) occurred in areas of high-GC content, 10 occurred among 
segmental duplications, and the remaining occurring among areas of low complexity/simple 
repeats. Notably one gene association listed in Table 2, ATF7IP2, had no constitutive variants 
in PRs, yet was ranked higher than the known causal gene (i.e. CFTR). Further examination of 
this result revealed good coverage in this area across samples indicating that this was likely 
reflecting a true difference between cases and controls. However, 3 out of 4 constitutive 
variants had MAFs > 5%, indicating that these differences are unlikely to be causally related 
to CF and would be typically excluded using MAF threshold filters. 
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Table 2. Collapsing results using only CF-affected samples without the ΔF508 
mutation revealed 15 genes with q-values<0.05. The nominal p-values, the 
percentage of those variants in PRs, and the predominant PR type is shown.  

Gene p-value Number of 
variants 

Percentage of 
variants in PR 

PR types 

POU4F2 1.5x10-9 2 100% Repetitive 
sequence, 
High GC 

MSX1 4.9x10-8 5 40% High GC  

ATF7IP2 2.7x10-7 4 0% -- 

CFTR 4.5x10-7 29 0% -- 

FUZ 1.2x10-6 3 33% High GC 

C8orf74 1.2x10-6 5 40% High GC 

TRIM10 1.2x10-6 7 0% -- 

COL6A1 3.4x10-6 6 33% High GC 

PTK2B 6.1x10-6 8 0% -- 

FAM108A1 1.2x10-5 2 100% Segmental 
Duplication 

MAP7D1 1.6x10-5 7 43% High GC 

SCN10A 1.8x10-5 13 0% -- 

DIDO1 3.5x10-5 4 24% High GC 

FLG 4.0x10-5 9 89% Segmental 
Duplication 

COPB1 8.7x10-5 2 50% Repetitive 
sequence 
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4.  Discussion 

In retrospective observational studies of disease association, where disease-affected samples 
(cases) may be compared to previously sequenced shared controls, alignment and mapping 
errors can create false evidence for polymorphisms when there are differences in coverage 
and read depth between groups. Recent evidence has shown that these types of errors can 
persist when the same genome is sequenced twice under identical analytical 
environments16. Even in carefully designed case-control studies, where samples are matched 
appropriately and are collected, sequenced, and analyzed together to avoid experimental 
bias, these errors reduce statistical power for detecting true disease associations.20 
Reduction in these errors are essential for many diseases in which it is a challenge to 
sufficiently power a case-control study, and is particularly important for complex diseases in 
which filtering based on frequency thresholds and functional impact may not be appropriate, 
and where expected effect sizes for a single variant/gene are small or moderate. 

CF and the associated study samples used here provide a dataset well-suited to testing 
the effects of PRs on detection specificity, given that the underlying causal gene and 
mutations are well-known. Even with a limited number of case samples, we are sufficiently 
powered to detect variants or genes known to be associated with CF, but suffer from an 
inflated Type-I error rate. While the effects of these errors can be mitigated through the use 
of commonly used filtering criteria using a-priori knowledge of the disease (e.g. rare, 
Mendelian, monogenic), their presence indicates a likely underlying source of bias occurring 
in the study. No evidence of population stratification was observed when the variance across 
samples was summarized using principal components- largely discounting biases that might 
have arisen during the case-control matching process. A potential source of this high error 
rate may be due to the use of a multi-sample VQSR variant-quality call. In multi-sample 
mode, a VQSR filter call of “PASS” denotes that the variant call is likely correct in at least one 
sample- but does not insure it is of sufficient quality across all samples. Variants in which a 
subset of samples contain low quality calls may introduce false positives associations when 
those calls occur disproportionality in either the case or control groups. The use of sample-
specific (rather than multi-sample) variant-quality calls may help target only those variants 
of sufficient quality across all samples, providing a higher quality set of variants for 
association testing in downstream analysis. 

Even with the use of filtering criteria, sequencing errors that occur in PRs of the genome 
cause several false-discoveries to persist. While the variants in Table 1 included those 
related to errors in covering repeat sequences, examination of PRs in Table 2 revealed that 
the majority of errors were related to areas of high-GC content and the occurrences of 
segmental duplications. A comprehensive database integrating these regions provides a 
mechanism to identify and experimentally or statistically address these potential sources of 
error.  
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While the rational use of variant prioritization and/or filtering can enrich the pool of 
variants likely to be associated with disease, the concomitant reduction in detection 
sensitivity often increases the Type-II error rate. Filtering variants based on PRs would be 
particularly problematic in this regard, given that these occur throughout the genome and 
are not directly related to disease characteristics. Alternative strategies have used 
probabilistic models incorporating read-specific quality scores and/or sequencing training 
data in an effort to distinguish true variants from sequencing errors22-23. The outcome is 
typically a decision rule designed to improve false-positive or false-negative error rates in 
variant detection, or a scoring system in which variants can be differentially weighted in 
subsequent analysis. While these approaches are certainly improvements over simple 
filtering of variants, they do not explicitly model all sources of errors inherent in the 
sequence data itself, including areas of degeneracy, high GC content or areas of low-
complexity.  

Regardless of the strategy used to distinguish sequencing errors from true discoveries, 
the errors in the sequence data still exist. The greatest potential impact of a database of PRs 
is in the identification of areas in the genome that should be targeted for improved coverage- 
the result being reductions in sequencing error rates16 regardless of the underlying cause. 
Improvements in coverage can have beneficial effects on sensitivity; and will improve 
specificity in large-scale studies where the error rates can differ across samples.  
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The immune system gathers evidence of the execution of various molecular processes, both foreign
and the cells’ own, as time- and space-varying sets of epitopes, small linear or conformational seg-
ments of the proteins involved in these processes. Epitopes do not have any obvious ordering in this
scheme: The immune system simply sees these epitope sets as disordered “bags” of simple signatures
based on whose contents the actions need to be decided. The immense landscape of possible bags
of epitopes is shaped by the cellular pathways in various cells, as well as the characteristics of the
internal sampling process that chooses and brings epitopes to cellular surface. As a consequence,
upon the infection by the same pathogen, different individuals’ cells present very different epitope
sets. Modeling this landscape should thus be a key step in computational immunology. We show that
among possible bag-of-words models, the counting grid is most fit for modeling cellular presentation.
We describe each patient by a bag-of-peptides they are likely to present on the cellular surface. In
regression tests, we found that compared to the state-of-the-art, counting grids explain more than
twice as much of the log viral load variance in these patients. This is potentially a significant ad-
vancement in the field, given that a large part of the log viral load variance also depends on the
infecting HIV strain, and that HIV polymorphisms themselves are known to strongly associate with
HLA types, both effects beyond what is modeled here.

Keywords: Gene expression, Modeling host-pathogen interactions, Bag of Peptides

1. Introduction

The mammalian immune system consists of a number of interacting subsystems employing
various infection clearing paths, with cellular presentation playing a central role in many of
them. Most of the cells present a sample of peptides derived from cellular proteins as a means
of advertising their states to the immune system. This facilitates globally coordinated action
against viral infection.
The input to the cellular immune surveillance is illustrated in Fig.1. We show a simplified illus-
tration of an infected cell which expresses both self (black) and viral (red) proteins (Fig.1A).
Major histocompatibility complex (MHC) type I molecules bind to a small fraction of peptides
from these proteins, created by proteasomal cleavage (Fig.1B). Inside these MHC complexes,
the peptides are transported to the surface of the cell, where they may be detected by the
cytotoxic T cells (CTL), which then may send self-destruct signals to the infected cell, thus
stopping further infection (Fig.1C). Peptides that are a target of immune surveillance are
often referred to as epitopes. As the sampled peptides do not appear in a particular spatial
organization on the surface, the immune system effectively sees the infection as a bag of MHC
molecules loaded with different viral peptides. Depending on the application, this represen-
tation may be further simplified into a bag of viral peptides (Fig.1D), under the assumption
that the main effect of the MHC molecules is the peptide selection (e.g. choosing conserved
vs non-conserved targets6).
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Fig. 1. Modeling immune surveillance input as a bag of words. A An Infected cell. B MHC binds to a fraction
of peptides. C Sampled pepdites appear without particular order on the cell surface. D A bag of peptides
represents the relative counts cz of the features seen on cellular surface.

This paper has a dual purpose: i) it argues for the new application of bag of words models,2,9

which have already been successfully applied in various other areas of machine learning, as
a set of tools for capturing correlations in the immune target abundances in humoral and
cellular immune surveillance, and ii), it proposes a novel way of modeling bags of words which
differs from PCA-like approaches not only in its treatment of observed epitope abundances
as counts, but also moves away from the traditional componential structure towards a spatial
embedding that captures smooth changes in cellular presentation.
In the experimental section, we restrict to the analysis of the links between the HIV viral
load and the patients HLA types, leading to significant improvement with respect to the state
of the art. Beyond the particular application tackled here, a good probability model of the
epitope co-presentation has several direct applications, from correcting association studies,
to detecting patients or populations that are likely to react similarly to an infection, to the
rational vaccine design.

Related Work Explaining the differences in viral loads in different HIV patients has received
a lot of attention from the HIV community, ever since the early longitudinal studies showed
that changes in viral load occur in synchrony with the emergence of new HLA class I epitopes
in immune assays.4

However, in case of the highly polymorphic HIV, a handful of epitopes usually fail to control the
infection, and so researchers turned to population studies in search for optimal immune targets.
Early studies failed to detect significant links between patients HLA types and viral load as the
straightforward statistical approaches could not handle small dataset sizes (typically around
200 patients or less). But the evidence of HLA pressure on HIV was recognized in strong
associations between viral mutations and patients’ HLA types.5 Viral load is highly variable
and it may depend on numerous factors, such as gender, age, prior infections and general
health of the individual. Thus it seemed likely that only the strongest MHC-driven effects
would be visible through the noise. Still, any statistically significant result has been seen as
having important consequences to HIV research. Eventually, larger cohorts allowed researchers
to detect links between HLA types and viral load. Certain HLA B types, esp. B57 and B5801
were found to strongly associate with low viral load in a cohort of over 700 HIV patients in
southern Africa.7 In these studies, despite the statistically strong associations, the viral load
in B57 or B5801 positive and negative patients still had such large variance that each of these
HLA types alone could only explain less than 2% of the total log viral load variance in the
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Table 1. The percentage of viral load (VL) explained in literature as the square of the
Pearson’s linear correlation coefficient (See Tab.2)

Ref. Major Result
5 VL considered too noisy. Associations with mutations found
7 1-2% of VL variance explained through individual allele association
6 4% of VL variance explained through by targeting efficiency
10 4.3%-9% of VL variance explained by combinations of epitopes
This Paper Up to 13.5% of VL variance explained by embedding into Counting Grids

population.
Multiple hypothesis testing issues and linkage disequilibrium among HLA loci complicated
this research and the employed straightforward statistical approach did not present obvious
ways to move from singular features (such as a binary labeling of patients as having B57
or not) to combinations of features that would provide higher explanatory power. However,
by analyzing the tendency of the HLA molecules to bind to conserved targets in the HIV,
it is possible to create a patient score (dubbed targeting efficiency) that captures binding
characteristics of all 6 HLA molecules relative to HIV proteins.6 At least on one cohort,5

targeting efficiency explained a little less than 4% of the log viral load variancea. On the
same cohort, another recent method deals with multiple features and their correlations, the
correlation sifting ,10 explaining 4.3% of the log viral load variance by patients’ HLA types.
We show here that the bag of words models3,9 lead to even better regression to viral load. This
is especially the case for the new counting grid model9 that efficiently captures correlations in
cellular presentation by embedding patients in a grid, where the embedding coordinates can
be used to explain 13.5% of log viral load variance, more than twice the current state of the
art.
To put these numbers into perspective, it is important to make two observations. First, even
weak signals, had the tendency to move the entire field,5,7 as valuable characteristics of the
interaction between HIV and the host immune system were revealed, informing both the
research on HIV drugs and the research on HIV vaccine. Second, in addition to high variation
of the viral load due to factors that relate to age and general health, it is known that the set
point viral load depends strongly on the infecting strain,8 and as HIV was found to mutate in
its reactions to HLA presentation, this variation in fitness in the infecting strains may itself be
due to the HLA pressure from previous hosts. Thus the increase in explanatory power of HLA
types from around 4% of the log viral load to around 13.5% is potentially of great importance.
Further analysis in selected combinations of features in the counting grid may lead to further
advances in understanding the evolutionary arms race between HLA and the human immune
system.

2. Bag of words models

In machine learning research, data samples are often represented as bags of features without
a particular order. This choice is typically motivated by the difficulty or computational effi-

aNote again that the original analysis based on individual alleles failed to detect significant links with viral
load there
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Fig. 2. Capturing dependencies in bags of words.

ciency of modeling the feature structure. Computational biology is abundant with examples
of data where the structure is truly unknown, rather than just sacrificed for computational
efficiency: for example, a gene expression array has been modeled as a bag of genes with ex-
pression levels simply corresponding to counts because most of the time little is known about
the cellular pathways that employ these genes.11–14 Without such knowledge there is no clear
gene ordering. But biology is also abundant with situations where the raw data of interest
actually has no (known or unknown) structure. In particular, in this paper we develop models
of the sets of immune system targets.
Topic models1,2 were introduced by the text analysis community and have been particularly
successful in representing text documents. These simplified models of text assume that a text
document has been generated simply by mixing words from a subset of possible topics. In
typical applications, the number of possible topics is large, and these topics are inferred from
the data by analyzing word co-occurrence patterns, and so the topic scope can vary from
very narrow to quite broad, e.g., from near homonyms, to words found in most stories on US
politics. An individual document is assumed to use only a fraction of all possible topics, and
so the resulting bags of words will exhibit strong co-occurrence patterns: when the president
is mentioned, so is the congress, as both appear in the same topic.
These models can be used in other domains by simply replacing words with some other set
of features of interest. In bioinformatics, for example, words are replaced by genes and their
counts by expression levels3,12 to model microarray experiments. Visual descriptors are ex-
tracted from salient points of brain images and clustered into “visual words” replacing tradi-
tional words in bags of words and these representations were then used to classify schizophrenic
patients from controls.18 Peaks in nuclear magnetic resonance (NMR) spectrometry were also
clustered and used as words.19 Finally, protein sequences are sometimes broken into segments
or fragments, which serve as words for comparing protein structures.20

Among topic models one of the best known is the Latent Dirichlet Allocation (LDA).2 To
formally define this model, we will index possible words (features) by z and denote the set
of observed word (or feature) counts in the t-th bag of words by {ctz}. The latent (hidden)
variables describe the choice of topics indexed by k. The choice of topics follows a distribution
p(k|θ) = θk, and each topic has its own distribution over all the words p(z|k, β) = βz|k. The
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vector that depecits the topic distribution for one document θ is sampled from a Dirichlet
distribution with parameters α. The following probability of generating a particular document
is induced by this simple generative process (after picking the topic distribution θ, pick a topic,
then pick a word form the topic, then pick a topic and a word from it again and again till all
the words in the document are generated):

p({ctz}|α, β) =
∫
p(θ|α) ·

∏
z

(∑
k

(p(z|k, β) · p(k|θ))c
t
z

)
dθ (1)

The model parameters are estimated based on a training set so as to maximize the product
of probabilities of all training documents. The topic proportions θ for individual documents can
be used as a compact representation of the bag of words that discards the superfluous aspects of
the data. For example, the HIV viral load can be regressed directly to these hidden variables in
patient cohorts that are too small for the full representation of the viral presentation. Modeling
cellular peptide presentation as a mixture of topics can capture some of the presentation
patterns discussed above. Upon model fitting, the topics may correspond to individual MHC
molecules that are more frequent in the patient cohort, or entire families of MHC types that
have similar presentation (sometimes referred to MHC supertypes). In this case, all viral
peptides would be indexed by z, and the topic probability distribution would reflects the
probabilities of binding of a particular MHC (super)type to these different peptides. Some
topics may also capture the HIV clade structure as mutations in each clade alter the MHC
binding patterns.

Estimating bags of peptides for individual HIV patients

The concentration of any viral peptide on the cellular surface depends on the source protein’s
expression level. But different HIV proteins are expressed at different times in the HIV’s
infection and reproduction cycle. Instead of trying to estimate appropriate weighting factors,
we simply considered each of the HIV proteins in isolation in our experiments.
As most epitopes are of length 9, for each analyzed protein we created a vocabulary of all
9-mers that exist in this protein, indexed by z. Each human host has up to 6 different MHC
I molecules (two from each of the three ancient duplicated and highly polymorphic loci A, B,
C in the HLA region). In addition, in our experiments we dealt with a cohort in which we had
the HLA types for each patient and we had access to an MHC I - peptide complex prediction
algorithm that can estimate the binding energy Eb(z,m) for each of the peptides z and the
different patient’s HLA molecules indexed by m.21 Finally, we also used a cleavage energy22

estimate Ec(z) and turned the total energy into a count (concentration) as follows

cz = e−Ec(z)−minm

[
Eb(z,m)

]
(2)

In a simplified model, the individual’s immune system sees this variation in peptide counts
(with many counts close to zero), and thus needs to recognize a virus not as a whole but as a
set of disordered viral peptides.
Estimation of surface peptide (relative) counts could use any number of other epitope pre-
diction techniques recently developed in computational biology.23 Here we used the adaptive
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double threading technique,21 as it provides prediction for arbitrary MHC types simply defined
by their protein sequence. NET MHC Pan24 predictors provides similar functionality.

The counts cz are not independent. The MHC system, as well as viral mutations, cre-
ate links among the abundances of different viral peptides in the observed bag. Each MHC
molecule has its binding preferences that lead to selection of only one of a hundred to a
thousand of peptides. The human leukocyte antigen (HLA) region (human MHC) is the most
polymorphic region of the human genome. As a result, two patients infected by the same virus,
e.g. HIV, are highly unlikely to have the exact same MHC molecules. Each of their molecules
will select specific targets from HIV proteins, and the patients’ sets of immune targets will
likely overlap only partially. The variation of the HIV epitope sets found in different patients
exhibits strong co-occurrence patterns where a high count of one peptide often implies in-
clusion of several others, as they are all good binders to a particular MHC allele (families of
different alleles can also share binding preferences). These links in epitope presentations are
further expanded by weak linkage disequilibrium among MHC types as well as viral adapta-
tion, which is itself correlated across sequence sites.
This all means that good models of bags of epitopes that constitute the immune surveillance
input need to capture these correlations and this is precisely what the probability models of
bags of words where meant to do for text documents.

3. The Counting Grid model

In the counting grid model, individual distributions over words are arranged on a grid (see
Fig.2). Each of these distributions is relatively tight, with only a few features having significant
probability. To generate a bag of words, instead of mixing topics, it is assumed simply that
a window into the grid is opened, and the feature counts in the cells inside the window are
combined to create the appropriate words in appropriate abundance. The window floating
over the grid captures well variation in certain types of documents where we can see slow
evolution of the topics, where certain words are dropped and new ones introduced: think for
example to news stories over time, as interest in certain news slowly vanes in favor of new ones.
Although traditional topics have been embedded in time or space and made slowly varying in
certain directions, these variations do not quite capture the simple constraints present in CG
models where a small window shift in the grid simply drops certain words and adds new ones.
Furthermore, the counting grids are learned from the data for which the embedding in time or
space is not available; this is the case for epitope bags. As we will show shortly, counting grids
for this data can never the less be produced by iteratively estimating the grid distributions
and inferring the mapping of the data to appropriate windows in it, thus resulting in the
embedding of the data to a grid.

Formally, the basic counting grid πi,z is a set of normalized counts of words / features
indexed by z on the D-dimensional discrete grid indexed by i = (i1, . . . , iD) where each id ∈
[1 . . . Ed] and E = (E1, . . . , ED) describes the extent of the counting grid. Since π is a grid of
distributions,

∑
z πi,z = 1 everywhere on the grid. A given bag of words/features, represented

by counts {cz} is assumed to follow a count distribution found somewhere in the counting grid.
In particular, using windows of dimensions W = [W1, . . . ,WD], each bag can be generated by
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first averaging all counts in the hypercube windowWk = [k . . .k+W] starting at D-dimensional
grid location k and extending in each direction d by Wd grid positions to form the histogram
hk,z = 1∏

d Wd

∑
i∈Wk

πi,z, and then generating a set of features in the bag. In other words, the
position of the window k in the grid is a latent variable given which the probability of the bag
of features {cz} is

p({cz}|k) =
∏
z

(hk,z)
cz =

1∏
dWd

∏
z

(
∑
i∈Wk

πi,z)
cz (3)

Relaxing the terminology, we will refer to E and W respectively as the counting grid and the
window size. We will also often refer to the ratio of the window volumes, κ, as a capacity of
the model in terms of an equivalent number of topics, as this is how many non-overlapping
windows can be fit onto the grid. Fine variation achievable by moving the windows in between
any two close by but non-overlapping windows is useful if we expect such smooth thematic
shifts to occur in the data, and we illustrate in our experiments that indeed they do. Finally,
with Wk we indicate the particular window placed at location k (see Fig.2C). To learn a
counting grid we need to maximize the likelihood of the data:

logP =
∑
t

log
(∑

k

·
∏
z

(h
ctz
k,z)
)

(4)

The sum over the latent variables k makes it difficult to perform assignment to the latent
variables while also estimating the model parameters. The problem is solved by employing
an iterative variational EM procedure. The E step aligns each bag of features {ctz} to grid
windows, to match the bag’s histograms. In this way we compute the posterior distribution
qtk over all windows k so that a better match between {ctz} and hk,z across all features z yields
a higher value for the match. In other words, qtk is probabilistic mapping of the t − th bag
to the grid widnows k. This mapping is usually peaky, i.e., each bag tends to map to a few
nearby locations in the grid. In the M-step we re-estimate the counting grid so that these same
histogram matches are even better. To avoid severe local minima it is important to consider
the counting grid as a torus, and perform all windowing operation accordingly. For details on
the learning algorithm and on its efficiency see the original CG paper.9

Regression of continuous values

Once a CG is learned, we show here how one may embed continuous values yt on the grid
(e.g., HIV viral load). This is achieved using the posterior probabilities qtk for each bag already
inferred and embedding the corresponding viral load inside the entire mapped window(s), and
then averaging all overlapping windows (Fig.2D), which is similar to how M step re-estimates
the distributions π:

γ(i) =

∑
t

∑
k|i∈Wk

qtk · yt∑
t

∑
k|i∈Wk

qtk
(5)

The function γ can then be used for regression, in what is essentially a nearest-neighbor
strategy: when a new data point is embedded based on its bag of words, the target is simply
read out from γ, which is dominated by the training points which were mapped in the same
region.
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In Fig.4A we show a couple of γs, estimated from the dataset we used in the experiments.
The window W is shown with a dotted line in the figure.

4. Experiments

In this section we first discuss what aspects of the epitope bags the counting grids may capture.
Then we show that counting grids outperform not only traditional bag of words models, which
have previously not been applied to this task, but also the state of the art in biomedical and
computational biology literature5–7,10 on analysis of the links between the HIV viral load and
the patients HLA types (see Tab.1).

Types of correlations in epitope bags that can be captured with counting grids
There are reasons why a counting grid model may be a more appropriate model of variation in
epitope bags and perhaps more generally in many computational biology applications. These
reasons have to do with the manner in which biological entities interact and adapt to each
other leading to patterns of slow evolution characterized by genetic drift, local co-adaptation,
as well as punctuated equilibrium. In case of cellular presentation, for example, millions of
years of evolution created certain typical variants of MHC as well as minor variation on
each of these major types. These variations are at least in part due to the interaction with
viruses,6 and similarly the genetic variation in viruses reflect some of this evolutionary arms
race, too. Thus, the HIV clade constraints, as well as MHC binding characteristics may be
so interwoven that a rigid view of cellular presentation as a mix of a small number of topics
may be inappropriate. In the counting grid, the major variants of cellular presentation can
be modeled as far away windows, while minor variations would be captured by slight window
shifts in certain regions of the grid. To illustrate this we analyzed the cellular presentation
of HIV patients from the Western Australia cohort.5 We represented each patient’s cellular
presentation by a set of 492 counts over that many 9-long peptides from the Gag protein,
previously found to be targeted by the immune system. The counts were calculated based
on the patients MHC class I types (or HLA types, as they are called in humans) and the
HLA-peptide binding estimation procedure discussed in Sec.2. This provides us with bags
of peptides (BoP, counts over the 492 words) that represent GAG in different patients. We
used the same process for two more proteins, POL and VPR, resulting in counts matrices
of respectively 88×135 and 939× 118 words×samples. We analyzed only the clade B infected
patients.

Cellular presentation of viral peptides and viral load As the immune pressure depends
on cellular presentation, the variation in cellular presentation across patients is expected to
reflect on the variation in viral load, at least to some extent.5,6 Viral load is expected to depend
on the cellular presentation for various reasons. If the targeted peptides are conserved, this
indicates inability of the virus to escape immune pressure. Even binding to some relatively
variable peptides may lead to good outcomes for the patient (low viral load), as long as the
CTLs can crossreact effectively across the peptide variants. In addition, there is a possibility
that additional qualities of the peptides render some immune responses more effective than
the others, or that certain immune responses trigger different viral behaviors. In bio-medical
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Fig. 3. HIV viral load regression. The variation of the correlation factor ρ for CG and LDA models of different
complexities. Color code is used represent the square CG size E as a single capacity can be obtained with
different E/W combinations.

literature, analysis of this type of data targeted individual peptides and the discovery of those
peptides that have significant association with viral load. However, these results do not explain
nearly as much of viral load variance as what follows.

As general procedure, we first trained a CG using the bags-of-peptides cz but without using
the regression targets yt (log viral load). Then, in a leave-out-out fashion, we held out a sample
t̂ and estimated the regression function γ (see Eq. 5, with t ̸= t̂) using all the other epitope
bag/viral load pairs, and finally, read out γ in the appropriate (probabilistic) location qt̂k to
obtain the viral load prediction for t̂ sample as yt̂CG =

∑
k q

t̂
k ·γ(k). Once we computed the esti-

mated regression target for all the samples, we computed ρ, the pairwise correlation coefficient
between the true and the estimated viral load, comparing CGs with LDA,3 and a technique
based on phlogenetic trees15 meant to established how much can the viral laod be predicted
simply from the patient’s dominant HIV sequence, as different strains may vary in fitness.
We considered counting grids of various complexities E = [12,15,18,21,25,30,35,40,50] and
W = [2,3,4, . . . ]. We tested only the combinations with capacity κ between 1.5 and T/2, where
T is the number of samples available.

Rogers’ LDA adaptation,3 LPD originally designed for modeling microarray data was
evaluated in a similar fashion. We learned as single model (without using the target) and
we predicted the viral load for the left out sample using linear regression based on the topic
proportions θ.

To compare with a sequence-based regression, we used the maximum likelihood approach15

to estiamte a phylogentic tree for all patients’ HIV sequences. Few parameters have to be tuned
when computing such trees: In our experiments, we pick as a rate substitution matrix the WAG
model,16 and we allowed for rate variations across sites, setting 4 discrete gamma categories.17

To predict the viral load ŷ for a test sequence x using the estimated tree, we detected the
training sequences that lie near by in the tree and averaged their viral loads acdcordign to
their distance. If t indexes the training sequences xt and their associated viral load value yt

ŷ =
∑
t

e−C·dist(x,xt) · yt (6)

The parameter C has been found with crossvalidation on the training set. Fig.3, summarizes
the performance of CG and LDA across a range of capacities κ for CGs and the number of
topics K for LDA. LDA and CGs reach similar results of POL and VPR, while CGs have a
clear advantage on GAG. It is important to note that for the Counting Grids, the correlation
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factor varies much more regularly with the capacity κ, since this indicates that the complexity
can be chosen on the training set through crossvalidation, which then allow us to properly
calculate the percent of viral load explainable by the model. For each protein, we performed
leave-one-out crossevaluation on the training set, to pick the best model complexity (E/W for
Counting Grids, or the number of topics K for LDA) and we compared the results with the
tree regression discussed above.

In leave-one-out experiments, the training set was each time used as a full set for another
set of leave-one-out experiments on training data alone, plotting the graphs as above, and
picking the best complexity. Then for the test sample we predicted the viral load using this
best complexity. It is important to note that in this scheme i) the viral load of different
patients can in principle be predicted using different complexities, and ii) the test sample
does not contaminate the prediction model in any way. Results are shown it Tab.2. For Latent
Dirichlet Allocation, this process failed and we could not obtain statistically significant results
because of severe overtraining issues.

Finally, we also combined CG rpedictions with the idea of regressing the reconstruction
error Et

z = c̃tz − Rt
z on residual viral load ytRED = yt − ytCG,

10 where ytCG is the viral load
prediction using the counting grid, and c̃tz the normalized feature count. We used a regularized
linear regression with L1 norm using as before leave-one-out crossevaluation to choose the best
model complexity. We computed the correlation factor ρ, setting final viral load prediction to
be equal to the sum of ytCG and the prediction of ytRED. The idea here is that the deviation
from the norm may be detecting viral adaptation and can predict furhter the modualtion of
viral fitness. As can be seen in Tab.2, column CGs→10, this improved the performance in all
the cases.

Interestingly, the model complexities chosen by each round of leave-one-out, though they
could in principle be different for each patient, did not in fact differ that much. Regardless
of the protein considered, for more than 89% of the data points the same complexity was
typically chosen, as reported in the last column of Tab. 2.

Table 2. Pearson’s linear correlation (after crossevaluation where applicable). Crossevalu-
ation for LDA was found not statistically significant (NS) for GAG and POL. The last
column reports the most common CG’s complexity chosen in the rounds of leave-one-out
crossevaluation.

CGs CGs→10 Trees LDA Ridge Regr. Complexity Chosen
Protein ρ ρ ρ ρ ρ

GAG 0.3301 0.3674 0.3519 NS 0.1835 [30,5] - 89%
VPR 0.2011 0.2546 0.1061 0.1202 NS [50,8] - 94%
POL 0.2338 0.2443 0.1812 NS NS [40,11] - 97%

The medical literature has other results obtained by analyzing GAG protein as shown in
Tab.1, but the results reported here outperform all these methods, too.

We have one final note on the embedding function γ. The bags of peptides are mapped
to the counting grid iteratively as the grid is estimated as to best model the bags, but the
regression target, the viral load, was not used during the learning of CGs or LDA models.
However, the inferred mapping after each iteration can be used to visualize how the embedded
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Fig. 4. A HIV viral load embedding in the 2D. The window is shown with a dotted line in the figure. B
Evolution of the viral load across the iterations.

viral load γ evolves. This is illustrated in Fig.4B for a model of complexity E = [30×30], W =

[8 × 8]. The emergence of areas of high (red) and low (blue) viral load indicates that as the
structure in the cellular presentation is discovered, it does indeed reflect the variation in viral
load.

5. Conclusions

We propose the use of bag of words models to capture cellular presentation, and more generally
the view that the immune system has of the invading pathogens. Furthermore, we demonstrate
that the newest of these models, the counting grid, seems to be especially well suited to this
task, providing stronger predictions than what can be found in bio-medical literature.
It remains to be understood exactly why CGs exhibit such a strong advantage over topic
models (LDA). One intuitive explanation is that the slow smooth variations in count data
that can be captured in counting grids better represent the dependencies that were produced
by millions of years of coevolution between the HLA system and various invading pathogens.6

This process involved numerous mixing of both the immune types and the viral strains, and
may have produced the sort of thematic shifts in cellular representation that CGs are designed
to represent. A more speculative possibility is that the immune system, through some unknown
mechanism, collates the reports from circulating CTLs into an immune memory of a similar
structure, though this summarization would obviously be performed over different invading
pathogens in one patient, while our CGs depect one virus in a population of patients. Our
experiments showed that cellular presentation of the Gag protein explains more than 13.5%
of the log viral load. Although viral load varies dramatically across patients for a variety
of reasons, e.g. gender, previous exposures to related viruses, etc., detection of statistically
significant links between cellular presentation and viral load is expected to have important
consequences to vaccine research.7
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A key step for Alzheimer’s disease (AD) study is to identify associations between genetic variations
and intermediate phenotypes (e.g., brain structures). At the same time, it is crucial to develop a
noninvasive means for AD diagnosis. Although these two tasks—association discovery and disease
diagnosis—have been treated separately by a variety of approaches, they are tightly coupled due
to their common biological basis. We hypothesize that the two tasks can potentially benefit each
other by a joint analysis, because (i) the association study discovers correlated biomarkers from
different data sources, which may help improve diagnosis accuracy, and (ii) the disease status may
help identify disease-sensitive associations between genetic variations and MRI features. Based on
this hypothesis, we present a new sparse Bayesian approach for joint association study and disease
diagnosis. In this approach, common latent features are extracted from different data sources based
on sparse projection matrices and used to predict multiple disease severity levels based on Gaussian
process ordinal regression; in return, the disease status is used to guide the discovery of relationships
between the data sources. The sparse projection matrices not only reveal the associations but also
select groups of biomarkers related to AD. To learn the model from data, we develop an efficient
variational expectation maximization algorithm. Simulation results demonstrate that our approach
achieves higher accuracy in both predicting ordinal labels and discovering associations between data
sources than alternative methods. We apply our approach to an imaging genetics dataset of AD.
Our joint analysis approach not only identifies meaningful and interesting associations between
genetic variations, brain structures, and AD status, but also achieves significantly higher accuracy
for predicting ordinal AD stages than the competing methods.

Keywords: disease diagnosis, Alzheimer’s disease, genetic variations, brain structures, multiview
learning, ordinal regression.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder associated with aging. Although it
accounts for 60-80% of age-related dementia cases, currently there is no cure for AD and its
underlying mechanism remain elusive. To study AD mechanism, a crucial step is to identify
associations between genetic variations and intermediate phenotypes (e.g., endophenotypical
traits). In other words, we want to discover cross linkages between genetic risk factors based on

∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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genomic data—such as single nucleotide polymorphisms (SNPs)—and indicative intermediate
phenotypes—such as cortical thickness of different brain regions (based on magnetic resonance
imaging (MRI)). This identification can help us locate a subset of polymorphisms which may
have functional consequences on brain structures. Although GWAS studies have been applied
to AD studies,1,2 the association study between genetic variations and multiple intermediate
phenotypes is still relatively scarce for AD. A similar task arises for expression quantitative
trait locus (eQTL) analysis, where canonical correlation analysis (CCA) and its extensions3–6

have been widely applied. Meanwhile, it has become increasingly important to develop a
noninvasive means for AD diagnosis based on various biomarkers, including both genetic
variations and MRI features. Because many of these biomarkers are irrelevant to the diagnosis,
sparse models are needed to identify the relevant ones. For disease diagnosis, popular sparse
models include lasso,7 elastic net,8 and automatic relevance determination.9 Here we treat
genotypes or intermediate phenotypes as biomarkers and the disease status as the response
in a linear regression or classification setting. Non-zero regression or classification weights in
our estimation indicate relevant biomarkers for the disease.10,11

Although these two tasks—association discovery and disease diagnosis—have been ad-
dressed separately in the previous works, they are closely related—due to the their common
underlying biological basis—and can potentially benefit each other by a joint analysis. To
harness the natural synergy between the two tasks, we propose a new Bayesian approach that
integrates multiview learning for association discovery with sparse ordinal regression for dis-
ease diagnosis. In the new approach, genetic variations and phenotypical traits are generated
from common latent features based on separate sparse projection matrices and the common
latent features are used to predict the disease status based on Gaussian process ordinal re-
gression (See Section 2). To enforce sparsity in projection matrices, we assign spike and slab
priors12 over them; these priors have been shown to be more effective than l1 penalty to learn
sparse projection matrices.13,14 The sparse projection matrices not only reveal critical interac-
tions between the different data sources but also identify groups of biomarkers in data relevant
to disease status. Finding groups of biomarkers can avoid over-sparsification (i.e., selecting
one instead of multiple correlated features), thus boosting the accuracy for disease diagnosis.
It can also help provide a better biological understanding because these groups may form bio-
logically meaningful units (e.g., pathways). Meanwhile, via its direct connection to the latent
features, the disease status influences the estimation of the projection matrices. Hence we
name this new method Supervised Heterogeneous Multiview Learning (SHML). In addition
to enjoying the benefit of integrating the related tasks, two features of our model distinguish
it from previous approaches:

• There is a severity order for AD, from being normal to mild cognitive impairment (MCI)
and then to AD; and our ordinal regression component captures the AD severity order.
Alternative sparse models, by contrast, use classification or regression likelihoods and
do not consider the order of disease severity.

• The data are heterogeneous: SNPs values are discrete (or ordinal) and the imaging
features are continuous. While popular CCA-type methods treat both of them as con-
tinuous data, our model captures the heterogeneous nature of the data.
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To learn the model from data, we develop a variational Bayesian expectation maximization
(VB-EM) approach (See Section 3). Maximizing this estimate enables us to automatically
choose a suitable dimension for the latent features in a principled Bayesian framework.

In Section 4, we test our approach SHML on both synthetic and real datasets. On synthetic
data, SHML achieves both higher estimation accuracy in recovering true associations between
different views and higher prediction accuracy than alternative state-of-the-art methods. We
then apply SHML to an AD study. SHML achieved highest prediction accuracy among all
competing methods and yielded biologically meaningful relationships between genetic varia-
tions, brain atrophy, and the disease status.

2. Model

First, let us describe the data. We assume there are two heterogeneous data sources: one
contains continuous data – for example, MRI features – and one discrete ordinal data – for
instance, SNPs. Given data from n subjects, p continuous features and q discrete features,
we denote the continuous data by a p × n matrix X = [x1, . . . ,xn], the discrete ordinal data
by a q × n matrix Z = [z1, . . . , zn], and the labels (i.e., the disease status) by a n × 1 vector
y = [y1, . . . , yn]

>. For the AD study, we let yi = 0, 1, and 2 if the i-th subject is in the normal,
MCI or AD condition, respectively.

To link two data sources X and Z together, we introduce common latent fea-
tures U = [u1, . . . ,un] and assume X and Z are generated from U by sparse pro-
jections. The common latent feature assumption is sensible for association studies be-
cause both SNPs and MRI features are biological measurements of the same subjects.
Note that ui is the latent feature for the i-th subject and its dimension k is esti-
mated by evidence maximization. In a Bayesian framework, we give a Gaussian prior over
U, p(U) =

∏
iN (ui|0, I), and specify the rest of the model (see Figure 1) as follows:

H

Z

y

U

X

GSh Sg
η

Fig. 1. The probabilistic graphical model
of SHML, where X is the continuous view,
Z is the ordinal view, and y are the labels.

Continuous data. Given U, X is generated from

p(X|U,G, η) =
n∏

i=1

N (xi|Gui, η
−1I)

where G = [g1,g2, ...gp]
> is a p×k projection matrix,

I is an identity matrix, and η−1I is the precision
matrix of the Gaussian distribution. For η, we assign
an uninformative diffuse Gamma prior, p(η|r1, r2) =
Gamma(η|r1, r2) with r1 = r2 = 10−3.
Ordinal data. For an ordinal observation z ∈
{0, 1, . . . , R − 1}, its value is decided by which region an auxiliary variable c falls in −∞ =

b0 < b1 < . . . < bR = ∞. If c falls in [br, br+1), z is set to be r. For the AD study, the SNPs Z

take values in {0, 1, 2} and therefore R = 3. Given a q×k projection matrix H = [h1,h2, ...hq]
>,

the auxiliary variables C = {cij} and the ordinal data Z are generated from

p(Z,C|U,H) =

q∏
i=1

n∏
j=1

N (cij |h>
i uj , 1)

2∑
r=0

δ(zij = r)δ(br ≤ cij < br+1)
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where δ(a) = 1 if a is true and δ(a) = 0 otherwise, and [b0, . . . , b3] are set to [−∞,−1, 1,∞].
Labels. For ordinal labels y, we use a Gaussian process ordinal regression model15 based the
latent representation U,

p(y|U) = N (f |0,K)

n∏
i=1

2∑
r=0

δ(yi = r)δ(br ≤ fi < br+1)

where [b0, . . . , b3] are set to [−∞,−1, 1,∞], and Kij = k(ui,uj) is the cross-covariance between
ui and uj. We can choose k from a rich family of kernel functions such as linear, polynomial,
and Gaussian kernels to model relationships between the labels y and the latent features U.

Note that the labels y are linked to the data X and Z via the latent features U and the
projection matrices H and G. Due to the sparsity in H and G, only a few groups of variables
in X and Z are selected to predict y. Note that each of group is linked to a feature in U.
Sparse Priors. Because we want to identify a few critical interactions between different data
sources, we use spike and slab prior distributions12 to sparsify the projection matrices G and
H. Specifically, we use a p× k matrix Sg to represent the selection of elements in G: if sij = 1,
gij is selected and follows a Gaussian prior distribution with variance σ21; if sij = 0, gij is not
selected and forced to almost zero (i.e., sampled from a Gaussian with a very small variance
σ22). Specifically, we have the following prior over G:

p(G|Sg,Πg) =

p∏
i=1

k∏
j=1

πijg
sijg (1− πijg )

1−sijg
(
sijg N (gij |0, σ21) + (1− sijg )N (gij |0, σ22)

)
where πijg in Πg is the probability of sijg = 1, and σ21 � σ22 (in our experiment, we set σ21 = 1 and
σ22 = 10−6). Without any prior preference over the selecting probabilities, we assign uniform
priors, p(Πg) = 1. Similarly, H is sampled from

p(H|Sh,Πh) =

q∏
i=1

k∏
j=1

πijh
sijh (1− πijh )

1−sijh
(
sijh N (hij |0, σ21) + (1− sijh )N (hij |0, σ22)

)
where Sh are binary selection variables and πijh in Πh is the probability of sijh = 1. Again, we
assign uninformative uniform priors over Πh: p(Πh) = 1.

Finally, the joint distribution of our model, SHML, is simply the product of all the prior
distributions and the conditional density distributions.

3. Algorithm

3.1. Estimating latent variables

Given the model specified in the previous section, now we present an efficient, principled
method to estimate the latent features U, the projection matrices H and G, the selection
indicators Sg and Sh, the selection probabilities Πg and Πh, the variance η, the auxiliary
variables C for generating ordinal data Z, and the auxiliary variables f for generating the
labels y. In a Bayesian framework, this estimation task amounts to computing their posterior
distributions. However, computing the exact posteriors turns out to be infeasible since we
cannot calculate the normalization constant of the exact posterior distribution. Thus, we resort
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to a variational Bayesian Expectation Maximization (VB-EM) approach. More specifically, in
the E step, we approximate the posterior distributions of H,G,Sg,Sh,Πg,Πh, η,C and f by a
factorized distribution Q(H)Q(G)Q(Sg)Q(Sh)Q(Πg)Q(Πh)Q(η)Q(C)Q(f); and in the M step,
based on the approximate distributions, we optimize the latent features U.

To obtain the variational approximation, we minimize the Kullback-Leibler (KL) diver-
gence between the approximate and the exact posteriors. To this end, we use coordinate de-
scent; we update an approximate distribution, say, Q(H), while fixing the other approximate
distributions, and iteratively refine all the approximate distributions. The detailed updates
are given in the following paragraphs.

3.1.1. Updating variational distributions for continuous data

For the continuous data X, the approximate distributions of the projection matrix G, the
noise variance η, the selection indicators Sg and the selection probabilities Πg are

Q(G) =

p∏
i=1

N (gi;λi,Ωi) Q(η) = Gamma(η|r̃1, r̃2), (1)

Q(Sg) =

p∏
i=1

k∏
j=1

β
sijg
ij (1− βij)

1−sijg Q(Πg) =

p∏
i=1

k∏
j=1

Beta(πijg |l̃
ij
1 , l̃

ij
2 ). (2)

The mean and covariance of gi are calculated as Ωi =
(
〈η〉UU> + 1

σ2
1
diag(〈sig〉) + 1

σ2
2
diag(1 −

〈sig〉)
)−1

and λi = Ωi(〈η〉Ux̃i), where 〈·〉 means expectation over a distribution, x̃i and sig are
the transpose of the i-th rows of X and Sg, 〈sig〉 = [βi1, . . . , βik]

>, and 〈g2ij〉 is the j-th diagonal
element in Ωi. The parameters of the Gamma distribution Q(η) are updated as r̃1 = r1+

np
2 and

r̃2 = r2+
1
2tr(XX>)−tr(〈G〉UX>)+ 1

2tr(UU>〈G>G〉). The parameter βij in Q(sijg ) is calculated

as βij = 1/
(
1 + exp(〈log(1 − πijg )〉 − 〈log(πijg )〉 + 1

2 log(
σ2
1

σ2
2
) + 1

2〈g
2
ij〉( 1

σ2
1
− 1

σ2
2
))
)
. The parameters of

the Beta distribution Q(πijg ) is given by l̃ij1 = βij + 1 and l̃ij2 = 2− βij.
The moments required in the above distributions are calculated as 〈η〉 = r̃1

r̃2
, 〈G〉 =

[λ1, . . . ,λp]
>, 〈G>G〉 =

∑p
i=1Ωi + λiλ

>
i , 〈log(π

ij
g )〉 = ψ(l̃ij1 ) − ψ(l̃ij1 + l̃ij2 ) and 〈log(1 − πijg )〉 =

ψ(l̃ij2 )− ψ(l̃ij1 + l̃ij2 ), where ψ(x) = d
dx ln Γ(x).

3.1.2. Updating variational distributions for ordinal data

For the ordinal data Z, we update the approximate distributions of the projection matrix H,
the auxiliary variables C, the sparse selection indicators Sh and the selection probabilities Πh.
Specifically, the variational distributions of C, H, Sh and Πh are

Q(C) ∝
q∏

i=1

k∏
j=1

δ(bzij ≤ cij < bzij+1)N (cij |c̄ij , 1) Q(H) =

q∏
i=1

N (hi;γi,Λi), (3)

Q(Sh) =

q∏
i=1

k∏
j=1

α
sijh
ij (1− αij)

1−sijh Q(Πh) =

q∏
i=1

k∏
j=1

Beta(πijh |d̃
ij
1 , d̃

ij
2), (4)

where c̄ij = γ>
i uj, Λi =

(
UU> + 1

σ2
1
diag(〈sih〉) +

1
σ2
2
diag(〈1 − sih〉)

)−1
, γi = Λi(U〈c̃i〉) where c̃i

is the transpose of the i-th row of C, αij = 1/
(
1 + exp(〈log(1 − πijh )〉 − 〈log(πijh )〉 +

1
2 log(

σ2
1

σ2
2
) +
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1
2〈h

2
ij〉( 1

σ2
1
− 1

σ2
2
))
)
, d̃ij1 = αij +1, d̃ij2 = 2−αij, 〈sih〉 = [αi1, . . . , αik]

>, and 〈h2ij〉 is the j-th diagonal
element in Λi.

The required moments for updating the above distributions can be calculated as 〈log(πijh )〉 =
ψ(d̃ij1 ) − ψ(d̃ij1 + d̃ij2 ), 〈log(1 − πijh )〉 = ψ(d̃ij2 ) − ψ(d̃ij1 + d̃ij2 ), 〈c̃i〉 = [〈ci1〉, . . . , 〈cin〉]> and 〈cij〉 =

c̄ij −
(
N (bzij+1|c̄ij , 1)−N (bzij |c̄ij , 1)

)
/
(
Φ(bzij+1− c̄ij)−Φ(bzij − c̄ij)

)
, where Φ(·) is the cumulative

distribution function of a standard Gaussian distribution. Note that in Equation (3), Q(C)

is the product of truncated Gaussian distributions and the truncation is controlled by the
observed ordinal data Z.

3.1.3. Updating variational distributions for labels

We update the variational distribution of the auxiliary variables f as follows:

Q(f) ∝
n∏

i=1

δ(byi
≤ fi < byi+1)N (fi|f̄i, σ2fi) (5)

where f̄i = Ki,¬iK
−1
¬i,¬i〈f¬i〉 and σ2fi = Ki,i − Ki,¬iK

−1
¬i,¬iK¬i,i. Ki,¬i is the covariance

between ui and U¬i, K¬i,¬i is the covariance on U¬i (U¬i = [u1, · · ·ui−1,ui+1, · · ·un]),
〈f¬i〉 = [〈f1〉, · · · , 〈fi−1〉, 〈fi+1〉, · · · , 〈fn〉]>, and each 〈fi〉 is 〈fi〉 = f̄i − σ2fi ·

(
N (byi+1|f̄i, σ2fi) −

N (byi
|f̄i, σ2fi)

)
/
(
Φ(

byi+1−f̄i
σfi

)−Φ(
byi−f̄i
σfi

)
)
. Note that Q(f) is also the product of truncated Gaus-

sian distributions and the truncated region is decided by the ordinal label y. In this way, the
supervised information from y is incorporated into estimation of f and then estimation of the
other quantities by the recursive updates.

3.1.4. Optimizing the latent representation U

After the expectations of the other variables are calculated, we optimize U by maximizing the
following variational lower bound

F (U) = −1

2
tr(UU>) + 〈η〉tr(X>〈G〉U)− 1

2
tr(〈H>H〉UU>)− 1

2
log|K| − 1

2
tr(〈ff>〉K−1)

− 〈η〉
2

tr(〈G>G〉UU>) + tr(〈C〉>〈H〉U) + constant, (6)

where 〈H〉 = [h1, . . . ,hq]
>, 〈H>H〉 =

∑p
i=1Λi + γiγ

>
i , 〈ff>〉 = 〈f〉〈f〉> − diag(〈f〉2) +

diag(〈f2〉), 〈f2i 〉 = 〈fi〉2+σ2fi+σ
2
fi
·
(
(byi

−〈fi〉)N (byi
|〈fi〉, σ2fi)

)
/
(
Φ(

byi+1−〈fi〉
σfi

)−Φ(
byi

−〈fi〉
σfi

)
)
−σ2fi ·

(
(byi+1−

〈fi〉)N (byi+1|〈fi〉, σ2fi)
)
/
(
Φ(

byi+1−〈fi〉
σfi

) − Φ(
byi

−〈fi〉
σfi

)
)
, and the constant means a value independent

of U so that it is irrelevant for optimizing U. Note that we can optimize the dimension k by
maximizing the full variational lower bound of our model, which involves other quantities as
well, such as 〈H〉 and 〈G〉. To save space, we do not present the long equation for the full lower
bound (which can be easily derived based on what we have presented). We use the L-BFGS
algorithm to maximize the cost function F over U. The gradient of U is given by

∂F

∂U
= 〈η〉〈G〉>X+ 〈H〉>〈C〉 −

(
I+ 〈η〉〈G>G〉+ 〈H>H〉

)
U− 1

2

(
K−1 − 1

2
K−1〈ff>〉K−1

)∂K
∂U

. (7)

Note that ∂K
∂U depends on the form of the kernel function k(ui,uj).
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Computational complexity. Based on the previous equations, we can show that the
total computational complexity of our algorithm is O(max(n3, (p + q)nk2))—it is either cubic
in the number of samples n or linear in the number of the features.

3.2. Predicting disease status

Let us denote the training data as Dtrain = {Xtrain,Ztrain,ytrain} and the test data as Dtest =

{Xtest,Ztest}. To obtain the latent representation Utrain and Utest for prediction, we carry out
variational EM simultaneously on Dtrain and Dtest. The benefit is that the variational EM
learning procedure can utilize both the training and test data. Note that there are no updates
for ordinal label part on Dtest and the terms regarding ordinal labels should also be removed
from Equation (6) and (7). After both Utest and Utrain are obtained from the M-step, we
predict the labels for test data as follows:

ftest = K
(
Utest,Utrain

)
K−1

(
Utrain,Utrain

)
〈ftrain〉 yitest =

R−1∑
r=0

r · δ(br ≤ f itest < br+1),

where yitest is the prediction for i-th test sample.

4. Experiments

4.1. Simulation Study

We first design a simulation study to examine SHML in terms of (i) estimation accuracy on
finding associations between the two views and (ii) prediction accuracy on the ordinal labels.

Simulation data. To generate the ground truth, we set n = 200 (200 instances), p = q = 40,
and k = 5. We designed G, the 40 × 5 projection matrix for the continuous data X, to be a
block diagonal matrix; each column of G had 8 elements being ones and the rest of them
were zeros, ensuring each row with only one nonzero element. We designed H, the 40 × 5

projection matrix for the ordinal data Z, to be a block diagonal matrix; each of the first
four columns of H had 10 elements being ones and the rest of them were zeros, and the fifth
column contained only zeros. We randomly generated the latent representations U ∈ Rk×n

with each column ui ∼ N (0, I). To generate Z, we first sampled the auxiliary variables C

with each column ci ∼ N (Hui, 1), and then decided the value of each element zij by the
region cij fell in—in other words, zij =

∑2
r=0 rδ(br ≤ cij < br+1). Similarly, to generate y,

we sampled the auxiliary variables f from N (0,U>U + I) and then each yi was generated by
p(yi|fi) = δ(yi = 0)δ(fi ≤ 0) + δ(yi = 1)δ(fi > 0).

Comparative methods. We compared SHML with several state-of-the-art methods in-
cluding (1) CCA,4 which finds the projection directions that maximize the correlation between
two views, (2) sparse CCA,6,18 where sparse priors are put on the CCA directions, and (3)
multiple-response regression with lasso (MRLasso)19 where each column of the second view
(Z) is regarded as the output of the first view (X). We did not include results from the sparse
probabilistic projection approach20 because it performed unstably in our experiments. Re-
garding the software implementation, we used the built-in Matlab Matlab routine for CCA
and the code by18 for sparse CCA. We implemented MRLasso based on the Glmnet package
(cran.r-project.org/web/packages/glmnet/index.html).
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To test prediction accuracy, we compared our method with the following ordinal or multi-
nomial regression methods: (1) lasso for multinomial regression,7 (2) elastic net for multinomial
regression,8 (3) sparse ordinal regression with the splike and slab prior, (4) CCA + lasso, for
which we first ran CCA to obtain the latent features H and then applied lasso to predict y,
(5) CCA + elastic net, for which we first ran CCA to obtain the projection matrices and then
applied elastic net on the projected data, (6) Gaussian Process Ordinal Regression (GPOR),15

and (7) Laplacian Support Vector Machine (LapSVM),21 a semi-supervised SVM classifica-
tion method. We used the published code for lasso, elastic net, GPOR and LapSVM. For all
the methods, we used 10-fold cross validation on the training data for each run to choose
the kernel form (Gaussian or linear or Polynomials) and its parameters (the kernel width or
polynomial orders) for SHML, GPOR, and LapSVM.

Because alternative methods cannot learn the dimension automatically for simple compar-
ison, we provided the dimension of the latent representation to all the methods we tested in
our simulations. We partitioned the data into 10 subsets and used 9 of them for training and
1 subset for testing; we repeated the procedure 10 times to generate the averaged test results.

Results.To estimate linkage (i.e., interactions) between X and Z, we calculated
the cross covariance matrix GH>. We then computed the precision and the re-
call based on the ground truth. The precision-recall curves are shown in Figure 2.
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Fig. 2. The precision-recall curves for
association discovery.

Clearly, our method successfully recovered almost
all the links and significantly outperformed all the
competing methods. This improvement may come
from i) the use of the spike and slab priors, which
not only remove irrelevant elements in the projec-
tion matrices but also avoid over-penalizing the ac-
tive association structures (the Laplace prior used
in sparse CCA does over penalize the relevant ones)
and ii) more importantly, the supervision from the
labels y, which is probably the biggest difference be-
tween ours and the other methods for the association
study. The prediction accuracies on unknown y and
their standard errors are shown in Figure 3a and the
AUC and their standard errors are shown in Figure 3b. Our proposed SHML model achieves
significant improvement over all the other methods. It reduces the prediction error of elastic
net (which ranks the second best) by 25%, and reduces the error of LapSVM by 48%.

4.2. AD Study

We conducted joint association analysis and AD diagnosis based on the Alzheimer’s Disease
Neuroimaging Initiative 1 (ADNI 1) dataset. The ADNI study is a longitudinal multisite
observational study of elderly individuals with normal cognition, mild cognitive impairment,
or AD. Specifically, we used SHML to study the associations of genotypes and brain atrophy
measured by MRI and to predict the disease status (normal vs MCI vs AD). Note that the
labels are ordinal since the three states represent increasing severity levels of AD.
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Fig. 3. The prediction results on simulated and real datasets. The results are averaged over 10 runs.
The error bars represent standard errors. For the real ADNI dataset, we predict the ordinal disease
status, Normal, MCI and AD.

Genetic and phenotypic data used in this study were obtained from the ADNI database
(http://www.loni.ucla.edu/ADNI). Genomic DNA samples of 818 ADNI 1 subjects were an-
alyzed on the Human610-Quad BeadChip according to the manufacturer’s protocols. After
quality control, a list of 512,788 SNPs was used in an initial GWAS analysis associating them
with the disease trait (AD vs. normal subjects). As a result, the top 1000 SNPs were pre-
selected for analysis in this study. For structural MRI, we used image analysis results from
UCSF based on the Freesurfer software package (http://surfer.nmr.mgh.harvard.edu); the re-
sulting imaging data includes volumetric, cortical thickness and surface area measurements
for a variety cortical and subcortical regions. After removing missing data, the final dataset
consists of 618 subjects (183 normal, 308 MCI and 134 AD), and 924 SNPs and 328 MRI
features measuring the brain atrophies for each subject at baseline.

We compared SHML with the alternative methods on accuracy of predicting whether a
subject is in the normal or MCI or AD condition. We randomly split the dataset into 556
training and 62 test samples 10 times and ran all the competing methods on each partition.
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Fig. 4. The variational lower bound
of the marginal likelihood (i.e., evi-
dence).

We used the 10-fold cross validation for each run to
tune free parameters on the training data. In SHML,
in order to determine k, the dimension of U, we com-
puted the variational lower bound as an approxima-
tion to the model marginal likelihood with various
k values {10, 20, 40, 60}. We chose the value with the
largest approximate evidence, which led to k = 20

(see Figure 4). Our experiments confirmed that, with
k = 20, SHML achieved highest prediction accuracy,
demonstrating the benefit of evidence maximization.

The accuracies for predicting unknown labels y

and their standard errors are shown in Figure 3c. Our
method achieved the highest prediction accuracy, higher than that of the second best method,
GP ordinal Regression, by 10% and than that of the worst method, CCA+lasso, by 22%.

We also examined the strongest associations discovered by SHML based on the whole
dataset. First of all, the ranking of MRI features in terms of their prediction power of
different disease stages (normal, MCI and AD) demonstrates that most of the top ranked
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Fig. 5. The estimated associations between MRI features and SNPs. In each sub-figure, the MRI features are
listed on the right and the SNP names are given at the bottom.

features are the cortical thickness measurements, followed by the volume of white mat-
ter, volume of gray matter in cortical regions, and the cortical surface area measurements.

Table 1. The weights of the average
cortical thickness of ROI on the left
and right hemispheres.

ROI
weight

left right

Superior Frontal 1.37 1.35
Middle Temporal 1.33 1.37
Precuneus 1.33 1.36
Inferior Parietal 1.29 1.34
Inferior Temporal 1.32 1.29
Caudal Middle Frontal 1.32 1.31
Rostral Middle Frontal 1.31 1.30

These results are consistent with the literature for demon-
strating that the cortical thickness measurement is poten-
tially a more sensitive measurement of the brain atrophy
for Alzheimer’s dementia.22,23 Particularly, thickness measure-
ments of frontal lobe, middle temporal lobe, and precuneus
were found to be most predictive compared with other brain
regions. These findings are consistent with their atrophy pat-
tern and prediction power of AD found in the literature23–27.
We also found that measurements of the same structure on
the left and right hemisphere have similar weights (See Ta-
ble 1); this is again consistent with the related literature—no
asymmetrical relationship has been found for the brain re-
gions involved in AD.28
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Secondly, the analysis of associating genotypes to AD also generated interesting results.
Similar to the MRI features, SNPs that are in the vicinity of each other are selected together
due to the group-selection characteristics of our algorithm. The top ranked SNPs are associated
with a few genes including PSMC1P12 (proteasome 26S subunit, ATPase), NCOA2 (The
nuclear receptor coactivator 2), and WDR52 (WD repeat domain 52). These genes have been
associated with diseases such as breast neoplasms, carcinoma, and endometrial neoplasms.29

At last, biclustering of the genotype-MRI association, as shown in Figure 5, revealed
interesting patterns in terms of the relationship between genetic variations and brain atrophy
in association with AD. For example, the highest ranked association was found between genes
such as MAP3K1 (mitogen-activated protein kinase kinase kinase 1) and MIER3 (mesoderm
induction early response 1, family member 3) with the caudate anterior cingulate cortex.
MAP3K1 and MIER3 genes are associated with biological process such as apoptosis, cell cycle,
chromatin binding and DNA binding (https://portal.genego.com/), and cingulate cortex has
been shown to be severely affected by AD30. The strong association discovered in this work
might indicate potential genetic effect in the atrophy pattern observed in this cingulate sub-
region. Additionally, SNPs in MAPT (microtubule-associated protein tau) gene were also
found to have association with brain atrophy in a variety of cortical regions including frontal,
cingulate and temperate lobes. The hyperphosphorylation of tau protein, which is a product of
MAPT, can result in the self-assembly of tangles that are involved in the pathogenesis of AD.
Therefore, the genetic variation of MAPT has been associated with increased risk of AD31–35.
The association between MATP gene and brain atrophies found in this analysis is consistent
with the gray matter loss observed in MATP genetic variant carrier in recent studies.36

In summary, SHML discovered the synergistic predictive relationships between brain atro-
phy, genetic variations and the disease status, and achieved higher prediction accuracy than
the alternative methods.

5. Conclusions

We have presented, SHML, a new Bayesian supervised multiview learning algorithm for AD
study. By integrating association discovery with disease diagnosis, it improves performance for
both tasks. Although we have focused on the AD study in this paper, we expect that SHML can
be applied to a wide range of applications in biomedical research—for example, eQTL analysis
supervised by additional labeling information. As to the future work, we plan to incorporate
additional biological or side information into our model to improve its quality. In particular,
linkage disequilibrium structures encode important correlation information between SNPs. Our
current model uses independent, uniform priors over the selection probabilities of SNPs, which
ignore the correlation between SNPs (note that the posterior distribution of the model does
capture some correlation between genetic variations based on the data likelihood). To overcome
this limitation, we plan to use graph Laplacian matrices to encode linkage disequilibrium
structures and use these matrices in our prior distributions. We have explored a similar strategy
to incorporate biological pathway constraints for biomarker selection and obtained improved
performance over the models that do not use the pathway information.37 We expect a similar
improvement can be obtained by incorporating LD structures into SHML.
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Text	  and	  data	  mining	  methods	  constantly	  advance	  and	  are	  applied	  in	  different	  fields.	  
In	   order	   for	   them	   to	   impact	   the	   biomedical	   discovery	   process,	   it	   is	   necessary	   to	  
thoroughly	   engage	   scientists	   at	   both	   ends,	   and	   conduct	   thorough	   empirical	  
evaluations	   as	   to	   their	   ability	   to	   suggest	   novel	   hypotheses	   and	   address	   the	   most	  
crucial	   questions.	   The	   PSB	   2014	   Session	   on	   Text	   and	   Data	   Mining	   for	   Biomedical	  
Discovery	   presents	   eight	   papers	   that	   advance	   the	   field	   in	   this	  mutually	   reinforcing	  
fashion.	  Work	  presented	  in	  this	  session	  includes	  data	  mining	  and	  analysis	  techniques	  
that	   are	   applicable	   to	   a	   broad	   spectrum	   of	   problems,	   including	   the	   analysis	   and	  
visualization	  of	  mass	   spectrometry	  based	  proteomics	  data	  and	   longitudinal	  data,	   as	  
well	   as	   gene	   function,	   protein	   function	   and	   protein	   fold	   prediction.	   	   Text	   mining	  
approaches	  selected	  for	  presentation	  include	  a	  method	  for	  predicting	  genes	  involved	  
in	  disease	  or	  in	  drug	  response,	  a	  method	  for	  extracting	  events	  relevant	  to	  biological	  
pathways,	   and	   an	   approach	   that	  mixes	   text	   and	   data	  mining	   techniques	   to	   predict	  
important	  milestones	  in	  the	  female	  reproductive	  lifespan.	  	  
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1. Introduction	  

This	  session	  seeks	  to	  bring	  together	  researchers	  with	  a	  strong	  text	  or	  data	  mining	  background	  
who	  are	   collaborating	  with	  bench	   scientists	   for	   the	  deployment	  of	   integrative	   approaches	   in	  
translational	  bioinformatics.	   It	   serves	   as	   a	  unique	   forum	   to	  discuss	  novel	   approaches	   to	   text	  
and	   data	   mining	  methods	   that	   respond	   to	   specific	   scientific	   questions,	   enabling	   predictions	  
that	  integrate	  a	  variety	  of	  data	  sources	  and	  can	  potentially	  impact	  scientific	  discovery.	  	  
	  
Successes	  in	  the	  application	  of	  computational	  approaches	  that	  solve	  biological	  problems	  have	  
led	  to	  the	  broad	  application	  of	  these	  methods	  to	  an	  ever-‐growing	  set	  of	  specific	  problem	  areas.	  
Consequently	   it	   is	   no	   longer	   possible	   to	   enumerate	   the	   biological	   questions	   targeted	   by	  
computational	   approaches.	   These	   questions	   include,	   but	   are	   not	   limited	   to,	   the	   problems	  
addressed	  by	  papers	  in	  this	  session.	  Broadly	  though,	  we	  can	  discuss	  trends	  in	  the	  field.	  
	  
While	   data	  mining	   approaches	   have	   previously	   been	   applied	   to	   biological	   questions	   in	  ways	  
that	   assume	   the	   functions	   of	   genes	   are	   constant,	   advances	   in	   underlying	   computational	  
platforms	   and	   methodology	   are	   now	   allowing	   computational	   biologists	   to	   begin	   to	   address	  
problems	   in	   a	   context	   specific	  manner.	   This	  means	   that	   instead	   of	   asking	   about	   the	   overall	  
function	   of	   a	   gene,	   we	   are	   now	   identifying	   the	   role	   of	   a	   gene	   in	   a	   given	   environment,	   cell	  
lineage,	  or	   individual.	   We	   anticipate	   that	   approaches	   that	   embrace	   rather	   than	   ignore	   such	  
underlying	  biological	  complexities	  will	  provide	  the	  next	  generation	  of	  advances	  in	  personalized	  
medicine.	  

2. Challenges	  
The	  biomedical	  domain	  presents	  specific	  challenges	  to	  text	  and	  data	  mining	  given	  the	  diversity,	  
complexity	   and	   volume	   of	   the	   information	   being	   mined.	   The	   submissions	   to	   this	   session	  
allowed	   us	   a	   unique	   glimpse	   at	   these	   challenges,	   which	   can	   perhaps	   be	   summarized	   as	   the	  
constant	  call	  to	  fully	  incorporate	  the	  richness	  of	  the	  available	  resources	  and	  tackle	  the	  analysis	  
of	  data	  of	  ever-‐growing	  complexity.	  	  

Thus,	   an	   overarching	   challenge	   for	   biomedical	   text	   mining	   is	   to	   incorporate	   the	   many	  
knowledge	  resources	  that	  are	  available	  to	  us	  into	  the	  natural	  language	  processing	  pipeline.	  	  In	  
the	   biomedical	   domain,	   unlike	   the	   general	   text	   mining	   domain,	   we	   have	   access	   to	   large	  
numbers	   of	   extensive,	   well-‐curated	   ontologies	   and	   knowledge	   bases.	   	   However,	   we	   have,	   in	  
general,	  failed	  to	  take	  advantage	  of	  them	  for	  tasks	  like	  coreference	  resolution,	  semantic	  typing	  
of	  possible	  subjects	  and	  objects	  of	  predicates	  in	  information	  extraction,	  and	  the	  like.	  	  

Biomedical	   ontologies	   provide	   an	   explicit	   characterization	   of	   a	   given	  domain	   of	   interest	   and	  
can	   enhance	  biomedical	   discovery	   significantly	   when	   used	   in	   a	   pragmatic	   manner.	  
Using	  existing	   ontologies	   (from	   the	   UMLS	   and	   BioPortal)	   as	   sources	   of	   terms	   in	   building	  
lexicons,	   for	   figuring	   out	   what	   concept	   subsumes	   what	   other	   concept,	   and	   as	   a	   way	   of	  
normalizing	   alternative	   names	   to	   one	   identifier,	   would	   likely	   increase	   the	   quality	   of	   data-‐
mining	   efforts.	   	   For	   example,	   using	   ontologies	   as	   described	   enabled	   the	   use	   of	   unstructured	  
clinical	  notes	  for	  generating	  practice-‐based	  evidence	  on	  the	  safety	  of	  a	  highly	  effective,	  generic	  
drug	  for	  peripheral	  vascular	  disease	  	  (PubMed	  23717437).	  	  
Among	   the	   papers	   in	   this	   session,	   there	   are	   several	   examples	  where	   important	   advances	   to	  
biomedical	   discovery	   are	   based	   on	   precisely	   this	   expansion	   on	   the	   use	   of	   knowledge	   and	  

Pacific Symposium on Biocomputing 2014

313



	  
	  

	  

literature	   resources.	   For	   example,	   Funk	   et	   al	   predict	   pharmacogenomic	   genes	   on	   a	   genome-‐
wide	   scale	  using	  Gene	  Ontology	  annotations	   and	   simple	   features	  mined	   from	   the	  biomedical	  
literature.	  Ravikumar	  et	  al,	  present	  a	  rule-‐based	   literature	  mining	  system	  to	  extract	  pathway	  
information	  from	  text	  to	  assist	  human	  curators.	  

Today,	   the	  data	  being	  generated	   is	  massive,	   complex,	   and	   increasingly	  diverse	  due	   to	   recent	  
technological	  innovations.	  However,	  the	  impacts	  of	  this	  data	  revolution	  on	  our	  lives	  are	  being	  
hampered	  by	  the	  limited	  amount	  of	  data	  that	  has	  been	  analyzed.	  	  This	  necessitates	  data	  mining	  
tools	   and	  methods	   that	   can	  match	   the	   scale	   of	   the	   data	   and	   support	   timely	   decision-‐making	  
through	  integration	  of	  multiple	  heterogeneous	  data	  sources.	  We	  see	  in	  this	  session	  numerous	  
contributions	  to	  methods	  and	  approaches,	  better	  outlined	  in	  the	  next	  section.	  
	  
Finally,	  another	  area	  in	  which	  the	  field	  has	  fallen	  short	  and	  that	  the	  papers	  in	  this	  session	  can	  
only	  begin	  to	  address,	   is	   that	  of	  making	  text	  mining	  applications	   that	  are	  easily	  adaptable	  by	  
end	  users.	  	  Many	  researchers	  have	  developed	  systems	  that	  can	  be	  adapted	  by	  other	  text	  mining	  
specialists,	  but	  applications	  that	  can	  be	  tuned	  by	  bench	  scientists	  are	  mostly	  lacking.	  	  

3. Overview	  of	  Contributions	  
Funk	   et	   al.	   describe	   a	  method	   for	   predicting	   genes	   involved	   in	   disease	   or	   in	   drug	   response	  
based	   on	   combining	   heterogenous	   data,	   including	   curated	   Gene	   Ontology	   annotations,	   text-‐
mined	   Gene	   Ontology	   annotations,	   and	   surface	   linguistic	   features.	   	   These	   feature	   types	   are	  
combined	  and	  passed	  as	  input	  to	  a	  classifier.	  
	  
Ravikumar	  et.	  al.	  develop	  a	  system	  to	  extract	  events	  relevant	  to	  biological	  pathways	  from	  the	  
literature	  by	  combining	  named	  entity	  recognition	  and	  normalization	  with	  pattern	  templates	  to	  
detect	  event	  mentions	  and	  the	  role	  of	  each	  entity.	  Notably,	  the	  system	  resolves	  both	  entity	  and	  
event	  anaphora	  with	  discourse	  analysis.	  The	  authors	  evaluate	  their	  system	  against	  PharmGKB	  
pathway	  annotations,	  and	  manually	  examine	  a	  subset	  of	  the	  results.	  	  
	  
Malinowski	  et	  al	  report	  on	  development	  and	  performance	  of	  data-‐mining	  techniques	  to	  identify	  
the	  age	  at	  menarche	  (AM)	  and	  age	  at	  menopause	  (AAM),	  which	  are	  important	  milestones	  in	  the	  
reproductive	  lifespan;	  and	  are	  often	  recorded	  in	  free-‐text	  notes.	  The	  authors	  demonstrate	  the	  
ability	   to	   discriminate	   age	   at	   naturally-‐occurring	  menopause	   (ANM)	   from	  medically-‐induced	  
menopause.	   Their	   ultimate	   goal	   is	   to	   apply	   the	   methods	   to	   data	   from	   the	   Epidemiologic	  
Architecture	  for	  Genes	  Linked	  to	  Environment	  (EAGLE)	  Study,	  in	  an	  attempt	  to	  support	  clinical	  
studies	  that	  incorporate	  these	  female	  reproductive	  milestones.	  
	  
Han	   describes	   an	   application	   of	   a	   dimensionality	   reduction	   technique,	   called	   derivative	  
component	   analysis	   (DCA)	   for	   the	   analysis	   and	   visualization	   of	   mass	   spectrometry	   based	  
proteomics	  data.	  As	  an	  implicit	  feature	  selection	  algorithm,	  DCA	  enables	  to	  extract	  true	  signals	  
by	  capturing	  subtle	  data	  characteristics	  and	  removing	  built-‐in	  data	  noises	  for	  input	  proteomics	  
profiles.	  
	  
Zupan	  and	  Zitnik	  develop	  a	  general	  matrix	   factorization-‐based	  data	   integration	  approach	   for	  
gene	  function	  prediction	  that	  fuses	  heterogeneous	  data	  sources,	  such	  as	  gene	  expression	  data,	  
known	   protein	   annotation,	   interaction	   and	   literature	   data.	   The	   fusion	   is	   achieved	   by	  
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simultaneous	   matrix	   tri-‐factorization	   that	   shares	   matrix	   factors	   between	   data	   sources.	   The	  
proposed	  approach	  is	  applicable	  for	  any	  number	  of	  data	  sources,	  which	  can	  be	  expressed	  in	  a	  
matrix	  form.	  
	  
Liu	  et	  al.	  describe	  a	  method	  for	  analyzing	  longitudinal	  data.	  Functional	  regression	  is	  a	  popular	  
approach	  for	  longitudinal	  data	  analysis,	  as	  it	  is	  capable	  of	  identifying	  the	  relationship	  between	  
features	  and	  outcomes	  along	  with	  time	  information	  by	  assuming	  features	  and/or	  outcomes	  as	  
random	   functions	   over	   time	   rather	   than	   independent	   random	   variables.	   The	   proposed	  
approach	   empowers	   basic	   functional	   regression	   models	   to	   simultaneously	   identify	   features	  
with	   significant	   predictive	   power	   across	   time	   points,	   enforce	   smoothness	   of	   functional	  
coefficients,	   and	   achieve	   interpretable	   estimations	   of	   functional	   coefficients	   using	   a	   novel	  
sparsity-‐inducing	  penalty.	  

Clark	  and	  Radivojac	  develop	  a	  novel	  machine	  learning	  algorithm	  for	  protein	  function	  and	  fold	  
prediction.	  In	  particular,	  their	  method	  introduces	  a	  kernel	  function	  on	  time	  series	  data	  that	  can	  
be	   obtained	   from	   protein	   sequences	   and	   structures.	   The	   proposed	   kernel	   showed	   high	  
performance	   in	   the	   task	   of	   classifying	   proteins	   in	   SCOP	   classes.	   Accurate	   functional	  
classification	  of	  proteins	  is	  critical	  for	  understanding	  the	  molecular	  mechanisms	  involved	  in	  all	  
biological	   process	   across	   species,	   which	   translates	   into	   advances	   in	   biomedical	   research.	  
Furthermore,	  this	  methodology	  is	  applicable	  to	  problems	  beyond	  computational	  biology.	  

Vembu	  and	  Morris	  demonstrate	  LMGraph,	   two	   step	   approach	   to	   construct	  binary	  predictors	  
from	   gene	   networks	   and	   features.	   The	   first	   step	   extracts	   informative	   features	   from	   the	  
network.	   The	   second	   step	   combines	   these	  network-‐extracted	   features	  with	  node	   features	   to	  
construct	   predictors.	   The	   authors	   demonstrate	   that	   this	   two-‐step	   approach	   outperforms	  
related	   algorithms,	   suggesting	   that	   such	   combined	   approaches	   could	   offer	   benefits	   to	   other	  
methods.	  
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VECTOR QUANTIZATION KERNELS FOR THE CLASSIFICATION OF
PROTEIN SEQUENCES AND STRUCTURES

WYATT T. CLARK AND PREDRAG RADIVOJAC⇤

Department of Computer Science and Informatics, Indiana University

Bloomington, Indiana 47405, U.S.A.

⇤
E-mail: predrag@indiana.edu

We propose a new kernel-based method for the classification of protein sequences and structures. We
first represent each protein as a set of time series data using several structural, physicochemical, and
predicted properties such as a sequence of consecutive dihedral angles, hydrophobicity indices, or
predictions of disordered regions. A kernel function is then computed for pairs of proteins, exploiting
the principles of vector quantization and subsequently used with support vector machines for protein
classification. Although our method requires a significant pre-processing step, it is fast in the training
and prediction stages owing to the linear complexity of kernel computation with the length of protein
sequences. We evaluate our approach on two protein classification tasks involving the prediction of
SCOP structural classes and catalytic activity according to the Gene Ontology. We provide evidence
that the method is competitive when compared to string kernels, and useful for a range of protein
classification tasks. Furthermore, the applicability of our approach extends beyond computational
biology to any classification of time series data.

Keywords: Protein classification, protein structure, protein function, kernels, vector quantization,
support vector machines.

1. Introduction

The wealth and diversity of experimental data in the life sciences has strongly influenced the
development of classification methods for biological macromolecules. Over the past couple of
decades the scope and sophistication of these methods has significantly increased, leading to
the adoption of classification schemes that are designed to integrate diverse types of biological
data (e.g. sequence, structure, interaction networks, text), enable principled incorporation of
domain knowledge, and rigorously deal with data of varying degrees of quality.1,2

Among the various classification strategies, kernel-based methods3,4 have recently been
introduced in a range of contexts such as the prediction of remote homology,5 protein struc-
ture6 and function,7,8 protein-protein interactions,9 gene-disease associations,10 the activity
of chemical compounds,11 etc. Although some kernel methods have been developed to pre-
dict properties of individual residues,12 most of these approaches have been used at the level
of entire proteins. For example, several string kernels were introduced to provide inferences
regarding remote homology from amino acid sequences.5,13–15 Similarly, graph kernels have
gained significant attention owing to the fact that a variety of biological data can be modeled
through graphs.16 A number of approaches have also considered integrating kernels built on
di↵erent types of data.17,18

Kernels can be roughly described as symmetric positive semi-definite similarity functions
that operate on pairs of objects from some input space.19 Their mathematical properties
guarantee the existence of a Hilbert space, potentially of infinite dimensionality, such that
the value of the kernel function can be computed as the inner product of the images of
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Fig. 1. Time series representation of various protein properties for the ` = 73 amino acid long DNA helicase
RuvA subunit d1ixra1 from Thermus thermophilus (PDB ID 1ixr).

the input objects. When coupled with learning algorithms such as support vector machines,
kernel functions also guarantee a globally optimal solution to the optimization problem.19

Although most kernel-based approaches are in practice formed by vectorizing input objects,
thereby not fully exploiting their theoretical potential, they still enable a practitioner to
incorporate domain knowledge into modeling the relationship between objects, rather than
simply encoding properties of the objects into a potentially high-dimensional vector space and
providing them to a standard classifier.

In this work we focus on kernel-based strategies and develop novel methodology for the
nonalignment-based classification of proteins into distinct categories. In contrast to most pre-
viously implemented kernel approaches, we represent a protein’s sequence or structure, if avail-
able, as a set of time series properties (we consider a time series to be an ordered sequence of
real-valued numbers20). One such time series representation of a DNA helicase subunit from
Thermus thermophilus is shown in Figure 1, where six di↵erent types of properties have been
generated based on the protein’s sequence and structure. Given the time series data, we uti-
lize ideas from vector quantization (VQ), initially developed for lossy signal compression,21 to
define a kernel function between pairs of protein sequences that we use for classification. We
extensively evaluated methods on two distinct and relevant problems: (i) the classification of
protein structures into structural classes and (ii) the prediction of protein function from amino
acid sequence. Our experiments provide evidence that the new kernels are a viable approach
in various practical scenarios.
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Apply k-means clustering Encode sequence using 
sliding window

Sample time series segments

Fig. 2. A schematic representation of using VQ to encode a sequence represented as a property vector. First
individual time series property vectors are broken up into n length segments as shown on the left. These
sub-sampled vectors from a database of sequences are then used to create a clustering in n-dimensional space
as shown in the center. Finally, an original property vector is encoded using the derived set of centroids by
counting the number of overlapping sub-segments which are the closest to each centroid.

2. Methods

Let S = {s1, s2, s3, ...} be a universe of protein sequences, where each s 2 S is a string of
symbols from an alphabet of amino acids A = {A, C, D, . . ., Y}. Let also SL ⇢ S be a set
of labeled sequences, e.g. those with known structural class or function, that is provided as
training data. The objective is to use an inductive supervised framework to probabilistically
annotate the remaining sequences, i.e. those from the unlabeled set SU = S � SL.

To map protein sequences into a real-valued vector representation, let s = s1s2 . . . s` be a
length-` protein sequence in S and p = (p1, p2, . . . , p`) some property vector defined by any par-
ticular mapping from A` to R`. For example, p may be provided as a vector of hydrophobicity
indices corresponding to amino acids in s. Alternatively, it can be represented as predicted he-
lical propensities as outputted by some predictor of secondary structure. For those sequences
with available structures, p may correspond to a sequence of dihedral angles calculated from
the protein structure model of s.

Consider now a single property vector p, such as a hydrophobicity profile, corresponding
to a particular sequence s 2 S. We decompose p into n-dimensional overlapping sub-vectors
p[1,n], p[2,n+1], . . ., p[`�n+1,`], where p[i,i+j] = (pi, pi+1, ..., pi+j), and n⌧ ` is a small integer. For
example, p[1,n] corresponds to the first n elements of p. For a property vector (amino acid
sequence) of length `, there are `� n+ 1 length-n sub-vectors.

As described in Figure 2, given a set of length-n property sub-vectors P derived from the
sequence universe S, we generate a partition of Rn into m regions R = {R1, R2, . . . , Rm}. These
regions are represented by a set of n-dimensional vectors, or centroids, C = {c1, c2, . . . , cm}.
Each region Ri represents a Voronoi region such that

Ri = {x : d(x, ci)  d(x, cj), i 6= j} ,

where d(x, c) is the Euclidean distance between vector x and centroid c. We determine C using
k-means clustering, where the initial set of clusters is generated by the splitting method.22

We chose to use k-means clustering as opposed to simply creating a lattice in n-dimensional
space,23 because sampled property vectors do not fill the space evenly, but instead cluster
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around evolutionarily conserved or sterically preferred regions.

2.1. Property kernels

Variable length property vectors can be transformed into vectors of length m using the parti-
tion of Rn defined by R. Specifically, a property vector p is mapped into a vector of length m

as

x = ('1(p),'2(p), . . . ,'m(p)) ,

where 'i(p) is the number of n-dimensional vectors p[.] in p that belong to region Ri. Given
two property vectors p and q and their respective count vectors x and y, a vector quantization

property kernel function is defined as

k(p,q) = x

T
y,

where T is the transpose operator. Note that in this notation each count vector is assumed to
be a column vector, i.e. (a, b, c) = [a b c]T , as in Ref. 24. Since the function k(p,q) is defined as
an inner product between two count vectors, it is a kernel function.19

Given a set of property kernels {ki(x,y)}, we construct the composite property kernel as
a linear combination

k(x,y) =
X

i

ki(x,y),

where before and after combining, each kernel is normalized using

k(x,y) k(x,y)p
k(x,x)k(y,y)

.

It is important to mention that both the inner product kernel formulation and the compos-
ite kernel based on a linear combination were selected for their simplicity. Functions such
as the Jaccard similarity coe�cient and the Gaussian kernel (which introduces a parame-
ter into kernel selection) sometimes provide performance improvements to an inner product
definition. Similarly, kernels can be combined using a product or hyperkernel formulations;
however, recent evidence suggests that more sophisticated schemes typically result in only
minor improvements over linear combinations.25

2.2. Computational complexity

The computation of a count vector can be accomplished in O(`mn) time if each n-dimensional
vector from p is compared with all centroids in C. Approximation algorithms are available
through a decision tree-like organization of the centroids. In such a case, only logm distance
calculations are needed resulting in O(`n logm) time;22 however, there is no guarantee that the
closest centroid will be found. The memory requirements include O(mn) space for storing C.
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2.3. Spectrum kernel

We compare the property kernels to a string kernel approach, as described in Ref. 5, for a
wide range of word sizes (n 2 {1 . . . 10}). For a given word size n, a sparse 20n-length vector
was created for a protein sequence, where each dimension represented the number of times
a potential substring of length n that could be generated using the 20 amino acid alphabet
occurred. An `-length sequence, s, contains `� n+ 1 such overlapping strings.

3. Data and experiments

In the first experiment, prediction was performed as a one-versus-all classification at the SCOP
class level for single domain proteins categorized as ↵, �, ↵ + �, or ↵/�.26 We utilized Astral
1.75A (40%) to ensure that redundancy in the data set did not lead to inflated assessment of
performance. Table 1 summarizes the positive and negative data points used for each category
of SCOP.

Table 1. Summary of data used for
SCOP classification documenting the
number of positives and negatives used
for the classification of protein structures
as ↵, �, ↵+ �, or ↵/�.

SCOP class positives negatives

all ↵ 1, 901 7, 486
all � 2, 175 7, 212
↵+ � 2, 665 6, 722
↵/� 2, 646 6, 741

In the second experiment we attempted to dis-
tinguish enzymes, or those proteins annotated with
the term “catalytic activity” and its subtypes, from
all other proteins. Gene Ontology27 (GO) annota-
tions were obtained from the April 2012 release of
Swiss-Prot28 in conjunction with the May 4, 2012
version of GO. Only annotations supported by evi-
dence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS and
IC were used. This resulted in a total of 24, 882 pro-
teins with experimentally verified annotations, 9, 506
of which were annotated with the term “catalytic
activity” and 18, 936 of which represented putatively negative data points.

We tested a range of combinations of values for n (window size), and m (number of cen-
troids) for each property. For values of n, we tested n 2 {2i : i = 1 . . . 5}. Similarly, for the
number of centroids, m, we tested m 2 {2i : i = 4, 6, 8, 10, 12}. For each property type and all
values of m and n, we performed k-means clustering using 106 randomly sampled vectors from
all sequences in S. SVMlight with the default value for the capacity parameter was used as a
prediction engine in all experiments.29 In each experiment, the total costs of misclassification
for positive and negative examples were equal.

3.1. Mapping proteins into property vectors

Several structure-based properties were generated by converting the atomic 3D coordinates
into backbone angles. The usefulness of representing a structure in this manner is that back-
bone angles are invariant to the translation and rotation of the original 3D coordinates. Four
types of backbone angles were utilized: ↵, , �, and  . All angles were obtained using DSSP.30

In addition to generating dihedral angles, DSSP also outputs solvent accessibility values which
we used as the fifth structure-based property.

We also generated seven sequence-based properties for both the task of categorizing struc-
tures and predicting function. These features were generated in order to represent biologically
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relevant properties associated with a region of a protein sequence: (i) hydrophobicity, calcu-
lated using the the Kyte-Doolittle scale31 in a sliding window of length w = 11; (ii) flexibility,
calculated as predicted B-factors using our previous model;32 secondary structure predictions
of (iii) helix, (iv) sheet and (v) loop propensities using our in-house predictor; and intrinsic
disorder, (vi) using the previously published VSL2B model33 as well as (vii) predictions from
the same in-house predictor used for secondary structures.

3.2. Performance evaluation

We performed 10-fold cross-validation in all experiments. For each binary classification task we
calculated the area under the Receiver Operating Characteristic (ROC) curve (AUC). While
we evaluated each feature type for a combination of window size and number of clusters on
each classification task separately, we also desired to obtain a single value that could be used to
benchmark each combination of parameters on all evaluated SCOP classes. To do this we used
a weighted average of AUC values across multiple one-versus-all classification tasks, where the
weight for each task was calculated using the ratio of structures in the given category and the
total number of structures. We refer to this performance measure as AUCw.

We also calculated the signal-to-noise ratio (SNR) obtained when encoding and decod-
ing property-based representations of proteins using vector quantization. Given an original
property vector p and the reconstructed version of this vector p̂, the signal-to-noise ratio was
calculated using the logarithmic decibel scale as

SNRdB(p, p̂) = log10

P`
i=1 p

2
iP`

i=1(pi � p̂i)2
.

On this scale one decibel signifies that the noise (or sum of squared di↵erences between the
original and reconstructed signals) represents 1/10-th of the signal.

4. Results

4.1. Prediction of structural categories

Table 2 shows the performance of each property kernel when predicting SCOP classes. Among
structure-based properties we found that  angles had the best performance, both for indi-
vidual SCOP classes and in terms of its AUCw (0.961). Solvent accessibility values performed
the worst out of structure-based properties, obtaining the lowest AUC for all SCOP classes
as well as lowest AUCw (0.868). All structure-based properties outperformed sequence-based
properties.

Among sequence-based properties, predicted secondary structures performed the best, es-
pecially predictions that a residue is in a helix (AUCw = 0.788), a sheet (AUCw = 0.787) or
a loop (AUCw = 0.771). Calculated hydrophobicity and VSL2B-based predictions of disorder
propensity performed the worst (AUCw = 0.707 and AUCw = 0.682, respectively). Interest-
ingly, the predictor of disordered residues developed from PDB performed considerably better
than VSL2B (AUCw = 0.764 vs. AUCw = 0.682), an outcome that may be due to the di↵erences
in training samples between the two models.
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Fig. 3. ROC curves showing classification performance on SCOP
classes.

In order to test the predic-
tive ability of integrating multi-
ple properties, we implemented
a linear combination of individ-
ual property kernels (Table 2,
Figure 3). To reduce the com-
putational complexity of this
task we only combined prop-
erties utilizing m and n val-
ues that achieved the highest
AUCw for each property type.

We observed an improve-
ment of about three per-
centage points when combin-
ing sequence-based properties,
achieving an AUCw of 0.813

compared to the best perfor-
mance of an individual se-
quence based property of 0.788
(helix predictions). The com-
bined kernel for structure-
based properties saw no im-
provement over the best per-
forming individual model (AUCw =

0.961 for both the combined kernel and  angles), and actually exhibited lower performance
when both sequence and structure-based properties were combined (AUCw = 0.939).

4.2. Prediction of protein function

The performance of each property kernel when predicting whether a protein is annotated
with the catalytic activity term is shown in the first column of Table 3. Here we found that
disorder-based predictions (VSL2B disorder: AUC = 0.742; PDB disorder: AUC = 0.718) and
predicted B-factors (AUC = 0.722) performed the best, whereas, contrary to their performance
in distinguishing between SCOP categories, predicted secondary structures performed the
worst (helix: AUC = 0.687; sheet: AUC = 0.681; loop: AUC = 0.698).

Table 3 also shows the aggregate performance of each property when predicting and testing
on six subclasses of catalytic activity. As with predicting catalytic activity in general, predicted
B-factors also performed well in predicting catalytic activity subclasses (AUCw = 0.659).
Predicted secondary structures had mixed performance, with predicted loops obtaining a
comparatively high AUCw of 0.647, whereas helix and sheet predictions only achieved an
AUCw of 0.611 and 0.621, respectively.

We also generated a reduced redundancy data set of proteins with GO annotations in which
the maximum pairwise sequence identity outputted by BLAST between any two sequences was
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Table 3. Performance, according to AUC and AUCw, of each
property-based feature when predicting catalytic activity and cat-
alytic activity subclass, respectively. For each property feature the
combination of m and n values that obtained the highest AUC are
reported.

Property\Category Catalytic activity Catalytic subclass
m n AUC m n AUCw

B-factors 256 32 0.722 – – 0.659
Helix 256 8 0.687 – – 0.611
Hydrophobicity 4,096 2 0.701 – – 0.653
Loop 256 32 0.698 – – 0.647
PDB disorder 256 32 0.718 – – 0.650
Sheet 256 4 0.681 – – 0.621
VSL2B disorder 256 16 0.742 – – 0.620

Table 4. Performance, according to AUC and AUCw, of each the string kernel and combination of properties
when predicting catalytic activity and catalytic activity subclass respectively. Results are shown for the full
(redundant) data set and the non-redundant 40% data set (NR40).

Property\Category
Catalytic activity Catalytic subclass

Full data set NR40 Full data set NR40
m n AUC m n AUC m n AUCw m n AUCw

String kernel - 5 0.857 - 5 0.733 - 5 0.930 - 5 0.649
VQ kernel 256 16 0.776 256 16 0.775 4,096 32 0.767 4.096 32 0.583
VQ + String kernel - - 0.781 - - 0.775 - - 0.767 - - 0.585

at most 40%. This non-redundant data set (NR40) was generated to estimate the performance
of each property when, for a given query protein, there is no sequence that is both annotated
and of a reasonable level of sequence similarity. As shown by Figure 4 and Table 4, the
performance of the property kernels was una↵ected by the reduction in sequence identities
between pairs of proteins, whereas string kernel performance was reduced.

4.3. String kernel performance

The string kernel did not show superior performance to any of the property kernels (both
based on sequence and structure data) when predicting SCOP categories, only obtaining an
AUCw of 0.794 compared to an AUCw of 0.961 obtained by the combined structure kernel and
AUCw of 0.813 obtained by the combined sequence kernel.

The performance of the string kernel in the task of function prediction was influenced
by data set redundancy. When using redundant data, we found that the string kernel out-
performed sequence-based properties in both the task of predicting catalytic activity and its
subclass (AUCw of 0.857 and 0.930), respectively (Figure 4(a)). However, when the redun-
dancy in the protein function data was removed, the relative performance between the string
kernel and the vector quantization kernel has reversed. As shown by Figure 4(b) the combined
sequence-based property kernel achieved an AUC of 0.775 compared to 0.733 for the string
kernel approach. Interestingly, this trend did not hold for the subclasses of catalytic activity,
potentially due to the reduced data set sizes used to train individual models.
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4.4. Optimal parameter values

We found that structure-based properties consistently preferred large numbers of centroids,
obtaining maximum AUC at m = 4096 for all structure-based properties and all classification
tasks. Optimal window sizes were 8 or 16 amino acids for most SCOP classes. Sequence-based
properties were less consistent in the best-performing values of m and n, covering a range of
values for each feature and SCOP class.

There was very little variation in preferred values of m when predicting catalytic activity
with all features aside from predicted hydrophobicity obtaining maximum AUC values at
m = 256. There was much more variation in preferred window sizes with hydrophobicity
obtaining smallest optimal window size of 2, and B-factor, loop and PDB disorder predictions
preferring longer window sizes (n = 32). Sequence based properties were much more consistent
in the preferred values of m and n when predicting catalytic activity subclass, almost always
favoring large values of m (4, 096).
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Fig. 4. Figure 4(a) shows ROC curves obtained when predicting catalytic activity using sequence properties
(blue curve) and the string kernel (grey curve). AUC values are shown in parentheses in the figure legend.
Figure 4(b) shows ROC curves obtained when predicting catalytic activity on the 40% non redundant data set
of proteins (NR40) using sequence properties (blue) and the string kerenl (grey). Figure 4(c) shows obtained
SNR values plotted as a function of AUCw values for the prediction of SCOP class for each feature type.

4.5. Comparing AUC and SNR

Figure 4(c) shows a scatterplot of SNR and AUCw values. Although, as a class, dihedral
angles obtained higher values of AUCw, these values were only weakly correlated with higher
SNR values (⇢ = 0.07). For all other groups of properties in Figure 4(c) we observed a negative
correlation between AUCw and SNR.

5. Discussion

This paper introduced vector quantization (VQ) kernels and investigated their usefulness in
di↵erent protein classification tasks. Several results show that the proposed kernel holds po-
tential both as a standalone approach in protein classification and, more importantly, as a
method that can be integrated into other strategies. The VQ kernel performed particularly
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well in classification of SCOP classes, and as such could be readily exploited to automate
the process of assigning new protein structures to structural classes. Such a method, simi-
lar to the FragBag approach,34 is likely to be significantly faster than structure alignments
that are commonly used for this purpose. Comparatively lower performance was observed in
experiments relying on sequence-based properties only. Unsurprisingly, in these experiments,
the property kernels outperformed string kernels when applied to non-redundant proteins,
while they exhibited inferior performance to string kernels when high sequence identities were
allowed.

The usefulness and biological significance of representing a protein sequence in a time
series form has been long known. To the best of our knowledge, the use of a hydrophobicity
plot (also referred to as hydropathy profile) was introduced by Rose who suggested that the
local maxima and minima in the hydropathy profile typically correspond to the hydrophobic
core and turns, respectively, in a protein’s structure.35 This idea quickly evolved into a tool
for analysis of general properties of proteins, such as globular conformations36 or membrane-
spanning domains.31 Advanced methods, such as the alignment of hydrophobic profiles37 and
Fast Fourier Transform (FFT) kernel17 approach, have been proposed more recently, both in
the context of recognizing membrane proteins.

The FFT kernel method is most related to the VQ kernels introduced here. In this method,
Lanckriet and colleagues17 first apply a low-pass filter to the original hydropathy profiles, pad
the shorter profile with zeros (if the profiles are of di↵erent lengths), and subsequently calculate
the kernel value between two FFT-derived spectra using a Gaussian kernel function with a free
parameter �. While this method provided solid performance in the task of predicting mem-
brane proteins, we believe the kernel method introduced here o↵ers better interpretability of
results (through the selection and analysis of centroids) and more room for further refinements.
For example, the simple inner product function between the count vectors k(p,q) = x

T
y can

be augmented by a positive semi-definite matrix Q into a more general form x

T
Qy, perhaps

by defining Q through a non-singular matrix of similarities between centroids (S) and using
Q = S

T
S. In addition, the centroid selection can be combined with motif discovery in time

series data.20 In terms of time complexity, the FFT kernel can be computed in O(` log `) time
compared to O(` logm) time for the VQ kernel, where ` is the length of the protein and m the
number of clusters. The VQ kernel may also hold promise to more easily integrate multiple
types of properties and exploit their correlation via a joint clustering or some form of “matrix
quantization”.

In summary, the VQ kernel introduced in this work is a robust methodology that can easily
be extended to any type of data that is or can be transformed into a time-series.
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Identifying genetic variants that affect drug response or play a role in disease is an important task
for clinicians and researchers. Before individual variants can be explored efficiently for effect on drug
response or disease relationships, specific candidate genes must be identified. While many methods
rank candidate genes through the use of sequence features and network topology, only a few exploit
the information contained in the biomedical literature. In this work, we train and test a classifier
on known pharmacogenes from PharmGKB and present a classifier that predicts pharmacogenes
on a genome-wide scale using only Gene Ontology annotations and simple features mined from the
biomedical literature. Performance of F=0.86, AUC=0.860 is achieved. The top 10 predicted genes
are analyzed. Additionally, a set of enriched pharmacogenic Gene Ontology concepts is produced.

1. Introduction

One of the most important problems in the genomic era is identifying variants in genes that
affect response to pharmaceutical drugs. Variability in drug response poses problems for both
clinicians and patients.1 Variants in disease pathogenesis can also play a major factor in drug
efficacy.2,3 However, before variants within genes can be examined efficiently for their effect on
drug response, genes interacting with drugs or causal disease genes must be identified. Both
of these tasks are open research questions.

Databases such as DrugBank4 and The Therapeutic Target DB5 contain information about
gene-drug interactions, but only The Pharmacogenomics Knowledgebase (PharmGKB)6 con-
tains information about how variation in human genetics leads to variation in drug response
and drug pathways. Gene-disease variants and relationships are contained in Online Mendelian
Inheritance in Man (OMIM),7 the genetic association database,8 and the GWAS catalog.9 Cu-
rated databases are important resources, but they all suffer from the same problem: they are
incomplete.10 One approach to this problem is the development of computational methods to
aid in database curation. We explore here a method that takes advantage of the large amount
of information in the biomedical literature that is waiting to be exploited.

Having a classifier that is able to predict as-yet-uncurated pharmacogenes would allow
researchers to focus on identifying the variability within the genes that could affect drug
response or disease, and thus, shorten the time until information about these variants is useful
in a clinical setting. (We use the term “pharmacogene” to refer to any gene such that a variant
has been seen to affect drug response or is implicated in a disease.) Computational methods
have been developed to predict the potential relevance of a gene to a query drug.11 Other
computational methods have been developed to identify genetic causes underlying disorders
through gene prioritization, but many of these are designed to work on small sets of disease-
specific genes.12–17 The method which is closest to the one that we present here is described in
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Costa et al.;18 they create separate classifiers to predict morbidity-associated and druggable
genes on a genome-wide scale. A majority of these methods use sequence-based features,
network topology, and other features from curated databases; only a few use information from
literature.12,16,17

In the work presented here, the goal is to predict pharmacogenes at genome-wide scale using
a combination of features from curated databases and features mined from the biomedical
literature. We evaluate a number of hypotheses:

(1) There is a set of GO concepts that are enriched when comparing the functions of
important pharmacogenes and the rest of the human genome and by examining this
set of enriched GO concepts, a classifier can be created to provide hypotheses regarding
further genes in which variants could be of importance.

(2) Text-mined features will increase performance when combined with features from cu-
rated databases.

2. Methods

2.1. Pharmacogenes

By pharmacogene, we mean any gene such that a variant of that gene has been seen to affect
drug response or such that variants have been implicated in disease. PharmGKB contains over
26,000 genes, with only a few having annotations that signify their importance in disease or
drug response. For the experiments reported here, only those genes in which a variant exists
in the PharmGKB relationship database, specifically gene-disease or gene-drug relationships,
are considered to be gold-standard pharamcogenes. By this definition, 1,124 genes meet the
criteria for classification as pharamcogenes and are positively labeled training instances; these
make up <5% of all genes in PharmGKB. PharmGKB is constantly being updated, so a
snapshot of PharmGKB on May 2, 2013 was taken and is used as the gold standard.

2.2. Background genes

The rest of the 25,110 genes in PharmGKB, which do not contain disease or drug relationships,
are considered to be background genes and will be used as negatively labeled training instances.
We acknowledge the fact that PharmGKB is incomplete and that a missing annotation is not
indicative of a gene not being involved in disease or drug relationships, but the fact that they
have not been discovered or curated yet. (This is an obvious motivation for the work reported
here.) Two data sets were created from the background genes. One consists of all 25,110 genes.
This is referred to as the unbalanced set. The second consists of 1,124 background genes that
have similar numbers of publications as the known pharamcogenes. This is referred to as the
balanced set. That is, the two sets differ in whether or not they result in a balanced set of
positive and negative exemplars.

2.3. Functional annotations from curated databases

Links within PharmGKB were used to obtain Entrez Gene (EG) identifiers for both phar-
macogenes and background genes. To extract all Gene Ontology (GO)19 annotated functions
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associated with these genes, the NIH’s gene2go file was used. Only curated evidence codes
(EXP, IDA, IPI, IMP, IGI, IEP, TAS, and ISS) were used, in order to ensure high-quality
annotations. This dataset will be referred to as the curated dataset. It contains many EGID
to GO ID mappings obtained solely from curated GO annotations.

2.4. Functional annotations from biomedical literature

Entez Gene IDs and the NIH’s gene2pubmed file were used to relate genes to documents
of which they are the primary subject. By using the gene2pubmed file, we assume that all
information retrieved from the article is associated with the gene that is the primary subject.
Note that this is not always true and could introduce noise.

The 26,234 genes are mapped to 379,978 unique PubMed/MEDLINE articles. From these
∼380,000 articles, two different textual datasets were created, one consisting only of abstracts
and the other containing full text. The abstract dataset consists of all abstracts from all
articles. For ∼26,000 articles, we were only able to download XML or plain text, because
PMC articles are available in any format, with some, such as PDF, not being suitable for
natural language processing. The ∼26,000 full-text articles constitute our full-text dataset.
All full-text documents come from the PubMed Open Access Subset.

To extract gene functions (GO concepts) from these corpora, ConceptMapper, a dictionary-
based concept recognizer,20 was used with parameters tuned for each branch of the Gene
Ontology (Molecular Function, Biological Process, and Cellular Component), as seen in Funk
et al. (under review). Descriptive statistics of the documents and the functional annotations
retrieved from them and from the curated database are shown in Table 1.

Table 1. Summary of gene-document and gene-annotation associations The number of genes
within each dataset along with the mean number of biomedical literature documents associated with
each set of genes and mean number of GO annotations per gene. (+) denotes that this set of genes is
the positive labeled set while (–) denotes the negative training sets. The row labelled “Total Numbers”
gives the count, not means, of documents and GO annotations.

Mean # Docs Mean # GO Annotations

# Genes Abstracts Full-text GOA curated NLP abstracts NLP full-text

All genes 26,234 35.5 3.1 8.8 80.1 122.0
Known pharmacogenes (+) 1,124 215.2 15.5 16.3 227.5 220.7
All background genes (–) 25,110 26.7 2.5 8.2 72.8 128.7
Small background genes (–) 1,124 211.1 17.1 20.4 310.0 298.9

Total Numbers 26,234 379,978 25,987 112,356 1,891,566 1,951,982

2.5. Enrichment of Gene Ontology concepts

FatiGO21 was used to test whether there are functional concepts that are enriched when
pharamcogenes are compared to background genes. FatiGO is a tool that uses Fisher’s exact
test to extract over- or under-represented GO concepts from two lists of genes and provides
a list of enriched GO concepts and their respective p-values as output. The p-values are
corrected for multiple testing as described in Ge et al.22 The gene lists and all three sets
of annotations—curated, and text-mined–were provided to FatiGO as custom annotations.
Fisher’s exact test was conducted between GO concepts annotated to pharmacogenes and
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those annotated to background genes for all three sets of Gene Ontology concepts (curated,
mined from abstracts, and mined from full text).

2.6. Binary Classification

All classifiers were implemented in the Weka toolkit, version 3.6.9. Three different base-
lines were used: OneR, a one node decision tree; Naive Bayes; and randomly as-
signing class labels. Against these, we compared three systems: Random Forests and
two different Support Vector Machine implementations. Random Forests provide fast
decision-tree training. Support Vector Machines (SVM) are currently the most popu-
lar classifier. The built-in classifiers for OneR (weka.classifiers.rules.OneR), Naive Byes
(weka.classifiers.bayes.NaiveBayes), Random Forest (weka.classifiers.trees.RandomForest),
and Support Vector Machine (weka.classifiers.functions.SMO) were used with default parame-
ters. LibSVM (weka.classifiers.functions.LibSVM) was used with all but one default parameter.
By default LibSVM maximizes accuracy; with the unbalanced dataset, this is not optimal,
so weights of 90.0 and 10.0 were assigned to the pharmacogene and background classes, rep-
sectively. When using LibSVM with the balanced dataset, equal weights were given to both
classes. All numbers reported are from five-fold cross-validation.

Table 2. Machine learning features per dataset A breakdown of the number and type of features
used.

Dataset # Genes # Features Type

GOA curated 12,704 39,329 Curated GO annotations from the GOA database.
NLP abstract 23,849 39,329 GO annotations recognized from MEDLINE abstracts.
NLP full-text 15,168 39,329 GO annotations recognized from full-text journal articles.
Abstract GO + Bigrams 23,849 858,472 GO annotations and bigrams from MEDLINE abstracts.
Full-text GO + Bigrams 15,168 906,935 GO annotations and bigrams from full-text journal articles.
Combined GO + Bigrams 23,867 1,189,175 Curated and NLP GO annotations and all bigrams.
Abstract GO + Collocations 23,849 346,878 GO annotations and collocations from MEDLINE abstracts.
Full-text GO + Collocations 15,168 54,951 GO annotations and collocations from full-text journal articles.
Combined GO + Collocations 23,867 349,243 Curated and NLP GO annotations and all collocations.

2.7. Features derived from natural language processing

Additional features were extracted from the abstract and full-text document collections using
natural language processing. (This is in addition to the automatically extracted Gene Ontology
annotations, which are also produced by natural language processing.) These features were
word bigrams and collocations. Collocations, or sets of words that co-occur more often than
expected, have not been commonly used in text classification, but provide a better reflection
of the semantics of a text than bigrams. Both bigrams and collocations were extracted using
the Natural Language Tool Kit (NLTK).23 Any bigram or collocation where one of the tokens
only contained punctuation was removed. Additionally, only those features that appear in
three or more documents were retained. Six different NLP-derived feature sets were created
by combining the three datasets (abstract, full-text, curated + abstract + full-text) along
with the two different types of surface linguistic features (bigrams and collocations); these
feature sets were tested and trained on both the balanced and unbalanced datasets.
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2.8. Machine learning input

A breakdown of the kind and number of features used in each dataset can be seen in Table 2.

2.9. Evaluation metrics

The performance of our classifier was assessed by estimating precision (P), recall (R), and F-
measure (F). The area under the receiving operator characteristic curve (AROC) is reported,
as it allows for comparison against other classifiers, but with a word of caution interpreting
the unbalanced dataset: inflated AROCs have been seen when working with skewed class
distributions.24 All scores were determined by taking the average of 5-fold cross-validation for
all datasets.

3. Results and Discussion

3.1. Enriched Gene Ontology concepts

To assess the viability of a machine learner separating background and pharmacogenes, we first
determine whether functional differences between the pharamcogenes and background genes
exist. At least one curated or text-mined functional annotation was retrieved for 23,647 out of
26,236 total genes (90% of all genes in PharmGKB). The details of obtaining the annotations
are given in Sections 2.3 and 2.4. The gene sets and their annotations were passed to FatiGO,
a web tool that extracts over- and under-represented GO concepts from two lists of genes, and
a list of enriched GO concepts and probabilities was returned as output. Examining the output
from FatiGO, we found that, depending on the dataset, between 800-4000 GO concepts were
enriched, consistent with our hypothesis that there are enriched pharmacogenetic functions.
The top 10 enriched GO concepts for Molecular Function and Biological Process can be seen
in Tables 3 and 4, respectively. These lists were obtained by comparing the annotations from
all pharmacogenes to all background genes. To ensure that bias was not introduced solely
because there is a large difference in the number of genes and the number of annotations
between the two sets, another comparison was done between all pharamacogenes and the
set of 1,124 background genes with equal representation in the biomedical literature. The
enriched GO concepts returned are similar the concepts returned when comparing against all
background genes, and therefore we can conclude that no bias is introduced. Because 800-4000
statistically enriched GO concepts were returned for each dataset, we can conclude that there
are functional differences between the set of pharmacogenes and background genes.

Many of the enriched GO concepts can be categorized as playing a role in pharmacody-
namics (PD) or pharmacokinetics (PK). Pharmacodynamics is the study of the activity of
a drug in the body, e.g. its binding and effect on the body. Examples of PD concepts are
“integral to plasma membrane” (GO:0005887), “drug binding” (GO:0008144), and “positive
regulation of protein phosphatase type 2B activity” (GO:0032514)—they are either associ-
ated with receptors that drugs bind to, or refer to the possible effect that a drug has on the
body. Pharmacokinetics is the study of drug absorption, distribution, metabolism, and ex-
cretion. Examples of PK concepts are “xenobiotic metabolic process” (GO:0006805), “small
molecule metabolic process” (GO:0044281), and “active transmembrane transporter activity”
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(GO:0022804)—they refer to metabolism of a molecule or are involved in the metabolism or
transportation of a molecule.

Table 3. Top 10 enriched GO concepts from the Molecular
Function hierarchy. The enriched GO concepts from the Molec-
ular Function branch of Gene Ontology obtained when comparing
pharmacogenes versus all background genes using FatiGO.

GOA curated
Concept ID Concept name Adj. P-value

GO:0005515 protein binding < 1.0 × 10−8

GO:0019899 enzyme binding < 1.0 × 10−8

GO:0042803 protein homodimerization activity < 1.0 × 10−8

GO:0046982 protein heterodimerization activity < 1.0 × 10−8

GO:0004497 monooxygenase activity < 1.0 × 10−8

GO:0005245 voltage-gated calcium channel activity < 1.0 × 10−8

GO:0020037 heme binding < 1.0 × 10−8

GO:0004713 protein tyrosine kinase activity < 1.0 × 10−8

GO:0004674 protein serine/threonine kinase activity < 1.0 × 10−8

GO:0003677 DNA binding < 1.0 × 10−8

NLP abstracts
Concept ID Concept name Adj. P-value

GO:0022804 active transmembrane transporter activity < 1.0 × 10−8

GO:0005322 low-density lipoprotein < 1.0 × 10−8

GO:0005321 high-density lipoprotein < 1.0 × 10−8

GO:0005320 apoplioprotein < 1.0 × 10−8

GO:0005179 hormone activity < 1.0 × 10−8

GO:0005041 low-density lipoprotein receptor activity < 1.0 × 10−8

GO:0005215 transporter activity < 1.0 × 10−8

GO:0016088 insulin < 1.0 × 10−8

GO:0004697 protein kinase C activity < 1.0 × 10−8

GO:0045289 luciferin monooxygenase activity < 1.0 × 10−8

NLP full-text
Concept ID Concept name Adj. P-value

GO:0042031 angiotensin-converting enzyme inhibitor activity < 1.0 × 10−8

GO:0005262 calcium channel activity < 1.0 × 10−8

GO:0016088 insulin < 1.0 × 10−8

GO:0022804 active transmembrane transporter activity < 1.0 × 10−8

GO:0005179 hormone activity < 1.0 × 10−8

GO:0004872 receptor activity < 1.0 × 10−8

GO:0005215 transporter activity < 1.0 × 10−8

GO:0016791 phosphatase activity < 1.0 × 10−8

GO:0008083 growth factor activity < 1.0 × 10−8

GO:0004601 peroxidase activity < 1.0 × 10−8

There are interesting dif-
ferences when examining the
top enriched concepts between
the different datasets (curated,
abstracts, and full text). Im-
pressionistically, curated anno-
tations seem to be more spe-
cific, while NLP annotations
appear to be more general (es-
pecially evident when examin-
ing Biological Processes, Table
4). This may be the case be-
cause there are limitations to
the depth in GO that concept
recognizers can identify; a large
gap exists between how near-
terminal concepts are stated in
the ontology and their expres-
sion in free text.

3.2. Classification
of pharmacogenes

Having established that the
functions of pharmacogenes are
different from background genes,
the next step is to test the abil-
ity of machine learning to dif-
ferentiate between them. Our
goal is to predict at genome-
wide scale pharmacogenes that

are not currently known in PharmGKB to have drug or disease relationships. We approach
the problem as binary classification, where the classifier separates pharmacogenes from the
rest of the genes.

3.3. Classification using Gene Ontology concepts

To see how well known pharmacogenes can be classified through their functional annotation
similarity, five classifiers were created using the manually curated and text-mined functional
annotations on both the unbalanced and balanced datasets. Baselines for comparison against
are a one-node decision tree (OneR), Naive Bayes, and randomly assigning class labels. Per-
formance of all classifiers and baselines can be seen in Table 5. A breakdown of features used
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for each dataset can be seen in Table 2 and a summary of functional annotations is seen in
Table 1.

Table 4. Top 10 enriched GO concepts from the Biological Process
hierarchy. The enriched GO concepts from the Biological Process branch
of the Gene Ontology obtained when comparing pharmacogenes versus all
background genes using FatiGO.

GOA curated
Concept ID Concept name Adj. P-value

GO:0044281 small molecule metabolic process < 1.0 × 10−8

GO:0007596 blood coagulation < 1.0 × 10−8

GO:0030168 platelet activation < 1.0 × 10−8

GO:0006805 xenobiotic metabolic process < 1.0 × 10−8

GO:0048011 neurotrophin TRK receptor signaling pathway < 1.0 × 10−8

GO:0007268 synaptic transmission < 1.0 × 10−8

GO:0008543 fibroblast growth factor receptor signaling pathway < 1.0 × 10−8

GO:0007173 epidermal growth factor receptor signaling pathway < 1.0 × 10−8

GO:0045087 innate immune response < 1.0 × 10−8

GO:0055085 transmembrane transport < 1.0 × 10−8

NLP abstracts
Concept ID Concept name Adj. P-value

GO:0007568 aging < 1.0 × 10−8

GO:0009405 pathogenesis < 1.0 × 10−8

GO:0046960 sensitization < 1.0 × 10−8

GO:0008152 metabolic process < 1.0 × 10−8

GO:0006629 lipid metabolic process < 1.0 × 10−8

GO:0007610 behavior < 1.0 × 10−8

GO:0006810 transport < 1.0 × 10−8

GO:0014823 response to activity < 1.0 × 10−8

GO:0006280 mutagenesis < 1.0 × 10−8

GO:0042638 exogen < 1.0 × 10−8

NLP full-text
Concept ID Concept name Adj. P-value

GO:0009626 plant-type hypersensitive response < 1.0 × 10−8

GO:0007568 aging < 1.0 × 10−8

GO:0016311 dephosphorylation < 1.0 × 10−8

GO:0032514 positive regulation of protein phosphatase type 2B activity < 1.0 × 10−8

GO:0008152 metabolic process < 1.0 × 10−8

GO:0009405 pathogenesis < 1.0 × 10−8

GO:0042592 homeostatic process < 1.0 × 10−8

GO:0046960 sensitization < 1.0 × 10−8

GO:0006810 transport < 1.0 × 10−8

GO:0050817 coagulation < 1.0 × 10−8

The results are shown
in Table 5. A clear effect
of balance versus imbalance
in the data is evident. F-
measure increases between
0.29 and 0.53 when using
a balanced training set. Ex-
amining performance across
unbalanced training sets,
we notice that Naive Bayes
produces the highest recall
(0.68) but the lowest pre-
cision (0.17), whereas Ran-
dom Forest produces high-
est precision (0.69) but low-
est recall (0.11). The same
trends do not hold for the
balanced training sets. On
both training sets, it is the
SVM-based classifiers that
balance precision and recall
and produce the highest F-
measures. The highest F-
measures of 0.81 and 0.78,
are produced by LibSVM
and SMO, respectively, on
the balanced NLP abstract
annotations. Naive Bayes
and Random Forrest per-
form poorly in comparison to the SVM classifiers, but better than a single-node decision
tree or random assignment; OneR performs slightly better than random assignment.

For a majority of the classifiers, GO annotations from literature produce the best
performance—surprisingly, text-mined annotations seem to be better features than those from
curated datasets. This could be explained by the difference in number of annotations, there
are 15 times more text-mined annotations than curated ones (Table 1). Another explanation
could be that more information is encoded in text-mined annotations than just gene function.
From this set of experiments, we can conclude that using only Gene Ontology concepts, we are
able classify pharmacogenes on the balanced training set but it remains unclear, because of
poor performance, whether it is sufficient to use only GO concepts with an unbalanced train-
ing set. We can also conclude that LibSVM should be used for the next set of experiments
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because it is best performing and was the fastest to train (training time not shown).

3.4. Classification using GO concepts and literature features

To test the hypothesis that features derived from surface linguistic features can increase per-
formance over conceptual features alone, we trained classifiers with two additional feature
types: bigrams and collocations. Bigrams consist of every sequence of two adjacent words in a
document and are commonly used in text classification. Collocations are a subset of bigrams,
containing words that co-occur more frequently than expected. They are a better representa-
tion of the semantics of a text than bigrams alone. The methods for extracting these features
are described above in Section 2.7. Adding bigrams and collocations introduces up to 30x
more features than functional annotations alone (Table 2).

The performance of LibSVM with GO annotations and bigrams/collocations on both train-
ing sets can be seen in Table 6. Baselines are the same.

Table 5. Classification using Gene Ontology concepts
Five-fold cross validation performance of five binary classi-
fiers when providing Gene Ontology concepts as features.
Results from both unbalanced and balanced training sets
are shown. The highest F-measure is bolded. The baselines
provided are OneR (one-node decision tree), Naive Bayes,
and randomly assigning classes (median of 5 random assign-
ments).

GOA curated NLP abstracts NLP full-text
Classifier P/R/F P/R/F P/R/F

Unbalanced Training
Random 0.05/0.50/0.09 0.07/0.50/0.12 0.05/0.50/0.09
OneR 0.57/0.01/0.03 0.56/0.17/0.25 0.80/0.10/0.18
Naive Bayes 0.17/0.60/0.26 0.17/0.68/0.27 0.17/0.59/0.26
Random Forest 0.53/0.17/0.25 0.69/0.12/0.21 0.58/0.11/0.18
SMO 0.43/0.31/0.36 0.39/0.41/0.40 0.37/0.34/0.35
LibSVM 0.29/0.55/0.38 0.41/0.58/0.48 0.37/0.52/0.42

Balanced Training
Random 0.50/0.50/0.50 0.50/0.50/0.50 0/50/0.50/0.50
OneR 0.71/0.41/0.52 0.68/0.51/0.59 0.73/0.48/0.56
Naive Bayes 0.65/0.72/0.68 0.75/0.70/0.72 0.67/0.70/0.68
Random Forest 0.63/0.71/0.67 0.72/0.77/0.74 0.67/0.73/0.69
SMO 0.64/0.66/0.65 0.79/0.77/0.78 0.70/0.73/0.72
LibSVM 0.71/0.71/0.71 0.83/0.80/0.81 0.76/0.79/0.78

On the unbalanced training set,
the maximum F-measure seen is 0.57,
obtained by using text-mined func-
tional annotations and bigrams ex-
tracted from abstracts. By using bi-
grams in addition to GO annotations,
precision is increased by 0.17 while re-
call is decreased by 0.02, resulting in an
increase in F-measure of 0.09 (Table 5
versus Table 6). On the balanced train-
ing set, the maximum F-measure seen
is 0.81, also obtained by using text-
mined functional annotations and bi-
grams from abstracts. With the addi-
tion of bigrams, both precision and re-
call are increased by 0.06 and 0.03,re-
spectively, resulting in an increase in F-
measure of 0.06 (comparing Table 5 to
Table 6).

3.4.1. Comparison with other methods

As mentioned in the introduction, there are very few methods against which our method can
be compared. Most gene-disease or gene prioritization methods are designed to work on small
sets of disease-specific genes,12–14 while our method predicts pharmacogenes on a genome-wide
scale. One method, Garten et al.,25 utilizes text mining to extract drug-gene relationships from
the biomedical literature, also using PharmGKB as a gold standard, with an AUC of 0.701.
The closest methods to ours do not predict pharmacogenes as defined here, but only pre-
dict disease genes. CIPHER26 predicts human disease genes with precision of ∼0.10 using
protein-protein interaction networks and gene-phenotype associations. PROSPECTR27 uses
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Table 6. Classification with GO concepts and natural language processing Five-fold
cross-validation performance of LibSVM when combining Gene Ontology concepts and litera-
ture-based features. Both the balanced and unbalanced training results are shown. The highest
F-measure and AROC are bolded. The baselines provided are OneR (one-node decision tree),
Naive Bayes, and randomly assigning classes (median of 5 random assignments).

Abstract GO + Bigrams Full-Text GO + Bigrams Combined GO + Bigrams
Classifier P/R/F AUC P/R/F AUC P/R/F AUC

Unbalanced Training
Random 0.07/0.50/0.12 0.501 0.05/0.50/0.09 0.501 0.05/0.50/0.09 0.499
LibSVM 0.58/0.56/0.57 0.771 0.50/0.46/0.48 0.711 0.50/0.54/0.52 0.756

Balanced Training
Random 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500
OneR 0.75/0.59/0.66 0.696 0.71/0.53/0.61 0.663 0.79/0.50/0.61 0.685
LibSVM 0.89/0.83/0.86 0.860 0.79/0.82/0.80 0.807 0.86/0.83/0.85 0.848

Abstract GO + Collocations Full-Text GO + Collocations Combined GO + Collocations
Classifier P/R/F AUC P/R/F AUC P/R/F AUC

Unbalanced Training
Random 0.07/0.50/0.12 0.501 0.05/0.50/0.09 0.501 0.05/0.50/0.09 0.499
LibSVM 0.54/0.56/0.55 0.767 0.41/0.52/0.46 0.730 0.47/0.56/0.51 0.763

Balanced Training
Random 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500 0.50/0.50/0.50 0.500
OneR 0.78/0.46/0.58 0.664 0.67/0.64/0.66 0.675 0.75/0.59/0.66 0.698
LibSVM 0.87/0.82/0.85 0.850 0.77/0.80/0.78 0.786 0.85/0.81/0.83 0.833

23 sequence-based features and predicts disease genes from OMIM with precision = 0.62 and
recall = 0.70 with an AUC of 0.70.The most directly comparable method, presented in Costa
et al.,18 utilizes topological features of gene interaction networks to predict both morbid-
ity genes (P=0.66, R=0.65, AUC=0.72) and druggable genes (P=0.75, R=0.78, AUC=0.82).
While the majority of other methods utilize sequence-based features, protein interactions,
and other genomic networks, our method requires only Gene Ontology annotations and sim-
ple bigrams/collocations extracted from biomedical literature. Precision and recall for our
classifier trained on the unbalanced dataset with GO annotations and bigrams from abstracts
are slightly lower than both PROSPECTR and the method presented in Costa et al., our AUC
(0.771) is higher than all but the predicted druggable genes from Costa et al. Performance on
the balanced training set using GO concepts and bigrams extracted from abstracts (F=0.86,
AUC=0.860) are higher than any of the methods presented here.

3.4.2. Limitations

There are two major limitations of our work. The first is that we grouped together all pharma-
cogenes, while it may have been more useful to differentiate between disease-associated and
drug-response-associated variant. The other limitation is that we don’t provide a ranking, but
rather just a binary classification.

3.5. Prediction of pharmacogenes

Now that classifiers have been created and evaluated, we can analyze the predicted pharma-
cogenes. 141 genes were predicted to be pharmacogenes by all six unbalanced datasets seen
in Table 6. Predictions from unbalanced models were analyzed because the models produced
through balanced training were unknowingly weighted for recall. For example, the balanced
model trained on abstract GO and bigrams produces a recall of 0.99 and precision of 0.10
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Table 7. Top 10 predicted pharmacogenes Top 10 pharmacogenes predicted by all combined classifiers and
ranked by functional similarity to the known pharmacogenes. All information from PharmGKB and OMIM is
presented along with the class that was predicted by Costa et al.18 (Morbid: mutations that cause human diseases,
Druggable: protein-coding genes whose modulation by small molecules elicits phenotypic effects).

EG ID Symbol PharmGKB Annotations OMIM Phenotype Costa et al.18 predicted

2903 GRIN2A None Epilepsy with neurodevelopment defects Druggable

7361 UGT1A None None Not tested

2897 GRIK1 None None Druggable

1128 CHRM1 None None Druggable

1131 CHRM3 Member of Proton Pump Inhibitor Path-
way

Eagle-Barrett syndrome Druggable

3115 HLA-DPB1 None Beryllium disease Morbid/Druggable

6571 SLC18A2 Member of Nicotine, Selective Serotonin
Reuptake Inhibitor, and Sympathetic
Nerve Pathway

None Morbid/Druggable

477 ATP1A2 None Alternating hemiplegia of childhood, Mi-
graine (familial basilar and familial hemi-
plegic)

Morbid/Druggable

3643 INSR Member of Anti-diabetic Drug Potassium
Channel Inhibitors and Anti-diabetic
Drug Repaglinide Pathways

Diabetes mellitus, Hyperinsulinemic hy-
poglycemia, Leprechaunism,
Rabson-Mendenhall syndrome

Morbid/Druggable

2905 GRIN2C None None Druggable

when the classifier is applied to all genes in PharmGKB; this is not informative and further
work and error analysis will be conducted to examine why this is.

The top 10 predicted genes, ranked by functional similarity (as calculated by ToppGene)
to the known pharmacogenes, along with all known information from PharmGKB and On-
line Mendelian Inheritance in Man (OMIM),7 and if/what the gene was predicted to be by
Costa et al. can be seen in Table 7. We first notice that there are no gene-disease or gene-
drug relationships in PharmGKB for these predicted genes, but a few of them participate in
curated pathways. We expand our search to see if other databases have drug or disease infor-
mation about them. OMIM provides insight into genetic variation and phenotypes; half of the
predicted genes have a variant that plays a role in a mutant phenotype. We also looked up
our predicted genes in the results from a previous study on predicting morbid and druggable
genes, and 90% (9 out of 10) of our predicted pharmacogenes were also predicted to be morbid
(variations cause hereditary human diseases) or druggable.18

To assess the hypothesized pharmacogenes further, PubMed and STITCH28 were used to
find any known drug or disease associations not in PharmGKB or OMIM. The top-ranked
gene, GRIN2A, seems to play a part in schizophrenia and autism spectrum disorders29 along
with binding to memantine, a class of Alzheimer’s medication blocking glutamate receptors.
Interestingly, UGT1A is unable to be found in STITCH or OMIM, but an article from May
2013 introduces a specific polymorphism that suggests that it is an important determinant
of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-
induced liver injury.30 It is also known to be linked to irinotecan toxicity. We also find genetic
variations in GRIK1 have been linked to schizophrenia31 and down syndrome.32 Even only
examining the top three predicted pharmacogenes, there is evidence in other databases and
literature that suggests these should be further examined by the PharmGKB curators for
possible annotation.
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4. Conclusions

One of the surprising findings of this study was that features extracted from abstracts per-
formed better than features extracted from full text. Since full text was available for a smaller
number of genes, the comparison may not be appropriate. Pursuing this remains for further
research.

The collocation features performed almost as well as the bigrams, despite the fact that
we took a poor approach to extracting them, since we did collocation recognition on the
document level, rather than on the level of the document collection as a whole. With a better
approach to collocation extraction, performance of the collocation features might have been
much higher.

The fact that features derived from text-mined functional annotations outperformed man-
ually curated annotations was a surprise. In this work, we did not evaluate the correctness of
text-mined functional annotations. Therefore, the performance of the text-mined functional
annotation features is the only indication of how well the actual Gene Ontology concept recog-
nition worked. Based on the fact that they performed higher than the manually curated Gene
Ontology concepts, it appears that the performance of the ConceptMapper approach was at
minimum good enough for this task.

In this paper we identified a set of functions enriched in known pharmacogenes. This list
could be used to rank genes predicted by our classifier, but also has usefulness beyond the
work presented here. The list could prove useful in literature-based discovery by providing
linkages to identify gene-drug or gene-disease relationships from disparate literature sources.

We also present a classifier that is able to predict pharmacogenes at a genome wide scale
(F=0.86, AUC=0.860). The top 10 hypothesized pharmacogenes predicted by our classifier
are presented; 50% contain allelic variations in OMIM and 90% were previously predicted but
remain unannotated in PhamGKB. Additionally, using other sources at least the top three
genes predicted are known to bind a drug or to be associated with a disease. Other meth-
ods attempting similar problems, utilize sequence based features and genomic networks; only
a few incorporate literature features. Our method, on the other hand, uses mainly features
mined from the biomedical literature along with functional annotations from databases. Be-
cause our method offers comparable performance to others utilizing sequence and network
based features, this work illustrates the importance of incorporating curated databases with
information available in the biomedical literature for biomedical discovery.
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Mass spectrometry based proteomics technologies have allowed for a great progress in identifying disease 
biomarkers for clinical diagnosis and prognosis. However, they face acute challenges from a data 
reproducibility standpoint, in that no two independent studies have been found to produce the same 
proteomic patterns. Such reproducibility issues cause the identified biomarker patterns to lose repeatability 
and prevent real clinical usage. In this work, we propose a profile biomarker approach to overcome this 
problem from a machine-learning viewpoint by developing a novel derivative component analysis (DCA). As 
an implicit feature selection algorithm, derivative component analysis enables the separation of true signals 
from red herrings by capturing subtle data behaviors and removing system noises from a proteomic profile. 
We further demonstrate its advantages in disease diagnosis by viewing input data as a profile biomarker. The 
results from our profile biomarker diagnosis suggest an effective solution to overcoming proteomics data‘s 
reproducibility problem, present an alternative method for biomarker discovery in proteomics, and provide a 
good candidate for clinical proteomic diagnosis.   

1.  Introduction 

With the recent surge in proteomics, large volumes of mass spectral serum/plasma/urine 
proteomic data are available to conduct molecular diagnosis in complex diseases. As a promising 
way to revolutionize medicine, mass spectral proteomics demonstrates a great potential in 
identifying novel biomarker patterns from a proteome for diagnosis, prognosis, and other diverse 
clinical needs [1,2]. However, robust clinical diagnosis from mass spectral data remains an acute 
challenge in translational bioinformatics due to the special characteristics of proteomics data.  

First, mass spectral proteomics data are high-dimensional data that can be represented as a 
matrix after preprocessing, where each row represents protein expression at a mass-to-
charge (m/z) ratio of peptides or proteins, usually called a feature from a machine learning 
perspective, and each column represents protein expression from a sample (observation) (e.g., a 
control or cancer subject) across all m/z ratios in an experiment. The number of rows is much 
greater than the number of columns, 𝑝 ≪ 𝑛, that is, #variables (peptides/proteins) is much greater 
than #samples. Usually 𝑛~𝑂(10!) and 𝑝~𝑂 10! . While there are a large amount of m/z ratios 
(peptides or proteins), only a few number of variables (e.g., peaks) have meaningful contribution 
to data variations and disease diagnosis. Moreover, they are not noise-free data because 
preprocessing and normalization methods themselves cannot remove built-in system noise from 
mass spectrometry technology itself.  In fact, it remains a challenge to separate true signals in a 
mass spectral profile from red herrings though different endeavors from machine learning.  

Second, mass spectral proteomics data usually suffer from data reproducibility problems, 
which mean that no two independent studies have been found to produce same proteomic patterns 
[2,3]. As such, corresponding biomarker patterns identified, which consists a small set of 
meaningful peaks, from these data may lose repeatability due to the poor reproducibility and 
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difficulty in validating biomarker patterns identified from multiple data sources. In fact, there are 
almost no reproducible biomarker patterns reported for mass spectral proteomic data in the 
literature [2]. Although several methods are proposed to mitigate this problem from a 
quantification perspective [2,3], there is no method to tackle this problem from a machine learning 
viewpoint as of yet.  

The non-reproducibility of proteomic source data and their biomarker patterns, which are 
usually obtained by peak-selection methods using different machine learning algorithms, is mainly 
due to mass spectrometry technology’s exquisite sensitivity to any subtle change in the proteome 
caused by biological or technical factors [3]. In other words, tiny changes in the proteome may 
lead to a set of completely different mass spectral peak patterns. Thus, a desirable diagnosis from 
identified protein or peptide biomarkers may not be reusable for other “same data” generated using 
the identical patient and control samples under the same profiling technologies and protocols.   

In this work, we propose a de novo profile biomarker approach to achieve clinical level 
diagnosis. Unlike traditional biomarker discoveries that collect a few meaningful peaks, our 
profile biomarker approach views input data as a “whole biomarker” by proposing a novel 
derivative component analysis (DCA), which evolves from our previous work [4-6], and combing 
it with state-of-the-art classifiers. It is noted that a profile biomarker has the same dimension as the 
input data but with less variance and storage.  In our approach, we aim at the reproducibility of 
diagnosis performance instead of looking for specific peptides or proteins, i.e., we believe a 
profile biomarker would be more robust than traditional biomarkers, provided it could achieve 
clinical level diagnoses for different proteomic data. That is, the motivation of this study is to 
solve the data reproducibility problem in proteomics by developing a novel profile biomarker 
diagnosis. 

Our profile biomarker approach relies on a novel feature selection algorithm: derivative 
component analysis (DCA) as proposed in this work. Traditional feature selection algorithms (e.g., 
t-test) are usually characterized by the explicit feature number decrease or dimension reduction of 
the input data. It is noted that a feature refers to a row of protein/peptide expression of all samples 
at an m/z ratio. However, as an implicit feature selection algorithm, DCA conducts feature 
selection implicitly, i.e., there is no feature number decrease after DCA. More importantly, DCA 
enables the retrieval of the true signals from input proteomic data by removing redundant 
information and built-in noises, which provide a robust information support for our profile-
biomarker diagnosis. Considering similar diagnosis mechanisms for proteomic profiles, we use 
benchmark serum proteomic data to demonstrate our profile biomarker diagnosis in this study.    

The paper is organized as follows. Section 2 discusses essential components in profile 
biomarker discovery and proposes DCA in addition to addressing the weaknesses of the traditional 
feature selection methods. Section 3 investigates DCA-based profile biomarker diagnosis by 
integrating it with state-of-the-art classifiers. We further demonstrate our approach’s superiority 
by comparing it with other state-of-the-arts, besides addressing DCA-induced biomarker 
discovery. Finally we discuss the pros and cons of our profile biomarker diagnosis and conclude 
our paper. 

2. Derivative Component Analysis (DCA) 

Before we proceed, we need to answer the question: ‘what essential components are needed to 
make a profile biomarker successful in proteomics?’ We believe that essential components for a 
profile biomarker approach may rely on whether we can separate true signals from red herrings for 
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each proteomic profile. Traditional feature selection methods usually fail to capture true signals 
from mass spectral proteomic data set because of their built-in weaknesses. Although various 
feature selection methods are employed in proteomics to glean informative features for the sake of 
diagnosis [7], there is no study to address their weaknesses systematically.  

We categorize feature selection into input-space and subspace methods. The former seeks a 
feature subset 𝑋! ∈ ℜ!×!,  𝑚 ≪ 𝑛,  in the same space ℜ!×!  as input data 𝑋  by conducting a 
hypothesis test (e.g., t-test), or wrapping a classifier to select features recursively; the latter 
conducts a dimension reduction by transforming data into a subspace 𝑆 induced by a linear or 
nonlinear transformation 𝑓:𝑋 → 𝑆,  where 𝑆 = 𝑠𝑝𝑎𝑛 𝑠!, 𝑠!,⋯𝑠! ,  𝑠! ∈ ℜ! ,  𝑘 ≤ 𝑝 ≪ 𝑛,  and seeking 
meaningful linear combinations of the features. For example, the subspace S will be spanned by all 
principal components when the transformation is induced by principal component analysis (PCA) 
[8]. In fact, almost all PCA, ICA, PLS, and NMF and their extensions such as nonnegative 
principal component analysis (NPCA), sparse NMF, and other related methods fall into this 
category [4-6,9]. However, the two types of methods have the following built-in limitations. 

The weakness of the input and subspace methods. The input-space methods usually assume 
input data are clean or nearly clean, and lack de-noising schemes. The clean data assumption 
appears to be inappropriate for proteomic profiles because they usually contain nonlinear noise 
from technical or biological artifacts (e.g., built-in noise generated from profiling systems). The 
noise would enter feature selection as outliers and cause those peaks with less biological meaning 
to be selected, leading to an inaccurate or even poor decision function in classification and 
affecting the disease diagnosis and generalization. 

On the other hand, subspace methods have difficulties capturing subtle data characteristics, 
because the subspace methods transform data into another subspace in order to seek meaningful 
feature combinations and the original spatial coordinates are lost in the transformation, which 
makes it almost impossible to track the mapping relationships between features and the specific 
data characteristics they interpret or contribute to. It is noted that subtle data characteristics refer to 
latent data behaviors interpreting transient data changes in a short time interval.  

In contrast, global data characteristics refer to the holistic data behaviors interpreting long-time 
interval data changes, which happen more often than subtle data behaviors. The global data 
characteristics are easily extracted by general subspace methods like PCA, because there are more 
features contributing to holistic data behaviors than those contributing to subtle data behaviors. 
Furthermore, since most subspace methods treat all features uniformly regardless of which types 
of data behaviors they interpret, global characteristics are more likely to be selected than subtle 
data characteristics, because the former’s features are more frequent than those of the latter in the 
feature domain.   

As such, global data characteristics are usually over-extracted and subtle data characteristics 
may be totally missed or overshadowed after feature selection. The signals extracted from such 
feature selection are far from ‘true signals’ because the global data characteristics are over-
expressed. The redundant global data characteristics would lead to a biased decision function for 
the following classifier (e.g., SVM) that favors the extracted global data characteristics, which 
may present a hurdle for clinical diagnosis, because the subtle characteristics are essential to 
achieve high-accuracy diagnosis for proteomics data, especially as different subtype tumor 
samples usually share similar or the same global data characteristics but different subtle data 
characteristics [5,6].      

It is clear that the built-in weaknesses of the traditional feature selection methods prevent true 
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signal extraction and the possibility of profile biomarker diagnosis, because they lack de-noising 
and subtle data characteristics retrieval schemes. We sketch the key reasons for these weaknesses 
as follows before we present our derivative component analysis. 

The reasons for traditional feature selection’s weaknesses. The following are the major 
reasons why traditional feature selection methods are unable to extract subtle characteristics and 
remove systems noise effectively. 1) These methods are single resolution data analysis methods 
that view each feature as an indivisible information unit, which makes system noise removal 
almost impossible; 2) They treat all features uniformly regardless of their frequencies in the 
feature space, which makes subtle data characteristics extraction difficult due to lower frequencies 
in the feature domain. Mathematically, retrieving subtle data characteristics, which are represented 
by transient data behaviors, means to seek the derivative of the original data. However, this is 
theoretically quite difficult to complete in a single resolution mode.  

Derivative component analysis (DCA). We propose a novel feature selection algorithm: 
derivative component analysis (DCA) to separate true signals from red herrings, that is, conduct 
de-noising for system noise and retrieve subtle data characteristics in a multi-resolution data 
analysis mode. As a multi-resolution feature selection algorithm, the proposed DCA no longer 
views a feature as an indivisible information element. Instead, all features are hierarchically 
decomposed into different components to discover data derivatives so as to capture the subtle data 
characteristics and conduct de-noising. The proposed derivative component analysis (DCA) 
mainly consists of the following three steps.  

First, a discrete wavelet transform (DWT) [10] is applied to all features to decompose it 
hierarchically as a set of detail coefficient matrices 𝑐𝐷!, 𝑐𝐷!⋯ 𝑐𝐷! and an approximation matrix 
𝑐𝐴! under a transform level J. It is worthwhile to point out that we view each m/z ratio as a 
corresponding time point in our context for the convenience of the DWT [10].  Since the DWT is 
calculated on a set of dyadic grid points hierarchically, the dimensionalities of the approximation 
and detail coefficient matrices shrink dyadically level by level.  

It is noted that the approximation matrix and coarse level detail coefficient matrices (e.g. 𝑐𝐷!) 
capture global data characteristics, because they contain contributions from those features 
contributing to data behaviors in ‘long-time windows’, and outlining the global tendency of the 
data. Similarly, the fine level detail coefficient matrices (e.g., 𝑐𝐷!, 𝑐𝐷! ) capture subtle data 
characteristics, because they contain contributions from those features that disclose quick changes 
in ‘short-time windows’, and describe data derivatives locally. In fact, these fine level detail 
matrices are the components for reflecting the data derivatives in different short-time windows. As 
such, they can be called ‘derivative components’ for the functionality in describing data behaviors.   

Furthermore, most system noises are transformed in these derivative components due to its 
heterogeneity with respect to the features contributing to the global tendency of data. Clearly, the 
DWT in the first step separates the global characteristics, subtle data characteristics, and noises in 
different resolutions.  

Second, retrieve the most important subtle data characteristics and conduct de-noising by 
reconstructing these fine level detail coefficient matrices before or at a presetting cutoff level τ 
(e.g.,τ=3). Such a construction is summarized in two steps: 1) Conduct principal component 
analysis (PCA) for the detail matrices 𝑐𝐷!, 𝑐𝐷!⋯ 𝑐𝐷! . 2) Reconstruct each detail coefficient matrix 
by using its first m principal components, in each principal component (PC) matrix. Usually, m = 
1, i.e., we employ the first PC to reconstruct each detail coefficient matrix, which means we only 
retrieve the most important subtle data characteristics in the detail coefficient matrix 
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reconstruction. In fact, the first PC based reconstruction also achieves de-noising by suppressing 
the noises’ contribution in the detail coefficient matrix reconstruction because the noises are 
usually least likely to appear in the 1st PC.  

On the other hand, those coarse level detail coefficient matrices after the cutoff τ: 
𝑐𝐷!!!, 𝑐𝐷!!!⋯ 𝑐𝐷! and approximation coefficient matrix 𝑐𝐴! are kept intact to retrieve global data 
characteristics. In fact, the parameter m can be also determined by using a variability explanation 
ratio 𝜌! defined as follows, such that it is greater than a threshold ρ (e.g., ρ = 60%), which is the 
variability explanation ratio interpreted by the first principal components of the detail coefficient 
matrices before or at the cutoff.  

Variability explanation ratio. Given a data set with n variables and p observations, usually, 

p<n, the variability explanation ratio is the ratio between the variance explained by 

the first m PCs and the total variances, where 𝜎! is the variance explained by the 𝑗!! PC, which is 
the 𝑗!! eigenvalue of the covariance matrix of the input proteomic data. 

Such a selective reconstruction process extracts the most important subtle data characteristics 
and achieves de-noising by suppressing the noises’ contribution to the fine detail coefficient 
matrix reconstruction. This is because only the 1st PC or few top PCs are employed to reconstruct 
each targeted fine level coefficient matrix 𝑐𝐷! and the other less important and noise-contained 
principal components are dropped in reconstruction. 

Third, conduct the corresponding inverse DWT by using the current detail and approximation 
coefficient matrices to obtain meta-data 𝑋∗,  which is a de-noised data set with subtle data 
characteristics extraction, because of the highlight of the most significant subtle data behaviors in 
the “derivative components” based reconstructions. The meta-data are just ‘true signals’ separated 
from red herrings that share the same dimensionality with the original data but with less memory 
storage because less important PCs are dropped in our reconstruction.   

It is noted that, unlike traditional feature selection methods, DCA is an implicit feature 
selection method, where useful characteristics are selected implicitly without an obvious variable 
removal or dimension reduction.  Algorithm 1 gives the details about DCA as follows, where we 
use 𝑋! instead of X for the convenience of description, i.e., each row is a sample and each column 
is a feature. 
 

Algorithm 1 Derivative Component Analysis (DCA) 
1. Input:  DWT level J; cutoff τ; wavelet  thereshold    
2. Output: Meta-data  
3. Step 1. Column-wise discrete wavelet transforms (DWT) 
4. Conduct J-level DWT with wavelet for each column of to obtain 
5.   and  

6. Step 2. Subtle data characteristics extraction and de-noising  
7. for j = 1 to J 
8.     if j ≤ τ 
9.        a) Do principal component analysis for each detail matrix  to obtain its PC and score matrix 

10.            and  

11.        b) Reconstruct matrix by employing first m principal components s.t.   

12.                   

ρm = σ i

i=1

m

∑ / σ i

i=1

p

∑

XT = [x1, x2,…xn ], xi ∈ ℜp, ψ; ρ;

XT
*

ψ XT

[cD1,cD2…cDJ ;cAJ ], cDj ∈ℜpj×n, cAJ ∈ℜpJ×n, pj = p / 2 j!" #$, j =1, 2,…J.

cDj

U = [u1,u2,…upj ], ui ∈ℜn S = [s1, s2,…spj ], si ∈ℜpj , i =1, 2,, pj.

cDj u1,u2,…um, ρm ≥ p

cDj ← cDj × (I × I
T ) / pj + ui × si

T ,
i=1

m

∑ I = [1,1,1]T ∈ℜpj
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13.    end if  
14. end for 
15. Step 3. Approximate the original data by the inverse discrete wavelet transform 
16. with the wavelet   

Although an optimal DWT level can be obtained theoretically according to the maximum 
entropy principle [11], it is reasonable to adaptively select the DWT level J according to the 
’nature’ of input data, where large #samples corresponds to a relatively large J value, for the 
convenience of computation. As such, we select the DWT level as 4 ≤ 𝐽 ≤ log! 𝑝  considering the 
magnitude level of the samples number p in proteomics data to avoid too large or too small 
transform levels. Correspondingly, we empirically set the cutoff as 1 < 𝜏 ≤ 𝐽/2 to separate the fine 
and coarse level detail coefficient matrices for good performance.  

Furthermore, we require the wavelet 𝜓 in the DWT orthogonal and have compact supports 
such as Daubechies wavelets (e.g., ‘db8’), for the sake of subtle data behavior capturing.  
Interestingly, we have found that the first PC of each fine level detail coefficient matrix usually 
has a quite high variability explanation ratio (e.g., >60%) for each fine level detail coefficient 
matrix 𝑐𝐷! (1≤j≤τ ). Thus, we relax the variability explanation ratio threshold by only using the 
first PC to reconstruct each 𝑐𝐷! matrix in order to catch subtle data characteristics along the 
maximum variance direction. In fact, we have found that using more PCs in the fine level detail 
coefficient matrix reconstruction does not demonstrate advantages in subtle data characteristics 
extraction and de-noising than using the first PC.  

 
Fig 1. The true signals of 10 cancer and control samples across 16331 m/z of the Colorectal data by DCA 

Figure 1 shows the true signals (meta-data) of the 10 cancer and control samples, which are 
randomly selected from Colorectal data [12] with total 48 controls and 64 cancer samples across 
16331 m/z ratios, extracted by our DCA under the cutoff τ=2, transform-level J = 7, and wavelet 
‘db8’.  Interestingly, the each type of samples in the extracted true signals appear to be smoother 
and more proximal to each other besides demonstrating less variations, because of the major subtle 
data characteristics extraction and system noise removal.  

Such a case is demonstrated more clearly by Figure 2, where the 10 cancer and control 
samples and their true signals are highlighted between 1400 Da and 1500 Da. It is quite clear to 
observe that the same type samples are closer to each other spatially, and some small spikes are 
removed as the built-in noises in true signals.  Obviously, from a classification viewpoint, these 

X*
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true signals will contribute to high accuracy diagnoses than the original proteomic data, because 
the built-in noises and redundant global data characteristics would have a much lower chance to 
get involved in classification due to derivative component analysis. Instead, subtle data 
characteristics would have a greater chance of participating in the decision rule inference. 

 
Fig 2. The true signals of 10 cancer and control samples of the Colorectal data between 1400-1500 Da. 

 
 

 
 

Fig 3. Random five features in Colorectal data and its meta-data across 112 samples (64 cancers + 48 controls). 
 

Similarly, Figure 3 shows the meta-data of randomly picked five features from Colorectal data 
under the same parametric setting for DCA. Interestingly, the meta-data (meta-features) are 
smoother and have values in a smaller range than the original features for its subtle data 
characteristics extraction and de-noising. The meta-features are actually more distinguishable than 
their original features, which reflect the true expression level of the peptides/proteins at the m/z 
ratios better. In other words, DCA provides a ‘zoom’ mechanism to capture the original data’s 
subtle behaviors that are usually latent in general machine-learning methods. 

 

Profile Biomarker Diagnosis with DCA 

Since DCA can separate true signals from red herrings by extracting subtle data characteristics 
and removing built-in noises, it is natural to combine DCA with start-of-the-art classifiers to 
conduct profile biomarker diagnosis, where input proteomics data are viewed as a profile 
biomarker. We chose support vector machines (SVM) for its efficiency and advantages in 
handling large-scale data, popularity in proteomics diagnosis and biomarker discovery [13]. As 
such, we propose novel derivative component analysis-based support vector machines (DCA-
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SVM) in order to attain a profile biomarker disease diagnosis, which is actually equivalent to a 
binary or multi-class classification problem.  

Given a binary type training samples and their labels its 
corresponding meta-data  are computed by using DCA, Then, a maximum-margin 
hyperplane in is constructed to separate the ’+1’ (‘cancer’) and ’-1’ (‘control’) 
types of the samples in the meta-data 𝑌, where 𝑤 and 𝑏 are the normal and offset vector of the 
hyperplane respectively. The hyperplane construction is equivalent to solving the following 
quadratic programming problem (standard SVM, i.e., C-SVM): 

 

                                                                           (1) 

The C-SVM can be solved by seeking the solutions to the variables 𝛼!  of a corresponding 

Lagrangian dual problem to get a decision function f (x ') = sign( αicik( yi iy ')+b)
i=1

n

∑  to determine the 

class type of a testing sample 𝑥!, where 𝑦! and 𝑦! are corresponding meta-samples computed from 
DCA for samples 𝑥! and 𝑥! . The kernel function 𝑘 𝑦! , 𝑦  maps 𝑦! and 𝑦′ into a same-dimensional or 
high-dimensional feature space. In this work, we employ the ’linear’ kernel for its simplicity and 
efficiency. Our multiclass DCA-SVM algorithm employs the ‘one-against-one’ to conduct 
multiclass phenotype diagnosis for its proved advantage over the ‘one-against-all’ and ‘directed 
acyclic SVM’ methods [14]. 

It is worthwhile to point out that our DCA-SVM has a different feature space due to true signal 
extraction from DCA. The standard SVM’s feature-space usually contains noises from input 
proteomic data, and misses subtle data characteristics. Alternatively, the DCA-SVM ’s feature 
space contains ’de-noised’ true signals with subtle data characteristics, which avoids the global 
data characteristics favored decision rule because subtle data characteristics are also invited in 
SVM hyperplane construction besides the global data characteristics. As such, the DCA-SVM can 
efficiently detect those samples with similar global characteristics but different subtle 
characteristics in disease diagnosis than the standard SVM. 

3. Results 

We demonstrate our profile biomarker diagnosis’ superiority by using five benchmark serum 
proteomic data sets, which include Cirrhosis, Colorectal, HCC, Ovarian-qaqc and ToxPath data 
[12,15-17,19]. The benchmark data used in our experiments are heterogeneous data generated 
from different experiments via different profiling technologies such as MALDI-TOF and SELDI-
TOF, and preprocessed by different methods. Table 1 describes the details of the five data sets. 

We compare the proposed DCA-SVM based profile-biomarker diagnosis with the following 
state-of-the-arts in this work. They include a partial least square (PLS) based linear logistic 
discriminant analysis (PLS-LLD) [18,20], standard SVM [13], a SVM combining with principal 
component analysis: PCA-SVM [5], and a SVM with input-space feature selection: fs-SVM, 
which employs t-test and Anona1 (one-way ANOVA) to conduct feature selection for binary and 
multi-class data respectively. For each data, fs-SVM collects a meaningful feature set including all 

X = [x1, x2,xp ]
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features with p-values < 0.05 using t-test or Anova1 for phenotype diagnosis. 

We employ the ’linear’ kernel 𝑘 𝑥, 𝑦 = (𝑥 ∙ 𝑦) in all SVM-related classifiers for its efficiency 
in omics data classification, rather than nonlinear kernels (e.g., Gaussian kernels), which usually 
lead to overfitting in diagnosis [4-6]. To avoid potential biases from presetting training/test data 
partition on diagnosis, we employ the k-fold (k=5) cross-validation to evaluate the five classifiers’ 
performances for all data sets. In addition to choosing the first ten PLS components in the PLS-
LLD classifier, we uniformly set the DWT level J = 7 under ‘db8’, cutoff τ = 2; and apply the 
first PC-based detail coefficient matrix reconstruction in DCA to retrieve true signals for all 
proteomic data sets. 

 
Fig 4 Comparing profile biomarker diagnosis’ diagnostic accuracies and its standard deviations with those of others. 
s  

Before demonstrating our profile biomarker approach‘s advantages, we introduce several key 
diagnosis performance measures, namely, diagnostic accuracy, sensitivity, specificity and positive 
predication ratios, as follows. The diagnostic accuracy is the ratio of the correctly classified test 
samples over total test samples. The sensitivity, specificity, and positive predication ratio are 
defined as the ratios: !"

!"!!"
,  !"
!"!!"

,  and !"
!"!!"

 respectively, where TP(TN) is the number of 
positive (negative) targets (a positive (negative) target is a proteomic sample with ‘+1’ (‘-1’) 
label) correctly diagnosed and FP (FN) is the number of negative (positive) targets incorrectly 
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Table 1. Benchmark proteomic data 

Data #Feature #Sample Platform 

Cirrhosis 
 
23846 

72 controls + 
78 HCCs + 
51 cirrhosis 

 
MALDI-TOF 

Colorectal 16331 48 controls + 64 cancers MALDI-TOF 
HCC 6107 181 controls +176 cancers SELDI-QqTOF 
Ovarian-qaqc 15000 95 controls + 121 cancers SELDI-TOF 

ToxPath 

 
 
7105 

28 normals + 
43 potential normals + 
34 cardiotoxicities + 
10 potential cardiotoxicities 

 
SELDI-QqTOF 
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diagnosed by the classifier.  
Figure 4 demonstrates rivaling clinical level performance from our profile biomarker diagnosis 

(DCA-SVM) by comparison with the other classifiers in average diagnosis accuracies and its 
standard deviations. It seems that our profile biomarker diagnosis achieves performance nearly 
clinical level and demonstrate strongly leading advantages over its peers in a stable manner. 
Alternatively, those comparison classifiers seem to show quite large level oscillations that may 
indicate they lack stability and good generalization capacities across different data sets, which 
exclude themselves as candidates for clinical proteomics diagnosis. 

For example, our profile biomarker diagnosis achieves 99.52% (sensitivity 100%, specificity 
99.17%), 100% (sensitivity 100%, specificity 100%), and 99.44% (sensitivity 98.00%, specificity 
100%) diagnostic accuracies on the Ovarian-qaqc, Colorectal and HCC data respectively. It 
further reaches 97.50%, 99.01% diagnostic accuracies for Toxpath and Cirrhosis data respectively. 
However, the standard SVM classifier can only achieve 75.80% and 88.06% diagnosis for the 
same data sets respectively. Although some input-space or subspace methods may sometimes 
boost diagnosis for binary-type data set, we have found that they are unable to increase the SVM 
classifier’s diagnosis and generation abilities significantly, especially for multiclass proteomic 
data.  In fact, in contrast to the proposed profile biomarker diagnosis, all the comparison classifiers 
show high-level oscillations in diagnoses across different data sets. It is noteworthy that the high-
level oscillations in diagnosis is further highlighted by corresponding large standard deviation 
values in diagnosis from those classifiers in Figure 4, where our DCA-SVM based profile 
biomarker diagnosis demonstrates its good stability and generalization for its smallest standard 
deviation values across all the data sets.  

Compare profile biomarker diagnosis with prior methods.  It is worthwhile to point out that 
our DCA-SVM based profile biomarker also demonstrates its superiority to its peers in terms of 
diagnostic accuracy, sensitivity, specificity and positive predication ratios. We further compare 
our profile biomarker diagnosis approach with the previous biomarker discovery diagnoses in the 
literature and have found that our method demonstrates good clinical level sensitivities in 
phenotype discriminations for different benchmark proteomic data.  For example, Alexandrov et al 
‘s work only achieved 97.5% diagnosis accuracy with sensitivity 98.4% and specificity 95.8% for 
Colorecta data by using a complicated method [12]. However, our profile biomarker diagnosis 
achieves 100% diagnosis accuracy with sensitivity 100% and specificity 100%. For Ovarian-qaqc 
data, our approach achieves a 99.53% clinical-level diagnosis accuracy with sensitivity 98.95% 
and specificity 100%, which is better than the original diagnosis level obtained in [17] and all the 
other peers. For Cirrhosis data, Ressom et al partitioned this three-class data into two binary data 
sets and proposed a novel hybrid ant colony optimization based support vector machines (ACO-
SVM), where ACO was used for biomarker discovery, to achieve 94% and 100% specificity to 
distinguish hepatocellular carcinoma (HCC) from cirrhosis [16]. There was no result available to 
distinguish normal, HCC, and cirrhosis in a multiclass diagnostic way. However, our proposed 
approach has achieved 99.01% diagnosis accuracy for this multi-class data set. 

Can DCA be used to conduct biomarker discovery by collecting meaningful peaks if we relax 
the reproducibility concern? The answer is ‘yes’ because derivative component analysis can 
identify meaningful protein or peptide peaks from true signals We simply apply t-test and Anova1 
to identify the top-ranked features with the smallest p-values, i.e. we pick the three top-scored 
peaks as biomarkers for its statistical significance. Figure 5 illustrates the separation of four 
benchmark data sets with three top-ranked biomarkers (peaks). It is interesting to see that these 

Pacific Symposium on Biocomputing 2014

349



 
 

 

high-dimensional proteomic profiles can be separated almost completely with these biomarkers 
identified from true signals. 

We can also obtain some meaningful biological depth by checking these biomarkers. For 
example, the SW plot in Figure 5 shows the separation of 176 controls and 181 cancers in the 
HCC data, by the top-ranked biomarkers (peaks) at 2534.2, 2584.3, and 6486.2 m/z ratios, where 
each dot represents a sample (a patient with HCC or a healthy subject). It is also interesting to see 
that two biomarkers are from downsteam m/z ratios, which were believed to be more sensitive to 
detect phenotype information than those from upstream m/z ratios [16,19]. Moreover, The 
separation can provide meaningful biological insight for pathological disease states. For example, 
we select three top-ranked biomarkers at 1668.99, 5907.73, 5907.13 m/z ratios for the Cirrhosis 
dataset, which is a three-class high-resolution MALDI-TOF proteomic profile with 23846 
features. The phenotype separations provided by the three biomarkers give very meaningful 
biological insights, i.e., the SE plot in Figure 5 shows the three clearly independent clusters, where 
Cirrhosis cluster with 51 samples (blue) have closer spatial distances to the HCC cluster 78 
samples (red) than the normal cluster with 72 samples (yellow). Such spatial distances 
demonstrated by our biomarkers are actually consistent to their pathological distances: Cirrhosis is 
the middle stage to hepatocellular carcinoma (HCC) for a healthy subject.  

 

 
Fig 5 Separating disease phenotypes of four data sets by only using their three biomarkers with the smallest p-values. 

4. Conclusions and Discussion 

In this study, we propose a profile biomarker diagnosis approach to overcome the data 
reproducibility issue in proteomics data and demonstrate its clinical level performances across 
different data. The profile biomarker diagnosis is based on the novel implicit feature selection 
algorithm: derivative component analysis and derivative component analysis based support vector 
machines proposed in this study. As an implicit feature selection algorithm, DCA is able to 
separate true signals from red herrings by extracting subtle data characteristics and removing 
system noise via calculating a same dimensional meta-data for input proteomic data. It is noted 
that the complexity of DCA is higher than that of PCA, because DCA calls the classic PCA in 
several fine level detail coefficient matrix reconstruction, in addition to the DWT and inverse 
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DWT.  However, DCA demonstrates a promising way to overcome the data reproducibility issue 
in proteomics because the high-accuracy diagnosis results seem to be reproducible themselves for 
different data sets under our approach. In other words, our profile biomarker diagnosis presents 
itself as an ideal candidate to achieve clinical diagnosis in clinical proteomics. Furthermore, our 
work suggests a key issue in proteomic disease diagnosis, that is, subtle data characteristics 
gleaning and de-noising can be more important in proteomics data feature selection and following 
phenotype discrimination than dimension reduction. Moreover, the proposed derivative 
component analysis provides an alternative feature selection by implicitly extracting useful data 
characteristics whiling maintaining the data’s original dimensionality.  

Although we are quite optimistic to see that our profile biomarker diagnosis will be a potential 
candidate to achieve a clinical disease diagnosis in proteomics by conquering the reproducibility 
problem, rigorous proteomics clinical tests are needed urgently to explore such a potential and 
validate its clinical effectiveness. In our ongoing work, we are working with pathologists to 
investigate extending the profile biomarker diagnosis approach to TCGA and RNA-Seq data 
besides protein expression array analysis. 
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The creation of biological pathway knowledge bases is largely driven by manual effort to curate based on 

evidences from the scientific literature. It is highly challenging for the curators to keep up with the literature. 

Text mining applications have been developed in the last decade to assist human curators to speed up the 

curation pace where majority of them aim to identify the most relevant papers for curation with little attempt 

to directly extract the pathway information from text. In this paper, we describe a rule-based literature mining 

system to extract pathway information from text. We evaluated the system using curated pharmacokinetic 

(PK) and pharmacodynamic (PD) pathways in PharmGKB. The system achieved an F-measure of 63.11% 

and 34.99% for entity extraction and event extraction respectively against all PubMed abstracts cited in 

PharmGKB. It may be possible to improve the system performance by incorporating using statistical machine 

learning approaches. This study also helped us gain insights into the barriers towards automated event 

extraction from text for pathway curation. 

1 Introduction 

Genome-wide high throughput studies have led to an increased emphasis on understanding the 

biological interactions at the systems level rather than the individual molecular interactions. 

Biological pathway knowledge bases provide systems level interaction information, and are 

constructed by manual curation of the scientific literature. Due to extensive manual effort 

required, there is a significant delay in capturing the information in knowledge bases after the 

publication of scientific literature. Baumgartner et al 2007 (1) suggests that manual curation of 

biological databases is beyond human life span without significant assistance from text mining. 

Increase in the volumes of biomedical literature has witnessed simultaneous improvements in the 

ability to apply natural language processing (NLP) methods to full text articles and entire PubMed 

collection (2-4).  

Despite a decade of research in biomedical text mining the effort to semi-automate the curation 

workflow of various biological databases and pathway databases in particular is still evasive (5). 

Some of the earlier systems targeted the acquisition of protein networks (binary relations) from 

literature are simply based on co-occurrence such as iHOP (6), Chillibot (7), or grammar-based 

rules such as Pathway Studio (8) and GeneWays (9). While extraction of such networks is useful, 

the networks cannot be easily mapped to pathways, which model information flow in biological 

cascades.  

While most of the systems mentioned above extract binary relations there has been significant 

improvement in the state of the art by progressing the extraction from simple binary interactions to 

complex events, which form building blocks of a pathway. In the recent past the efforts to achieve 

automated biomedical text mining have been catalyzed by a series of BioCreative (10, 11) and 

BioNLP shared tasks (5, 12, 13). These competitions saw the emergence of systems (2, 3, 14, 15) 

that extract complex events where simple events are part of other events using both machine 
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learning and rule-based approaches. PathText (16) proposed an integrated approach to ease the 

manual effort involved in pathway curation task but still requires lot of manual effort. The most 

recent BioNLP shared task 2013 (5) organized a task dedicated to pathway curation. Only two 

systems, TEES (3) and NacTeM (17) participated in this task, which reported an F-measure of 

52.84% and 51.10% respectively on the task. Schmidt et al 2012 (18) also explored text mining 

assisted pathway curation in a limited context of a specific pathway involving kinases. 

While the recent studies indicate a step forward in the direction of pathway curation, they do 

not completely address all the issues necessary for pathway curation. We are not aware of any 

study that evaluates a text mining system for extracting biological pathways that uses a manually 

curated pathway database as the gold standard. 

In this study we describe an event extraction that uses pattern templates (covering nearly 450 

verbs describing biological events) to extract arguments and assign semantic roles for events 

described within a single sentence. In addition the system uses linguistic rules to connect 

information across sentences, which is a major distinguishing feature of the system from rest of 

the systems described above. Finally we investigate an important problem of great significance, 

the role our text mining system can play in assisting pathway curation through extraction of events 

and identify the challenges to our text mining system in extracting the event annotations in 

PharmGKB (19) pathway database. 

2 Methods 

Figure 1 shows the overall system architecture and the individual components of our text mining 

system. 

2.1 Pre-processing and Named entity recognition 

The pipeline starts with tokenization and sentence detection for a given document. The sentences 

are then assigned part of speech using Brill Tagger (20) trained on GENIA corpus (21). POS 

tagging is augmented by post-processing error correction rules. This is followed by shallow 

parsing using fnTBL chunker (22) trained on GENIA corpus (21). The shallow parsing is 

supplemented with detection of additional syntactic constructions related to noun phrases, which 

include co-ordination, appositives and verb groups.  

The next component is named entity recognition (NER) component consisting of manually 

developed rules as outlined by Narayanaswamy et al 2003 (23) and dictionaries of words and 

morphological features like prefixes, suffixes and infixes for biomedical entities. The NER 

component classifies entities into 8 major categories namely Protein/Gene, protein sites, 

chemicals, drugs, organism, bodypart (include organ, tissue, cells and sub-cellular location), 

disease, quantitative parameter (e.g. conductance, voltage, binding constant, dissociation constant, 

IC50) and values (e.g. 20 nM, 30 pS, 10 ms). Based on the NER results we corrected the errors in 

POS tagging and shallow parsing module by having a feedback loop in order to improve the 

performance of event extraction. 
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2.2 Event extraction 

The event extraction module consists of two major sub components 1) detection of events 

within a clause or sentence based on pattern templates and 2) connecting events across 

sentences through discourse analysis. 

2.2.1 Argument extraction based on verb frames 

The system consists of rules for different classes of verbs or its nominal forms that extract and 

assign thematic roles to its arguments based on verb category and the semantic type of the 

arguments. The patterns for each verb were developed using a corpus of 300 abstracts related to 

electrophysiology sub-domain describing events about ion channel physiology. Currently there are 

9 major classes and 50 sub-classes of verbs. The patterns consider the verbal forms such as 

activate, inhibit, transport and nominal forms such as activation and phosphorylation. These 

verb/nominal forms are marked as potential triggers and there are 450 such triggers identified 

across all categories. Table 1 lists the major category of event classes and the corresponding verbs 

for defining frames for argument extraction. Some example patterns are included below with 

example sentences can be found in Figure 2. 

Pattern 1: <Agent> (PRP NP)* REGULATE_VERB <Theme> (PRP NP)* 

This template matches a clause with a verb and extends the clause on either side of the verb as 

long as each of the base noun phrases that it crosses is headed only by a preposition (shown in 

Figure 2A). Regulatory verbs (both positive, negative and neutral) such as “increased”, 

“stimulated”, “blocked”, and “prevented”, “regulated” have the above argument structure and are 

matched by this pattern.  

Pattern2: < Nominal form NP> of <THEME> by <AGENT>  

This pattern matches the sentence and extracts arguments (shown in Figure 2B).  A similar pattern 

handles passive forms of the verb as shown in Figure 2C. 

Pattern 3: <AGENT>, [Nominal form NP] of <THEME>  

Pattern 3 handles nominal forms within appositive expressions like in “Gd3+, an inhibitor of the 

flow -induced Ca2+ increase, prevented the hyperpolarization” and extracts the arguments 

(“Gd3+” as agent and “flow -induced Ca2+ increase” as theme) for the trigger “inhibitor”. 

Figure1 – System Architecture 
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2.2.2 Connecting events across clausal boundaries 

We explored a few linguistic motivated approaches to connect or transfer arguments across clausal 

boundaries. Our strategy involve three steps: 1) fill empty semantic slots by transferring the 

arguments across events, 2) merge relevant frames and write parser to connect discourses, 3) 

resolve anaphoric expressions to find the right antecedent for both entities and events. Figure 2 

shows the examples for frame based argument extraction output using BRAT annotation tool. 

 
Table 1. Verb categories 

Category Example verbs 

Conversion Phosphorylation, methylation, de-phosphorylation etc. and other PTMs 

Localization Transport, trans-located, movement 

Gene expression Expression, transcription, translation 

Degradation Degradation 

Binding Bind, binding, complex formation 

Dissociation Dissociate, bond break 

Regulation  

   Positive Activation, induce, trigger 

   Negative Inhibition, inactivation 

   Neutral Modulate, regulate 

 

Filling empty slots by transferring arguments across events - Quite often, syntactic arguments of 

verbs or its nominalized form, either the subject/object will be empty. Such situations demand 

mechanisms to fill the empty arguments by linking the current frame with another. Consider the 

example sentence shown in Figure 2D. While “ZD7288” and “CsCl” and “latencies” are extracted 

as the cause and theme respectively for the verb “increased”, the “properties of both open states” 

is extracted as the theme of the verb “decreased”. Our rule to allow transfer of arguments (either 

Cause or Theme) if the verbs are in co-ordination and belong to the same category (“Regulation” 

in this case) enable easy identification of “ZD7288 and CsCl” as the agent for the verb 

“decreased”. 

The above co-ordination rule can handle even more complex co-ordination structures beyond 

clausal boundaries as shown in example in Figure 2E.  Here the co-ordination between the verbs 

“did not affect” and “did increase” is identified, which triggers the argument transfer rule to help 

identify “8Br-cAMP” as the cause of the verb “increase”. 

Linking sequential events by merging frames - We also link sequential events as conveyed in the 

text by merging the frames and connecting discourses. Consider the sentence shown in Figure 2F. 

From that sentence our verb frame based extraction module extracts the following outputs: 

EVENT1: effects (NO; I (Na)), and EVENT3: inhibition (UNK, both cGMP and cAMP pathways) 

for the events “effects” and “inhibition” respectively. If we carefully notice on either side of the 

verb “blocked” we have the nominal form of verb followed by a prepositional phrase. In such 

cases we connect both the events as EVENT2: (Event3, Event1). 

We also have rules to extract lexical chains by handling discourse connectives such as 

“thereby”, via whereas etc., which are often used to connect two events in the text. 
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E1: increased (Cause: S1-P, Theme: threshold current, Theme PP: for excitation), E2: decreased (Cause: S-1-P, 

Theme: time constant, Theme PP: sub-threshold electronic potentials).  

A 

 

E1: Stimulation (Cause: extracellular Gd(3+), Theme: transepithelial Na(+) current). 

B 

 

E1: translocated (Theme: NF-kappaB; FromLoc:UNK; ToLoc: nucleus) 

C 

 

E1: increased (Cause: ZD7288 and Cscl; Theme: Latencies), E2: decreased (Cause: ZD7288 and Cscl; Theme: 

properties; Theme PP: both open states) 

D 

 

E1: application (Theme: 8Br-cAMP), E2: NOT_Effect (Cause:E1; Theme: conductance); E3: increase (Cause:E1, 

Theme:E1) 

E 

 

E1: effect (Cause: NO; Theme: I(Na)), E2: inhibition (Theme: cGMP and cAMP pathways); E3: blocked (Cause:E2, 

Theme:E1) 

F 
Figure 2. Examples of verb frame based argument extraction. A) Active forms, B) Nominal forms, C) Passive forms, 

D) Filling empty arguments through verb co-ordination, E) Filling empty arguments beyond clausal boundaries, and 

F) Linking events through merging verb frames. +Regulation/+Reg: positive regulation; -Regulation/-Reg: Negative 

regulation 

    

Anaphora resolution - We also have a simple anaphora resolution module to resolve both 

anaphoric entities and events. Our approach to anaphora resolution for entities is linguistic rules 

described in Kennedy and Boguraev 1996 (24). For demonstrative NPs such as “this kinase”, 

“these transcription factors” we consider features such as semantic type of the NPs, the distance 
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between the antecedent and the candidate anaphora and number (singular or plural form of NP) 

while deciding the right antecedent. For the anaphoric phrase “both sites” in the following snippet 

“Dephosphorylated hsp 90 is phosphorylated at both sites by casein kinase II …”, the candidate 

antecedents that our method would consider are those phrases which refer to two objects of the 

type dictated by the head word “site” (protein sites).  We look for antecedent phrases which are of 

the semantic type “protein sites”. In this case, the rule correctly identified the anaphor “serine 231 

and serine 263” which appeared in a preceding sentence, “For the alpha protein, these sites 

correspond to serine 231 and serine 263.” Anaphora resolution play critical role in recovering the 

actual arguments as shown in the following example. 

Besides resolving anaphors at the entity level we also have rules to resolve event anaphora. 

Our strategy to resolve event anaphora is based on the identity of the verbs if they have the same 

root form post- lemmatization. For example, consider the following sentence, “This modulation 

may contribute to the migratory effect of MIP1-alpha on microglia”.  The system extracted 

two outputs for the trigger “contribute” and “effect” as given below: Event1: contribute (this 

modulation, the migratory effect of MIP1-alpha on microglia); Event2: effect (MIP1-alpha, 

microglia). In the first event (Event1) the phrase “this modulation” is resolved to as referring to 

the modulation event, described in the prior sentence, “Thus, microglia in hippocampi from 

epileptic patients expresses high-conductance Ca2+-dependent K+ channels that are modulated 

by the chemokine MIP1-alpha”. For the event "modulated” the system extracted the following 

output: “Event3: modulated (the chemokine MIP1-alpha, high-conductance Ca2+-dependent 

K+ channels). After anaphora resolution the system finally gets the consolidated output as 

Event1: (Event3, Event2). 

 

3 Experiments 

3.1 Data set 

We evaluated the performance of the system by extracting events from PubMed abstracts cited as 

literature evidence in PharmGKB, and comparing the system output with the manual annotations 

in the PharmGKB (19). PharmGKB pathway is a rich resource, which catalogs both the 

pharmacodynamics and pharmacokinetics pathways involving the interplay between the drugs, 

metabolites and genes through manual curation along with the citation to primary literature 

evidence namely the PubMed (25). PharmGKB pathway resource’s latest version (As on July 1
st
 

2013) contains 99 pathways with citations to primary literature. Besides these it also contains 

other pathways assembled from other resources such as Reactome(26). In addition to events we 

evaluated the system for identifying all the participating molecules (genes/chemicals) involved in 

the pathways. We reported the performance as precision, recall and F-measure. For each event in a 

pathway we compared the individual fields (see Table3) namely From, To, and ControlledBy 

against the manual annotations. True positives were required to match all the four fields. For the 

manual evaluation we considered additional criteria during evaluation. By ignoring the gene 
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normalization we considered the extraction to be correct if the biology intuition tells that the 

identified gene mentioned in the text is synonymous to the one in the PharmGKB.  

3.2 Post-processing the system output to compare against PharmGKB annotation 

For the current study we retrieved all the PubMed IDs  (1,036) cited as literature evidence in the 

99 PharmGKB pathways and retrieved them from PubMed through Entrez batch search (27). We 

formatted our system’s output to generate the annotations in the same format as that of 

PharmGKB event annotation. In order to further align our gene mentions with the PharmGKB 

annotation, we normalized the textual mentions of gene/protein to Gene symbols using GeNO 

(28). We remapped the entity annotations produced by our system with that of GeNO by 

comparing the output span indices of the two systems. Even if there were overlap in the indices we 

aligned both the annotations and assigned the Gene symbols identified by GeNO to the 

corresponding entity mentioned in the text.  We mapped the Agent/Cause of the verb extracted by 

our system to the “Controlled By” field in PharmGKB while the Theme identified by our system 

is mapped to “From” field. If the theme of the verb did not undergo any transformation in its 

molecular state through post-translational modifications, metabolism etc. then the same theme is 

assigned to the “To” field as well. For example consider the sentence (PMID: 11287982)  
Table 2. Sample PharmGKB annotation 

From To Controlled By Evidence 

BCR-ABL BCR-ABL imatinib 11287972;12755554;13679030;16122278 

imatinib CGP CYP1A2;CYP2C19;CYP2C9;C

YP2D6;CYP3A4;CYP3A5 

15828850;16122278 

“Imatinib is a potent and selective inhibitor of the protein tyrosine kinase Bcr-Abl, 

platelet-derived growth factor receptors (PDGFRalpha and PDGFRbeta) and KIT”. Imatinib, 

the agent of the verb “inhibitor” in the above sentence is mapped to the “ControlledBy” field and 

one of the theme “Bcr-Abl” is mapped to the “From” field. Since the verb inhibitor do not involve 

any transformation of the theme it is also assigned to the “To” field. 

3.3 Evaluation 

We performed two evaluations 1) automated evaluation on all the event descriptions in 

PharmGKB pathways 2) manual evaluation of event extraction for four selected pathways. The 

four pathways are Platelet aggregation inhibitor pathway, Warfarin pathway, Metformin pathway, 

and Aromatase inhibitor pathway. We assessed the utility of our system output in pathway 

curation. Besides events, we also evaluated the ability of the system to identify all the participating 

molecules (genes/chemicals) in the pathways. We used the standard metrics namely precision, 

recall and F-measure for evaluation. For each event in a pathway we compared the individual 

fields namely From, To, and ControlledBy against the manually curated one and if all the four 

fields are found to be correct we count them to be a true positive event. Otherwise we count them 

as both precision and recall error. We did not report the partial recall for the fields correctly 

identified by the system. 
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4 Results and discussion 

4.1 Evaluation on complete PharmGKB data set 

PharmGKB pathway annotation contains 894 events involving 1040 molecules (839 genes and 

201 drugs) annotated from 99 PharmGKB pathways. We evaluated the ability of our system in 

identifying the molecules participating in events annotated in PharmGKB pathways as shown in 

Table 3.  Out of the two classes of entities the performance of Gene named entity was extremely 

lower (F-measure: 56.96) as it involve normalizing the gene mentions in the text to Entrez gene 

symbol as per the requirements of PharmGKB annotations. However for identifying drugs and 

chemicals the F-measure was fairly high (82.68%) as it doesn’t involve entity normalization. 

Table 3. Evaluation of system’s performance on entity identification on complete PharmGKB 

Entity Type Total Entity (Gold) Total Extracted (Total correct) 
Precision (%) Recall (%) F-measure (%) 

Gene 839 632 (419) 66.30 49.94 56.96 

Drug/Chemical 201 261 (191) 73.18 95.02 82.68 

 

Table 4 lists the performance of our event extraction system on the 1036 abstracts cited as 

literature evidence in PharmGKB pathways. The 99 pathways in PharmGKB contain 894 events. 

Our system identified 952 events from the 1036 abstracts out of which only 323 were found to be 

correct leading to precision of 33.93%, recall of 36.13% and F-measure of 34.99%. However we 

observed that extra-sentential processing modules contributed to only 4.5% improvement to the 

final output. The likely reason may be that PharmGKB annotation of pathway events mostly 

involves only simple entities such as genes and proteins but not complex events such as biological 

processes. 
Table 4. Evaluation of system’s performance on event extraction from PharmGKB  

Total Events (Gold) Total Extracted (Total correct) Precision (%) Recall (%) F-measure (%) 

894 952 (323) 33.93 36.13 34.99 

4.2 Manual evaluation of four hand-selected pathways 

While we expected the recall to be lower we were surprised to observe lower precision, a feature 

atypical of rule-based systems. In order to better understand the reason behind the low precision 

we manually evaluated the performance on abstracts related to four hand-selected pathways, 

which has citations to 34 abstracts as literature evidence. The manual inspection of the system 

output on these 34 abstracts aimed to identify the reason behind the low recall and precision.  We 

observed the following discrepancies between the extracted output and the gold standard 

annotation in the PharmGKB: 

1) Certain annotations in PharmGKB are not actually present in either the abstract or in the full 

text article. For example in the Platelet Aggregation inhibitor pathway we have the following 

annotation in PharmGKB as given in Table 5 below.  
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We did not find any mention of the individual G-protein in the ControlledBy column either in 

the cited abstracts or in the full text articles. However, there is a general mention about the 

involvement of G-proteins from the G-12&13 families, which our system extracted correctly. Out 

of the total 24 annotations for this pathway in PharmGKB, there were 7 annotations, which do not 

have direct evidence in the literature considering both the abstract and full text article. Instead they 

were derived through biological inference. None of these annotations were identified by our 

system. While from a biologist perspective the annotation in the pathway database is correct we 

believe that the current state of the art of literature mining has not matured enough to extract such 

annotations. Inferencing by using the background knowledge from knowledge bases such as PRO, 

UniProt etc. alone can help resolve such uncertainties. 

Table 5. PharmGKB annotation from platelet aggregation pathway 

From To Controlled By Evidence 

ADCY3 ADCY3 GNA11,GNA12,GNA13,GNA15,GNAI1,GNAI2,G

NAI3,GNAQ,GNB3,GNAS 

15187029, 11997386 

2) Another notable reason for lower recall is that the information in pathway database is 

synthesized from multiple abstracts while our system extracts information only from a single 

article.  

3) Another observation clearly explains the reasons for the lower precision of the system. Our 

system extracted a few annotations with no corresponding entries in PharmGKB. On manual 

inspection we found that while those annotations are not wrong they do not confirm to the event 

definition of the PharmGKB database. For example from an abstract (PMID: 15187029) the 

system extracted two relations namely, regulate (P2Y(12), PP1) and inhibit (P2Y(12), adenylate 

cyclase) from the sentence “Furthermore, the Src family kinase inhibitor PP1 selectively 

potentiates the contribution to the calcium response by P2Y(12), although inhibition of adenylate 

cyclase by P2Y(12) is unaffected.” which are not annotated in PharmGKB. While both the 

relations extracted are correct from the biologist perspective it is not relevant in the context of 

PharmGKB annotation. The errors in gene normalization (both recall and precision) also 

contributed to the errors in event extraction as well. Table 6 lists the performance of our system on 

the selected 4 pathways through manual evaluation with and without ignoring the gene 

normalization.  
Table 6. Evaluation of system’s performance on event extraction on handpicked PharmGKB dataset 

Event Type 
Total Events 

(Gold) 

Total Extracted 

(Total correct) 

Precision 

(%) 

Recall (%) F-measure 

(%) 

Event ignoring normalized entities 58 69 (39) 56.52 67.24 61.41 

Events with normalized entities 58 41 (25) 60.97 43.13 50.50 

 

The first row in Table 6 corresponds to the evaluation where we considered the event 

annotations to be considered as correct even if the genes were not normalized to the correct Entrez 

gene symbols. We used the biological inference to judge if the extracted gene matches the gene 

definition annotated in PharmGKB. However we wish to clarify if the event is not represented in 
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the annotation we considered the text extraction to be a false positive as our underlying focus in 

this study is to evaluate the utility of literature mining in pathway curation. The second row in 

Table 6 considers the extraction to be correct only if the genes are normalized to the correct gene 

symbols.  We observed an appreciable drop in the recall (>20%) and very little increase in 

precision (~3%) when we consider gene normalized events, which illustrates that it is an important 

limitation in the performance of standardizing event extraction. Another limitation that we would 

like to point out is that our system being a rule-based one may require substantial manual effort to 

tune it to scale and improve its performance further.  

5 Conclusions and future directions 

Despite these limitations we believe that in this study we have made sincere efforts to explore and 

understand the limitations of a literature mining system in the context of extracting event 

descriptions which will be useful in finding literature evidences for actual pathway curation in a 

limited context of PharmGKB database. Our results are substantially lower than the recently 

reported studies (2, 3). However it is not fair to compare the performance of the system evaluated 

in this study with that of other systems as there is significant difference in the evaluation schema 

itself. Most of the previous studies evaluate the event annotation capability against the annotations 

at the textual level either abstracts (4, 15, 29) or full-text articles (30) aimed at benchmarking the 

text mining effort. However in this study, we explored the comparison of text-based extraction 

against events annotated in an independently curated pathway knowledge base. The performance 

of our system is comparable to the other state of the art system against text-based annotations (2, 

3). This study further allowed us to identify the gaps between the current state of the art in 

literature mining and the demands of text mining assisted pathway curation.  However we believe 

that our current system will be useful for finding the evidence needed for curation of the pathways. 

We plan to explore the following steps to improve text mining assisted pathway curation:  

1) Improve the state of the art in gene normalization, which we hope to improve since we are 

working on this task in parallel for the BioCreative 4 Track3 (31); 

2) Explore hybrid approaches by combining the rule-based system with machine learning 

approach to reduce the amount of manual effort required to tune the systems to new data sets;  

3) Understand the pathway curation workflow and design annotation schema and corpora for 

pathway curation. The current available corpora limit the annotation to single abstracts or articles. 

Quite often we need to synthesize information across articles. But we realize that it is not possible 

without the understanding the pathway curation workflow; 

4) Assess the needs of pathway curators to set more realistic and achievable text mining goals. We 

realize that working closely with the database curators and building an intuitive interface to 

facilitate pathway curation will not only help us understand the curation workflow but also help 

improve the state of the art in literature mining significantly.  
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Complex diseases such as major depression affect people over time in complicated patterns. Lon-
gitudinal data analysis is thus crucial for understanding and prognosis of such diseases and has
received considerable attention in the biomedical research community. Traditional classification and
regression methods have been commonly applied in a simple (controlled) clinical setting with a small
number of time points. However, these methods cannot be easily extended to the more general set-
ting for longitudinal analysis, as they are not inherently built for time-dependent data. Functional
regression, in contrast, is capable of identifying the relationship between features and outcomes
along with time information by assuming features and/or outcomes as random functions over time
rather than independent random variables. In this paper, we propose a novel sparse generalized func-
tional linear model for the prediction of treatment remission status of the depression participants
with longitudinal features. Compared to traditional functional regression models, our model enables
high-dimensional learning, smoothness of functional coefficients, longitudinal feature selection and
interpretable estimation of functional coefficients. Extensive experiments have been conducted on
the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) data set and the results
show that the proposed sparse functional regression method achieves significantly higher prediction
power than existing approaches.

Keywords: Depression, generalized functional linear model, STAR*D, longitudinal analysis, fused
Lasso, group Lasso

1. Introduction

The increasing life expectancy of the worldwide population has led to a growing number of
patients with serious mental disease such as depression. Research on the diagnosis and prog-
nosis of these diseases has received increasing attention in the biomedical domain. Depression,
or major depression (MD) is a common mental disorder affecting estimated 350 million peo-
ple worldwide, featured by symptoms such as depressed mood, loss of interest or pleasure,
feelings of guilt or low self-worth.1 It is expected to be the second leading cause of disability
worldwide.2 Though the efficacy of several antidepressant medications and therapies has been
proven, a universal and long-term treatment of MD has not been well explored due to its high
risk of relapses and recurrences.3

Like many other mental conditions, major depression affects people over time and it is
notorious for the chronicity. Thus, the analysis of longitudinal data is one crucial step towards
the understanding and prognosis of major depression. One valuable resource for such research
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is the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial initiated by
National Institute of Mental Health (NIMH), which was originally designed for seeking the
optimal combination and sequence of treatment strategies for non-psychiatric depressed pa-
tients.3 Based on the evaluation of the therapeutic responses, participants in STAR*D may
receive up to 4 levels of treatments and their information such as symptomatic status, daily
functioning, treatment side effects is collected during every clinical visit.

In STAR*D, a range of clinical scales have been applied to evaluate or describe the sever-
ity of diseases. For instance, the 17-item Hamilton Rating Scale for Depression (HRSD17) is
collected via telephone interview for research purposes.3 The 16-item Quick Inventory of De-
pressive Symptomatology - Clinician Rated (QIDS-C16) provides the evidences for clinicians
to decide whether the patients proceed to the next treatment level.3 Exploring the longitu-
dinal relationship between clinical measurements (input features) and therapeutic responses
(outcomes) and detecting features with significant statistical power are two fundamental and
important research questions. Several tools based on machine learning techniques have been
developed for longitudinal study.4–7

In our paper, we adopt sparse functional regression for the longitudinal data analysis.
Functional data (FD) refers to the data samples whose features are viewed as random func-
tions or surfaces over one or more continuum such as time, spatial location.8,9 For instance,
the average daily temperatures observed in a weather station can be viewed as a functional
data sample over time; the intensity or color composition of a brain image can be taken as a
functional sample over spatial location.9 Functional data analysis (FDA), an important branch
of statistics, is referred to the statistical analysis built on functional data, where the random
functions are assumed to be independent and smooth.8–10 As the extension of classic regres-
sion methods to functional data, functional regression is used to estimate the relationship
among functional features. Variant forms of functional regression are applicable in different
problem setups. For example, it can be applied for regressing functional outcomes on scalar
features;9,11–13 it can also be applied on estimating relationships between functional features
and scalar outcomes.14–16 Under the assumption that the functional coefficient is sparse over
time, the FliRTI model was proposed by James et al.15 and it showed better predictive power
than regular functional regression models. However, the FliRTI model is only limited to the
settings with one functional feature. For higher flexibility, multivariate functional regression
models were developed. To enhance interpretability of the multivariate functional regression
model, Zhu et al.17 and Gertheiss et al.18 applied the group Lasso type constraint for curve
(functional feature) selection. Zhu et al.17 combined both functional features and scalar fea-
tures together in their model, however it imposed smoothness of coefficient functions only by
controlling the number of basis functions. Gertheiss et al.18 introduced the sparsity-smoothness
penalty for simultaneously selecting functional feature and controlling the smoothness of the
coefficient functions, however it does not incorporate extra scalar features or achieve sparse
feature effects over time. Fan et al.19 proposed a functional additive regression (FAR) model
which managed functional feature selection via concave penalties in both linear and non-linear
settings, while the resulting solutions are not interpretable in term of functional feature ef-
fects over time. Therefore, there is a need to develop a general and interpretable formulation
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of functional regression that simultaneously achieves functional feature selection, smoothness
of functional coefficients and interpretable estimation of functional coefficients.

In this paper, we propose a novel sparse generalized functional linear model for longitu-
dinal biomedical data analysis, which can be applied to predict the disease status based on
longitudinal features. Specifically, we empower basic functional regression models to simulta-
neously identify features with significant predictive power across time points with the group
Lasso penalty,20 enforce smoothness of functional coefficients with the fused Lasso penalty21

and achieve interpretable estimations of functional coefficients with the Lasso penalty.22 Since
the unknown coefficient matrix is a multiplication factor of the penalized term, the proposed
formulation is challenging to solve. Our proposed algorithm integrates the Alternating Direc-
tion Method of Multipliers (ADMM)23 and the accelerated gradient method (AGM)24,25 to
estimate the unknown coefficient matrix. We demonstrate the effectiveness and flexibility of
the proposed formulations for longitudinal data analysis using STAR*D data. Experimental
results show that the proposed method achieves better prediction performance with longitu-
dinal features than existing approaches.

The rest of the paper is organized as follows. We briefly introduce FDA and the basic
functional regression model in section 2. We propose a novel sparse generalized functional
linear model and present the algorithm to solve the proposed formulations in section 3. In
section 4, we evaluate the proposed sparse generalized functional regression model on STAR*D
data and report the experimental results. We conclude our paper in section 5.

2. Basics of Functional Regression

2.1. Functional Data Analysis

Functional data is usually assumed to be generated by an underlying smooth function. In
practice, a functional data sample consists of sequences of numerical values (or vectors) varying
over a certain continuum. For instance, the series of QIDS-C16 scores of a depression patient
over his/her visiting time can be considered as a functional data sample. Fig. 1 gives an
illustration of functional data. Sequences of QIDS-C16 scores of 6 depression patients are
recorded over 14 weeks. In the functional context, we assume each sequence of QIDS-C16

scores is generated by an underlying function varying over time t (weeks).
One important issue in FDA is to recover the underlying function based on the sequences

of observed numerical values. A common approach is to express the underlying function by a
linear combination of basis functions using smoothing techniques. Specifically, given the evalu-
ations of basis functions over time as features and the observed numerical values as outcomes,
the coefficients of basis functions can be fitted using least square methods with roughness
penalty.9 However, the basis smoothing technique is only effective when the functional data
is observed continuously or densely. When it comes to longitudinal data, observations are al-
ways sparse and irregular. Rice et al.26 contrasted and compared FDA with longitudinal data
analysis (LDA). James et al.27 and Yao et al.28 connected FDA and LDA by proposing ap-
proaches that estimate the underlying function of sparsely and irregularly observed functional
data by exploiting both population and individual information. The former extended the basis
smoothing technique with mixed effect models while the latter proposed the “PACE” method
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Fig. 1. Illustration of functional data. The QIDS-C16 scores of 6 patients are recorded over 14 weeks. In the
functional context, we assume each sequence of QIDS-C16 scores is generated by an underlying function.

which involves the kernel smoothing technique and computing the conditional expectation. In
our paper, we adopt PACE to estimate the underlying function of functional data.

2.2. Functional Regression Model with Functional Features and Scalar
Outcomes

In classic statistical analysis, regression methods play an important role in analyzing the
relationship between features (independent variables) and outcomes (dependent variables).
FDA extends the philosophy of classic regression to functional data and develops functional
regression which involves various models for different purposes.

When the features are functional and the outcomes are scalar, we have

Yi = α+

∫
Ωt

Xi(t)β(t)dt+ ϵi, i = 1, . . . , n, (1)

where n is the total number of samples, Yi is a scalar outcome of the ith sample, Xi(t) is a
1-dimensional functional feature of the ith sample, β(t) is a functional coefficient, Ωt is the
domain of continuum t, scalar α is a bias term, and ϵi corresponds to the scalar residual. Note
that the model above only allows one functional feature, which greatly limits its application.
A simple but useful extension to multiple functional features is

Yi = α+

p∑
k=1

∫
Ωt

Xik(t)βk(t)dt+ ϵi, i = 1, . . . , n, (2)

where Xik(t) is the kth functional feature of the ith sample, and βk(t) is the functional coeffi-
cient corresponding to the kth functional feature.

3. Proposed Sparse Functional Regression Models

In this section, we propose a novel sparse generalized functional linear model which simul-
taneously selects useful features, enforces smoothness of functional coefficients and achieves
interpretable estimations of functional coefficients. Suppose there are N samples and each sam-
ple has d scalar features s1, s2, . . . , sd and p functional features x1(t), x2(t), . . . , xp(t). Then, for
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the ith sample, we denote si = (si1, si2, . . . , sid)
T and xi(t) = (xi1(t), xi2(t), . . . , xip(t))

T . In matrix
form, we let S ∈ RN×d be the scalar data matrix with each row as a sample of d scalar features,
i.e., Si,· = sTi = (si1, si2, . . . , sid), and let X(t) be an N×p matrix of functions where the ith row
denotes the ith sample of p functional features i.e., Xi,·(t) = xi(t)

T = (xi1(t), xi2(t), . . . , xip(t)).
Let y = (y1, y2, . . . , yN )T ∈ RN×1 be the vector of scalar outcomes, and w = (w1, w2, . . . , wd)

T

be the coefficients of d scalar features and b(t) = (β1(t), β2(t), . . . , βp(t))
T be the vector of p

functional coefficients. Moreover, we assume the functional coefficients can be represented by
a set of kb basis functions Θ(t) = (θ1(t), θ2(t), . . . , θkb

(t))T , i.e., b(t) = BΘ(t), where B ∈ Rp×kb .
Then, for a known link function g(·), we have the generalized functional linear model

g(yi) =α+

d∑
g=1

sigwg +

p∑
h=1

∫
Ωt

xih(t)βh(t)dt = α+ siw +

∫
Ωt

xi(t)b(t)dt. (3)

In matrix form, we have

g(y) =α1+ Sw +

∫
Ωt

X(t)β(t)dt = α1+ Sw +

∫
Ωt

X(t)BΘ(t)dt, (4)

where 1 ∈ RN×1 is a column vectors of ones. When g(·) is the identity function, i.e., g(u) = u,
the proposed model is functional linear regression. Then the optimization procedure involves
minimizing the quadratic loss. When g(·) is the sigmoid function, the proposed model turns
out to be a functional logistic regression, i.e.,

Prob(y|S,X) =
1

1 + exp
(
−y ⊙

(
α1+ Sw +

∫
Ωt
X(t)BΘ(t)dt

)) , (5)

where “⊙” denotes the componentwise multiplication. Let Θ ∈ Rkb×T be the evaluation matrix
of Θ(t) at T time points, where Θ·,t ∈ Rkb×1 corresponds to the evaluation at time t. Then the
unknown coefficients α,w and matrix B can be obtained by minimizing the average logistic
loss (negative log-likelihood function),

L(α,w, B) =
1

N

N∑
i=1

log (1 + exp (−yi(α+ siw +
∑
t

X(t)BΘ·,t))). (6)

The logistic loss is convex and smooth and can be solved via standard optimization methods.
When βj(t) = 0, the changes of the jth functional feature has no effect on the outcome

at time t. We apply the Lasso penalty22 on BΘ, i.e., ∥BΘ∥1 =
∑

j,t |Bj,·Θ·,t|, resulting in
interpretable estimations, i.e., many entries of BΘ are zero. That is, the changes of many
features have no effects on prediction at some time points. For feature selection purpose,
we also introduce the group Lasso penalty20 with ∥BΘ∥2,1 =

∑
j=1,...,p∥Bj,·Θ∥2 which enforces

many rows of BΘ to be zero. If the jth row of matrix BΘ is zero, then the jth feature has no
predictive power along with time. In addition, we employ the fused Lasso penalty21 on matrix
BΘ to enforce the smoothness of the functional coefficients. The resulting sparse functional
logistic regression model with scalar features and functional outcomes can be obtained by

min
α,w,B

L(α,w, B) + λ1∥w∥1 + λ2∥BΘ∥1 + λ3∥BΘR∥1 + λ4∥BΘ∥2,1, (7)

where R is a T by T − 1 sparse matrix with Rj,j = 1, Rj+1,j = −1, and λ1, λ2, λ3, λ4 are the
tuning parameters. We solve problem (7) by alternately minimizing over α and w with B
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fixed, and minimizing over B with α and w fixed. Note that the penalty of w only involves the
Lasso penalty, and we have already known that the optimization in terms of w (i.e., sparse
logistic regression problem) can be solved efficiently by the Accelerated Gradient Methods
(AGM).24,25,29

The proposed sparse functional logistic regression model is much more challenging to
solve than usual multi-task learning algorithms since the unknown coefficient matrix B is a
multiplication factor of the penalized term BΘ. In this paper, we integrate the Alternating
Direction Method of Multipliers (ADMM)23 and AGM24,25 to solve B. When α and w are
fixed, we write the objective (7) in the following form:

min
B

L(α,w, B) + λ2∥Z∥1 + λ3∥ZR∥1 + λ4∥Z∥2,1

s.t. BΘ = Z.
(8)

Then, the augmented Lagrangian function is given by

Lρ(B,Z, ξ) = L(α,w, B) + λ2∥Z∥1 + λ3∥ZR∥1 + λ4∥Z∥2,1 + ⟨ξ,BΘ− Z⟩+ ρ

2
∥BΘ− Z∥2F , (9)

where ξ ∈ Rp×T is the lagrangian dual variable and ρ is a penalty parameter. The ADMM-
based procedures for solving the unknown matrix B in the proposed sparse functional logistic
regression at the kth iteration can be described as follows:23

B(k) := min
B

E(B) = min
B

L(α(k),w(k), B) + ⟨ξ(k−1), BΘ− Z(k−1)⟩+ ρ

2
∥BΘ− Z(k−1)∥2F , (10)

Z(k) := min
Z
λ2∥Z∥1 + λ3∥ZR∥1 + λ4∥Z∥2,1 + ⟨ξ(k−1), B(k)Θ− Z⟩+ ρ

2
∥B(k)Θ− Z∥2F , (11)

ξ(k) := ξ(k−1) + ρ(B(k)Θ− Z(k)). (12)

For the B-update step (10), the unknown matrix B can be solved by the accelerated gradient
descent method24,25,29 with gradient

∇BE(B) = − 1

N
UT (1− p) + ρ(BΘ+

ξ(k−1)

ρ
− Z(k−1))ΘT ,

where

U = [y1
∑
t

X1,·(t)
TΘT

·,t, y2
∑
t

X2,·(t)
TΘT

·,t, . . . , yN
∑
t

XN,·(t)
TΘT

·,t]
T ,

p = 1./

(
1+ exp

(
−y ⊙

(
α(k) + Sw(k) +

∑
t

X(t)BΘ·,t

)))
,

and “./” denotes the componentwise division. For the Z-update step (11), it has been shown
that the proximal operator can be solved efficiently in two stages as stated in the following
lemma,30

Lemma 3.1. Given vectors u,v ∈ R1×T , penalty parameters γ1, γ2, γ3, and the sparse matrix
R defined as above, let

F(v) = argmin
u

1

2
∥u− v∥22 + γ1∥u∥1 + γ2∥uR∥1,

G(v) = argmin
u

1

2
∥u− v∥22 + γ3∥u∥2,

FG(v) = argmin
u

1

2
∥u− v∥22 + γ1∥u∥1 + γ2∥uR∥1 + γ3∥u∥2.

(13)
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Then, the following relationship holds

FG(v) = G(F(v)). (14)

The details of the proposed algorithm for solving (7) are summarized in Algorithm 1. Steps
3 and 4 are solved by AGM, and readers may refer to Liu et al.29 for more details. In terms
of solving the fused Lasso problem (step 6), readers may refer to Liu et al.31 The ADMM
parameter ρ is fixed as a constant in our experiment.

Algorithm 1 Sparse Functional Logistic Regression

Input: y ∈ RN×1, S ∈ RN×d, X(j) ∈ RN×p, j = 1, . . . , T , Θ ∈ Rkb×T , R ∈ RT×(T−1), ρ ∈ R
Output: α ∈ R, w ∈ Rd×1, B ∈ Rp×kb

1: Initialize starting points α(0), w(0), B(0), ξ(0), Z(0)

2: for k = 1 : K do
3: (α(k),w(k)) := argminα,w L(α,w, B(k−1)) + λ1∥w∥1
4: B(k) := argminB L(α(k),w(k), B) + ⟨ξ(k−1), BΘ− Z(k−1)⟩+ ρ

2∥BΘ− Z(k−1)∥2F
5: for i = 1 : p do
6: ui := argminz

ρ
2∥B

(k)
i,· Θ+ ξ

(k−1)
i,· /ρ− z∥22 + λ2∥z∥1 + λ3∥zR∥1

7: Z
(k)
i,· := argminz

ρ
2∥ui − z∥22 + λ4∥z∥2

8: end for
9: ξ(k) := ξ(k−1) + ρ(B(k)Θ− Z(k))

10: end for

4. Experiments

In this section, we evaluate the proposed sparse functional logistic regression model on the
STAR*D data set. We use the functional data analysis codea for the construction and evalua-
tion of basis functions. We also use the PACE packageb for estimating the underlying smooth
functions of functional data.

4.1. STAR*D Data Set

The STAR*D project consists of four treatment levels aimed to help outpatients achieve de-
pressive symptom remission with measurement-based care treatment.32 Throughout STAR*D
study, the QIDS-C16 score, which measures the general symptoms of depression, provides clin-
icians evidences for deciding the remission status of patients.32 All the participants enrolled to
STAR*D receive the same antidepressant treatment at level 1, where the selective serotonin
reuptake inhibitor citalopram is used. If the participant’s therapeutic response is satisfactory,
i.e., QIDS-C16 <= 5, he/she will be recommended to the follow-up phase. If the initial therapy
is not sufficiently effective on the participants, they will be recommended to the level 2 treat-
ment. At level 2, participants will enter into a set of randomized clinical trials. In a similar

ahttp://www.psych.mcgill.ca/misc/fda/software.html
bhttp://www.stat.ucdavis.edu/PACE/
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manner, participants who fail to achieve satisfactory responses will enter level 2A, level 3 and
up to level 4. In this paper, we concentrate on the longitudinal analysis of the data collected
from level 1 and level 2. Since all the participants receive the same treatment at level 1, the
questions we aim to address in this paper are: Can we use the level 1 information to predict
the participant’s remission status at level 2? Which features are most important for the pre-
diction of remission status? How do the important longitudinal features affect the prediction
over time?

Fig. 2. This figure gives a brief description of the STAR*D data used in our experiment. In our experiment,
we use the scalar features at level 1 baseline and level 2 baseline and the longitudinal features at level 1. Note
that the longitudinal data is observed sparsely and irregularly. Therefore, if we align the longitudinal data in
a regular time grid as shown in the figure, some feature values will appear as the “missing” values. In our
experiment, we first estimate the underlying curves using PACE28 and then evaluate them on a dense grid of
time points.

At each level of treatment, clinical visit information including medication names and doses,
side effect intensity, burden and frequency, is collected every 2 or 3 weeks during the acute
treatment stage. In our study, we name the time point based on the duration time from
baseline to the clinical visit, e.g., “W2” refers to the time point 2 weeks after baseline. At
level 1, there are 7 time points scheduled for the regular visits, i.e., W0, W2, W4, W6, W9,
W12, W14. Fig. 2 gives a brief description of the STAR*D used in our experiment. The red
matrices in Fig. 2 refer to the longitudinal data stated above. Besides the longitudinal data,
the enrolment information involving Cumulative Illness Rating Scale, demographics, HRSD,
Medication History, Protocol Eligibility, Psychiatric History, and some level 1 W0 information
without further follow-up are also available for the prediction. Those information refers to the
level 1 baseline scalar features and corresponds to the blue matrix in Fig. 2. Moreover, we also

Pacific Symposium on Biocomputing 2014

371



want to test the predictive power of the information collected at level 2 baseline (i.e., week 0
at level 2) since the participants did not receive new treatments at that time. These level 2
baseline scalar features are diagramed as the green matrix in Fig. 2.

In STAR*D, there are 730 participants in total entering level 2 with their level 1 longitudi-
nal information recorded until W12 or W14. After eliminating extremely sparse observations,
we have a total number of 596 samples with 202 longitudinal features (LV1 L) available for
analysis. There are 1438 level 1 baseline scalar features (LV1 S) and 1667 level 2 baseline scalar
features (LV2 S) where the missing values for categorical features are imputed by zeros and
the missing values for continuous features are imputed by the mean values. For research pur-
poses, the 16-item Quick Inventory of Depressive Symptomatology – Self-Report (QIDS-SR16)
is used as outcomes in many existing studies.32 In our experiments, we also adopt QIDS-SR16

as the criterion of remission, and define QIDS-SR16 <= 5 as remission and a QIDS-SR score of
> 5 as non-remission. We evaluate our proposed sparse functional logistic regression model on
differentiating the remission cohort from non-remission cohort with available level 1 and level
2 features. Moreover, we classify the remission samples and a subgroup of non-remission sam-
ples whose QIDS-SR16 >= 11; this subgroup is sometimes referred to as severe depression.32

Detailed sample statistics are shown in Table 1.

Table 1. The sample statistics of the STAR*D data used in our experiments. Group
(All) refers to all qualified samples for the experiment; and Group (Sub) refers to the
remaining samples after removing those with QIDS-SR16 between 6 and 10.

Cohort Remission (+) Non-remission (−) Total Data Name Dim
Group (All) 240 356 596 LV1 S 1438
Group (Sub) 240 161 401 LV1 L 202

LV2 S 1667

4.2. Predicting Remission Status at Level 2

We compare the proposed sparse functional logistic regression with two classic multivariate
classifiers, i.e., Random Forest and sparse logistic regression on exactly the same training
and testing sets. Our report presents the average accuracy, sensitivity and specificity and
the corresponding standard deviations obtained from the 5-fold cross-validation. In all the
experiments, both the parameters of sparse functional logistic regression and the sparse logistic
regression are tuned via 5-fold cross-validation in the training process. We use B-spline basis
functions in our proposed sparse functional logistic regression model, which are the common
choice for approximating non-periodic functions.9

We first conduct the classification experiment on the level 1 longitudinal data. For classi-
fiers such as Random Forest and sparse logistic regression, the input data is the the average
of the longitudinal features over time. The detailed report is shown in Table 2. Compared
with Random Forest and sparse logistic regression, the classification performance achieved
by the proposed sparse functional logistic regression is consistently better demonstrating the
effectiveness of the sparse functional logistic regression in capturing the temporal information.
In addition, we observe that, when the sparse functional logistic regression is applied, the level
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Table 2. Comparisons of classification performance between Random Forest, sparse logis-
tic regression and sparse functional logistic regression on the longitudinal STAR*D data.

Experimental Results Using All Samples

LV1 L LV1 S+LV1 L LV1 S+LV1 L+LV2 S
Random Forest

Accuracy (%) 68.63 ± 1.16 69.47 ± 2.23 68.46 ± 3.12
Sensitivity(%) 68.83 ± 3.31 68.83 ± 4.28 67.71 ± 5.17
Specificity(%) 68.33 ± 2.72 70.42 ± 2.72 69.58 ± 2.38

Sparse Logistic Regression
Accuracy (%) 65.94 ± 2.31 66.28 ± 3.19 63.76 ± 2.30
Sensitivity(%) 64.61 ± 5.19 66.02 ± 4.92 60.41 ± 4.43
Specificity(%) 67.92 ± 6.00 66.67 ± 2.08 68.75 ± 6.91

Sparse Functional Logistic Regression
Accuracy (%) 69.79 ± 2.38 70.30 ± 1.60 70.30 ± 1.95
Sensitivity(%) 70.83 ± 5.31 72.50 ± 5.78 73.33 ± 6.97
Specificity(%) 69.10 ± 3.20 68.82 ± 2.48 68.27 ± 3.12

Experimental Results Using Samples With QIDS C16 ≤ 5 and QIDS C16 ≥ 11

LV1 L LV1 S+LV1 L LV1 S+LV1 L+LV2 S
Random Forest

Accuracy (%) 73.84 ± 6.66 74.09 ± 6.56 74.08 ± 4.74
Sensitivity(%) 75.25 ± 11.50 75.23 ± 8.44 73.35 ± 10.46
Specificity(%) 72.92 ± 4.89 73.33 ± 6.32 74.58 ± 2.72

Sparse Logistic Regression
Accuracy (%) 72.58 ± 3.99 73.08 ± 4.23 74.82 ± 4.53
Sensitivity(%) 68.37 ± 7.11 70.87 ± 7.41 75.19 ± 9.74
Specificity(%) 75.42 ± 3.09 74.58 ± 3.09 74.58 ± 2.28

Sparse Functional Logistic Regression
Accuracy (%) 77.81 ± 4.11 77.82 ± 4.89 77.07 ± 4.54
Sensitivity(%) 79.17 ± 2.08 78.75 ± 4.01 77.92 ± 3.78
Specificity(%) 75.81 ± 10.77 76.46 ± 9.51 75.83 ± 10.45

1 and level 2 baseline scalar features are not helpful for improving classification performance.
We obtain similar observations when applying Random Forest and sparse logistic regression.
Since only using longitudinal data at level 1 leads to satisfactory classification performance,
we may conclude that most of the information in the level 1 and level 2 baseline data is cap-
tured by the longitudinal data at level 1. The experimental results further demonstrate the
importance of mining longitudinal data.

Besides the superior predictive performance, the sparse functional logistic regression is
also capable of selecting significant longitudinal features and giving interpretable solutions. In
our experiments, most meaningful and interesting longitudinal features including side effect
frequency, side effect burden, and QIDS-C current score, are selected as a result of the group
sparsity constraint. Moreover, the functional coefficients can be visualized to provide deeper
insights for understanding the effects of longitudinal features on predicting remission status
over time. In Fig. 3, we show 6 important functional coefficients obtained from the task of
differentiating participants with QIDS-SR16 <= 5 from those with QIDS-SR16 >= 11. From
the figure, we can see that the effect of FG-FISGQ = 0 (side effect frequency) decreases from
W0 to W6 and then increases over time. For feature FG-GRSEB = 0 (side effect burden),
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Fig. 3. The functional coefficients of some selected longitudinal features via sparse functional logistic re-
gression. Feature FG-FISGQ= 0 relates to side effect frequency; feature FG-GRSEB= 0 relates to side effect
burden; feature PRS-HERAT-PRS= 0 relates to clinical measurements of heart; feature QC-CSUIC= 0 re-
lates to QIDS Suicidal ideation; feature QS-SENGY= 0 relates to QIDS Energy/fatigability; and feature
CC-QCCUR= R relates to QIDS-C current score.

we observe that the effects are zero during W12 to W14, which indicates the corresponding
feature values during that period make no contributions to the prediction. The sparse and
interpretable results are due to the use of Lasso and fused Lasso penalty. From all the plots,
we also observe that all the obtained functional coefficients are smooth, which demonstrates the
effectiveness of the fused lasso penalty in controlling the smoothness of coefficient functions.

5. Conclusions

In this paper, we propose a novel sparse generalized functional linear model for the longitu-
dinal analysis of STAR*D data. Compared to traditional functional regression models, our
model has the advantages of simultaneously achieving high-dimensional learning, smooth-
ness of functional coefficients, longitudinal feature selection and interpretable estimation of
functional coefficients. We conduct extensive experiments on the STAR*D data set and the ex-
perimental results demonstrate that the proposed sparse functional regression model achieves
significantly higher longitudinal prediction power than existing approaches.

Since the proposed models have shown great effectiveness in capturing temporal informa-
tion, we intend to apply them to investigate the predictive effects of the biomarkers on other
longitudinal problems such as the progression of Alzheimer’s Disease (AD). Moreover, we plan
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to further study the theoretical properties of the proposed models in the future.
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Electronic	 medical	 records	 (EMRs)	 are	 becoming	 more	 widely	 implemented	 following	
directives	from	the	federal	government	and	incentives	for	supplemental	reimbursements	for	
Medicare	 and	 Medicaid	 claims.	 Replete	 with	 rich	 phenotypic	 data,	 EMRs	 offer	 a	 unique	
opportunity	for	clinicians	and	researchers	to	identify	potential	research	cohorts	and	perform	
epidemiologic	studies.	Notable	limitations	to	the	traditional	epidemiologic	study	include	cost,	
time	to	complete	the	study,	and	limited	ancestral	diversity;	EMR‐based	epidemiologic	studies	
offer	 an	 alternative.	 The	 Epidemiologic	 Architecture	 for	 Genes	 Linked	 to	 Environment	
(EAGLE)	 Study,	 as	 part	 of	 the	 Population	 Architecture	 using	 Genomics	 and	 Epidemiology	
(PAGE)	I	Study,	has	genotyped	more	than	15,000	patients	of	diverse	ancestry	 in	BioVU,	 the	
Vanderbilt	University	Medical	Center’s	biorepository	linked	to	the	EMR	(EAGLE	BioVU).	We	
report	here	the	development	and	performance	of	data‐mining	techniques	used	to	identify	the	
age	 at	 menarche	 (AM)	 and	 age	 at	 menopause	 (AAM),	 important	 milestones	 in	 the	
reproductive	 lifespan,	 in	 women	 from	 EAGLE	 BioVU	 for	 genetic	 association	 studies.	 In	
addition,	we	demonstrate	 the	 ability	 to	 discriminate	 age	 at	 naturally‐occurring	menopause	
(ANM)	 from	 medically‐induced	 menopause.	 Unusual	 timing	 of	 these	 events	 may	 indicate	
underlying	pathologies	and	 increased	risk	 for	some	complex	diseases	and	cancer;	however,	
they	are	not	consistently	recorded	in	the	EMR.	Our	algorithm	offers	a	mechanism	by	which	to	
extract	these	data	for	clinical	and	research	goals.	
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1.  Introduction	

1.1 Women’s	health	and	the	reproductive	lifespan	

Though women comprise more than 50% of the US population[1] and there are notable 
differences in the incidences and severity of diseases between men and women, from Alzheimer’s 
disease[2] to inflammatory arthritis[3], only in the last few decades has the importance of 
women’s health and physiologic differences between males and females in the research setting 
come to the forefront of researchers and government agencies[4]. Age at menarche (AM) and age 
at menopause (AAM) define the boundaries of the reproductive lifespan in women. The timing of 
these events has also been linked to numerous diseases and complex traits [5]. Fertility is directly 
impacted by the length of the reproductive lifespan. Earlier AM and later AAM have been 
associated with heightened risks for breast, ovarian, and endometrial cancers, elevated blood 
pressure, and increased glucose intolerance, driven by a significant extent by the additional 
exposure to circulating estrogens over an extended reproductive lifespan [6]. Early AAM has been 
associated with increased risk for cardiovascular disease [7]. More directly, extremely early or late 
attainment of these reproductive milestones can indicate underlying pathologies, such as pituitary 
diseases, hormone imbalances, and nutritional insufficiencies [5]. 

National surveys have calculated the average AM to be 12.4 years and age at natural 
menopause (ANM) at 51 years [8]. The genetic contribution to the timing of menarche and natural 
menopause is estimated to be approximately 0.50, however variants identified through numerous 
genome-wide association studies (GWAS) account for <10% of the observed variation in either 
AM or ANM [8]. Cross-sectional and longitudinal studies have shown recent secular trends in the 
earlier attainment of pubertal milestones (breast development, appearance of pubic hair, 
menarche) from the 1960s to present and later age at natural menopause [9]. The earlier AM is 
accelerated in girls of African American and Hispanic ancestry, a bias that remains after adjusting 
for socioeconomic variables and body mass index (BMI) [10]. The difference observed in the 
timing of reproductive events across ethnicities highlights the importance of conducting research 
in diverse populations—a challenging enterprise given the limited diversity in cohorts available 
for women’s health outcomes research. 

1.2	Research	use	of	electronic	medical	records	

Electronic medical/health records (EMRs/EHRs) are becoming more widely used in clinical 
practice and hospital settings. Motivated in part by the ‘meaningful use’ requirement for 
supplemental reimbursements for Medicare and Medicaid claims through the Health Information 
Technology for Economic and Clinical Health (HITECH) Act, widespread adoption of EMR 
technology is expected to improve patient outcomes and streamline health care processes and may 
be helpful in the goal of “personalized medicine” [11-14]. A significant measure of ‘meaningful 
use’ is the recording of patient data (e.g., demographic, medication allergy, smoking status, vital 
signs) as structured data [12]. Additional measurements of ‘meaningful use’ include the 
dissemination of clinical quality measurements to states or other governmental oversight agencies. 
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Immunization and reportable disease statistics are two examples of EMR data that can be 
leveraged for public health research [15]. 

The rich phenotypic data existing in EMR systems allows clinicians and researchers to identify 
potential cohorts, while EMRs that are linked to biobanks extend this framework to genotype-
phenotype association studies. Traditional epidemiologic studies are costly and require significant 
amounts of time to complete; furthermore, these studies may not include sufficient numbers of 
individuals from diverse ancestries. The Epidemiologic Architecture for Genes Linked to 
Environment (EAGLE) Study seeks to address these limitations by enabling high-throughput 
identification and generalization of genotype-phenotype associations in ethnically diverse research 
populations. Accessing data from EMRs for use in research may prove to be a cost effective 
alternative to traditional ascertainment and data collection.  One challenge to research use of 
EMR-derived data is the lack of consistency in recording certain types of data in the EMR. 
Despite the obvious health implications, AM and AAM/ANM are not recorded consistently or in a 
standardized manner in the EMR. This presents a challenge for researchers and suggests algorithm 
development is a necessary first step in developing a resource for women’s health studies in 
diverse populations. 

1.3 BioVU	

BioVU is the Vanderbilt University Medical Center (VUMC) biorepository linked to the EMR 
system. Beginning in 2007, discarded blood samples from routine clinical testing have the DNA 
extracted, stored, and linked to a de-identified version of the EMR termed the Synthetic Derivative 
(SD).  As of mid-2012, more than 150,000 samples have been collected for BioVU, including 
more than 16,000 pediatric samples.  Patients are given the opportunity to opt-out of BioVU at any 
time. Once a sample has been accepted into the system, a unique ID is generated through a one-
way hash mechanism and linked to that patient’s SD. The SD removes or de-identifies Health 
Insurance Portability and Accountability Act (HIPAA) information, such as names, geographical 
locations, and social security numbers, and replaces dates with dates that have been randomly 
shifted by up to six months. The date shifting is consistent within a single SD record. The SD 
enables researchers to examine genome-phenome associations and identify cohorts for research. 

2.  Methods	

2.1.  Population	

As part of the Population Architecture using Genomics and Epidemiology (PAGE) I Study, 
EAGLE genotyped all non-European descent patients in BioVU (EAGLE BioVU, n=15,863) on 
the Metabochip, a custom genotyping array with an emphasis on cardiovascular disease and 
metabolic traits. This array also includes over 2200 SNPs associated at genome-wide significance 
to any trait published in the NHGRI GWAS catalog as of August 2009, with additional proxy 
SNPs chosen based on linkage disequilibrium (LD) in both CEU and YRI HapMap II datasets 
[16]. Overall, 11,521 African Americans, 1,714 Hispanics, 1,122 Asians and others were 
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genotyped on the Metabochip by EAGLE.  For the AM study, all females age>6 in EAGLE 
BioVU as of January 31, 2013 were eligible for inclusion. For the AAM study, all females >18 
years were eligible for inclusion; for the ANM study, only women ages≥41 were eligible for 
inclusion. All patients were of diverse ethnicity. 

2.2.  Algorithm	development	

We developed a flow chart to visualize the inclusion/exclusion processes for the algorithms (Fig. 
1A (AM) and Fig. 1B/C (AAM/ANM)).   AM and age at menopause or age at natural menopause 
(AAM/ANM) are not consistently recorded in the EMR system at VUMC; individuals may enter 
BioVU through numerous outpatient clinics. The lack of a pre-specified field for AM and 
AAM/ANM in the EMR necessitated a combination of free text data mining using regular 
expressions/pattern matching, billing (ICD-9) codes, and procedure (CPT) codes to identify AM 
and AAM/ANM in the subsequently generated SD. All analysis for this study was performed 
using the SD.	

2.2.1 Age	at	menarche	(AM)	

Primary exclusion criteria for AM phenotype consisted of four components: age<7 years, male 
sex, ICD-9 codes for delayed puberty/sexual development (259.0) and precocious puberty/sexual 
development (259.1), and keywords (Figure 1A). Inclusion of any of the preceding criteria in the 
SD resulted in exclusion for the AM study.  As part of the de-identification data scrubbing to 
convert a patient’s EMR to the SD, ages and dates may be masked and listed as “birth-12” or “in 
teens.” Dates and ages which are not masked were  date shifted by up to six months forward or 
backward from the actual date.  

To identify a listed AM for an individual, we utilized pattern matching to seek instances with 
menarche keyword phrases (Figure 1A). Numbers and dates were allowed to be included as 
numerals only.  Instances where the AM was listed as a date used the subject’s birthdate to 
calculate the age (in years) at menarche.  In cases of ties, where more than one AM was identified 
and recorded an equal number of times in the SD, the AM was determined to be the one listed first 
in the SD. If the algorithm identified multiple versions of the AM (an exact age, an age calculated 
from a date, or a de-identified age), a hierarchy was used to determine the AM for the output, 
where an exact age or date was prioritized over de-identified age ranges.  Instances where multiple 
different ages were listed in the SD as AM defaulted to the age listed most frequently. We 
considered situations where the algorithm identified an exact AAM and a de-identified AAM 
range containing the exact AAM to be the same for purpose of calculating sensitivity, specificity, 
and positive predictive value (PPV), but different for the purpose of calculating accuracy. The 
resulting output file contained the subject’s unique research id (RUID), date of birth, and either an 
algorithm-generated AM or null value.	
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Figure 1. Flow chart for (A) age at menarche (AM), (B) age at menopause (AAM), (C) age at natural menopause 
(ANM), and (D) keywords for AAM and ANM algorithms. 
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2.2.2 Age	at	menopause	(AAM)	

For an algorithm to identify all post-menopausal women and their age at menopause (AAM), we 
initially excluded all males, set a minimum age of 18 years, and excluded patients with a Fragile X 
diagnosis (ICD-9 759.83) (Figure 1B).  Pattern matching was utilized to find keyword phrases 
similar to those used in the menarche algorithm, substituting “menopause” for “menarche” (Figure 
1D).  Furthermore, we included keywords pertaining to surgical procedures that induce cessation 
of menses/menopause (Figure 1D). We excluded instances where the word “possible” immediately 
preceded a keyword.  For instances where the SD had scrubbed the exact age, decade-specific 
results (e.g. “in 30s”, “in 50s”) were captured by our algorithm. CPT and ICD-9 (Table 1) codes 
were used to identify women with surgical menopause or menses-ceasing procedures. 
 

Table 1.  CPT and ICD-9 codes used for menopause 
(AAM/ANM) algorithm development. 
CPT codes   ICD-9 codes  
58150 58285 58548 65.5 68.3 68.69 

58152 58290 58550 65.51 68.31 68.7 

58180 58291 58552 65.52 68.39 68.71 

58200 58292 58553 65.53 68.4 68.79 

58260 58293 58554 65.64 68.41 68.9 

58262 58294 58563 65.6 68.49  

58263 58353 58570 65.61 68.5  

58267 58541 58571 65.62 68.51  

58270 58542 58572 65.63 68.59  

58275 58543 58573 65.64 68.6  

58280 58544  68.23 68.61  

 
After SD review of initial algorithms and subject matter knowledge, we implemented 

secondary exclusion criteria based on the algorithm-identified AAM and excluded subjects with a 
calculated AAM<18 or AAM>65 (Figure 1B). A hierarchy was used to determine the AAM for 
the output, with an exact age or date identified by keyword or pattern matching and ICD-9/CPT 
codes prioritized over de-identified age ranges. In rare instances where the algorithm identified 
more than one AAM for a subject, the age recorded most frequently was determined to be the 
AAM for that patient. In cases of ties, where more than one AAM was identified and recorded an 
equal number of times in the SD, the AAM was determined to be the one listed first in the SD. We 
considered situations where the algorithm identified an exact AAM and a de-identified AAM 
range containing the exact AAM to be the same for purpose of calculating sensitivity, specificity, 
and PPV, but different for the purpose of calculating accuracy. The resulting output file contained 
the subject’s unique research id (RUID), date of birth, race/ethnicity, either an algorithm-
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generated AAM or null value, the method by which the AAM was calculated (e.g., from ICD-9 
code, keyword), and the date in the SD corresponding to the AAM identification. 

2.2.3 Age	at	natural	menopause	(ANM) 

To discriminate age at natural menopause (ANM) from all instances of menopause (AAM), we 
extended the AAM algorithm to exclude women aged <41 years, men, and subjects with ICD-9 
codes signifying premature ovarian failure/premature menopause (256.31), artificially induced 
menopause (627.4), ovarian failure (256.39), and Fragile X syndrome (759.83) (Figure 1C). We 
used pattern matching with the menopause keywords to identify an age at menopause (Figure 1D). 
We did not use ICD-9 codes, CPT codes, or keywords associated with procedures that induce 
menopause to identify subjects for the ANM cohort.  

Medication delivery and prescriptions are captured by the EMR at VUMC and are included in 
the SD. To ascertain the temporal relationship between AAM and menopause-inducing/menses-
ceasing surgery or hormone replacement therapy (HRT) use, we first calculated the AAM with the 
alternate algorithm (Figure 1C). Surgery-inducing menopause, determined through CPT and/or 
ICD-9 codes or keywords, and HRT were not exclusion criteria unless the first instance of surgery 
or HRT occurred prior to the extended algorithm-identified AAM. Keyword pattern matching was 
performed using surgical keywords (Figure 1D). We used a combination of brand-name and 
generic names for HRT identification (Figure 1D).  If AAM was identified and no keywords or 
CPT/ICD-9 codes were found to indicate artificially induced menopause, the subject was deemed 
to have undergone natural menopause. If surgery or HRT occurred after the algorithm-determined 
ANM, the subject was also considered to have undergone natural menopause. If the subject had 
either surgery or used HRT prior to menopause, they were excluded from the cohort and the 
resulting output was a null value. 

We implemented secondary exclusion criteria (Figure 1C) based on the algorithm-identified 
age at menopause and excluded subjects with a calculated ANM<18 or ANM>65 based on subject 
matter knowledge and review of early versions of our algorithms. A hierarchy was used to 
determine the ANM for the output. If the algorithm determined more than one ANM for a subject, 
we used the same procedure as described above to determine the final ANM generated by our 
query. We again  considered situations where the algorithm identified an exact ANM and a de-
identified ANM range containing the exact ANM to be the same for purpose of calculating 
sensitivity, specificity, and PPV, but different for the purpose of calculating accuracy. The 
resulting output file contained the subject’s unique research id (RUID), date of birth, 
race/ethnicity, either an algorithm-generated ANM or null value, the method by which the ANM 
was calculated (e.g., from exact date, de-identified age), and the date in the SD corresponding to 
the ANM identification. 
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2.3.  Manual review	

To determine the sensitivity, specificity, PPV, and accuracy of the AM, AAM, and ANM 
algorithms, extensive manual chart review was performed by a single individual for consistency.  
Each algorithm output contained three types of values: exact ages, de-identified ages, and null 
values. For each algorithm, a random number generator was used to randomize RUIDs within each 
of the three types of output and the subjects were then sorted in ascending value by the random 
number. The first 50 subjects in the exact age and de-identified age categories and the first 100 
subjects with a null value had their SD reviewed manually to determine the AM, AAM, or ANM. 
Sensitivity, specificity, PPV and accuracy were calculated by comparing the automated algorithm 
result to the manual review result for each subject.	

3.  Results	

3.1 Population	characteristics	

A total of 10,051 females were genotyped on the Metabochip in BioVU by EAGLE for 
various studies. We identified an age for menarche (exact or de-identified) in 1,618 
individuals. For the AAM algorithm, we identified an AAM (exact age or de-identified 
decade) for 1281 individuals. We identified 83 individuals with an ANM (exact or de-
identified decade) (Table 2). The algorithm-extracted mean AM in our population was 12.7 
(+/- 2.1 ) yrs. The mean AAM in our population was 44.6 (+/- 9.8) yrs. and the mean ANM 
was 49.7 (+/- 5.6) yrs. (Table 2). Approximately half of the algorithm extracted AM (54.7%) 
and ANM (47.0%) were exact ages, while the majority of AAM (92.5%) were exact ages 
(Table 2).  

	

Table 2. Population characteristics for women with algorithm-identified age at menarche (AM), 
age at menopause (AAM), and age at natural menopause (ANM) from EAGLE BioVU. 
Abbreviations: standard deviation (sd), years (yrs). 
 A M AAM ANM 
N, total 1618 1281 83 

exact age (n) 885 1185 39 
de-identified age (n) 733 96 44 

Age at event, mean +/- sd (yrs)  12.7 (2.1) 44.6 (9.8) 49.7 (5.6) 
Age range at event (yrs) 8-20 18-65 40-65 
Race/ethnicity (n)     

African American 1232  1112  62  
Hispanic 120  45  4  
Asian 115  66  11  
Other 151  58  6  
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3.2 AM	algorithm	performance	

We manually reviewed 200 SD entries for the AM algorithm to determine sensitivity, specificity, 
PPV, and accuracy. Of the 100 subjects with an algorithm-specified AM, 94 were confirmed by 
manual review. For the 100 subjects without an AM captured by the algorithm, 99 were not found 
to have an identifiable AM upon manual review. The AM algorithm had a sensitivity and 
specificity of 99.0% and 94.3%, respectively, and a PPV of 94.0% (Table 3).  We calculated the 
accuracy of the algorithm by comparing the results for the 94 subjects with both manually 
identified and algorithm identified AMs, requiring identical results for concordance. Of these 94 
subjects, we found 87 where the AM matched in both manual and algorithm identification for an 
accuracy of 92.6% (Table 4). We observed instances where the algorithm calculated an exact AM 
(e.g., 8) and manual review found a de-identified AM (e.g., birth-12), or vice-versa. If we allow 
these to be concordant, accuracy increases to 94.7%. 

Table 3. Performance of the age at menarche (AM), age at menopause (AAM), and age 

at natural menopause (ANM) algorithms in women from EAGLE BioVU. 

Abbreviations: positive predictive value (PPV). 

 Sensitiv ity Specificity Accuracy PPV 
AM (n=200) 99.0% 94.3% 92.6% 94.0% 

AAM (n=200) 94.4% 85.6% 52.4% 84.0% 

ANM (n=183) 89.8% 75.8% 75.5% 63.9% 

	

3.3 AAM	algorithm	performance	

For the AAM algorithm, we manually reviewed 200 SD entries to determine sensitivity, 
specificity, PPV, and accuracy. Of the 100 subjects with an algorithm-identified AAM, we 
identified 82 with AAM via manual review. Only five of the 100 subjects without an algorithm-
identified AAM were found to have an identifiable AAM with manual review.  Overall, our 
algorithm was found to have 94.4% sensitivity, 85.6% specificity, and a PPV of 84.0% (Table 3). 
We also calculated the accuracy of our AAM algorithm by comparing the algorithm-obtained 
AAM to the manual review-obtained AAM. We observed a 52.4% exact concordance within our 
82 subjects with AAMs calculated from both manual review and the algorithm. If we allowed a 
de-identified age range encompassing an exact age to be considered concordant with the exact age 
obtained from the other method, our accuracy improved to 61.9%. 

3.4 ANM	algorithm	performance	

The ANM algorithm identified 83 individuals with an ANM; therefore, we manually reviewed 183 
SD entries to determine the specificity, sensitivity, PPV, and accuracy of our ANM algorithm. Of 
the 100 individuals with no algorithm-identified ANM, manual review of the SD found 6 instances 
with an identifiable ANM (Table 3). Of the 83 individuals with an algorithm-specified ANM, 
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manual review confirmed 53. Overall, the sensitivity and specificity of the ANM algorithm were 
89.8% and 75.8%, respectively, and the PPV was 63.9%. Of the 53 subjects with both algorithm- 
and manually-identified ANM, 40 were an exact match, yielding an accuracy of 75.5%. We again 
observed instances where the algorithm yielded an exact age, but manual review of the SD 
obtained only a de-identified ANM range that encompassed the exact age, and vice-versa; if we 
considered these as concordant, our accuracy increased to 81.1%. 

4. Conclusion	

Menarche and menopause are the bookends of the reproductive lifespan in women. The timing of 
these events may increase risk for various complex disorders and cancers, such as osteoporosis 
and breast cancer [5].  Precocious or delayed menarche may signal the occurrence of hormonal 
imbalance, inadequate nutrition or caloric intake, or pituitary diseases [5]. The timing of 
menopause directly affects reproductive capabilities. In addition, premature menopause may result 
from hormonal imbalances, genetic disorders such as Fragile X Syndrome, metabolic disorders, or 
autoimmune diseases such as thyroid disease or rheumatoid arthritis [17]. Though the timing of 
menarche and menopause may increase risk for disease or indicate underlying pathologies, this 
information is not consistently included in electronic health records, leading to missed 
opportunities to inform clinical care and represents a challenge to clinicians and researchers alike. 

Data-mining EMRs has been used to identify cohorts for research studies [18-21], determine 
smoking status [22], and predict disease, such as sepsis [23]. Our development of algorithms to 
extract these important data is notable for the emphasis on diverse populations and attention to 
women’s health, both historically underrepresented in health outcomes research.  The menarche 
(AM) and menopause (AAM) algorithms have PPV>80% and high specificity and sensitivity, 
though accuracy of the AAM algorithm was just over 50%.  The age at natural menopause (ANM) 
algorithm had moderately high (>75%) sensitivity and specificity but the lowest PPV, at 63.9%. 
However, the accuracy of the ANM algorithm bested that of the AAM (75.5% vs. 52.4%, 
respectively). In addition, the algorithm-extracted ages at menarche, menopause, and natural 
menopause are consistent with published research, validating our methodology. 

Several factors may have reduced the performance of our menopause algorithms. We observed 
many instances where the ages calculated by the algorithm and by manual review differed by one 
year. This may have been the result of the date-shifting done within each individual’s SD for de-
identification purposes.  If the method for calculating the age differed between the methods, it is 
possible this could result in the observed one-year difference. When we allowed a +/- 1 year 
difference in the algorithm and manual identified AAM and ANM, the accuracy of our algorithms 
improved to 70.2% and 90.6%, respectively. The timing of menopause is challenging to identify, 
as the menstrual cycle becomes more erratic as a woman moves through perimenopause into 
menopause. Months may lapse between cycles; hormone levels may change substantially.  In 
addition, the normal menopausal age range is quite large, taking place between the ages of 40 and 
60. These factors challenge the accurate dating of the onset of menopause.  
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Furthermore, an algorithm designed to identify the age at menopause may not accurately 
reconcile multiple mentions in an EMR of menopause. Discerning between natural menopause and 
medically/surgically induced menopause is an additional challenge. Our extensive list of time-
dependent exclusions for HRT and surgical procedures was not exhaustive and may have led to 
the algorithm identifying an ANM where manual review identified HRT and/or a procedure 
artificially inducing menopause. Correctly identifying the temporal relationship between 
attainment of natural menopause and surgical procedures that result in menopause may perform 
inconsistently in the absence of these data in structured fields in an EMR. Addressing some of 
these issues by including structured fields for age at menarche, age at menopause, and type of 
menopause (natural/medical), and standardizing the reporting of these data could greatly improve 
the performance of our algorithms. 

We have demonstrated the performance of algorithms designed to extract the age at menarche 
and age at menopause from the Synthetic Derivative, a de-identified version of the electronic 
medical record at Vanderbilt University Medical Center. Furthermore, we have developed an 
algorithm to discriminate naturally occurring menopause from artificially-induced menopause. 
Our method combining text-mining for regular expressions and pattern matching, and structured 
data derived from the EMR to obtain the age at menarche and the age at menopause  is likely to be 
easily transferable to other institutions, given the simplicity of the approach. Overall, these 
algorithms provide an opportunity for researchers and clinicians to obtain these valuable, though 
inconsistently reported data. 
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Label propagation methods are extremely well-suited for a variety of biomedical prediction tasks
based on network data. However, these algorithms cannot be used to integrate feature-based data
sources with networks. We propose an efficient learning algorithm to integrate these two types of
heterogeneous data sources to perform binary prediction tasks on node features (e.g., gene priori-
tization, disease gene prediction). Our method, LMGraph, consists of two steps. In the first step,
we extract a small set of “network features” from the nodes of networks that represent connectivity
with labeled nodes in the prediction tasks. In the second step, we apply a simple weighting scheme
in conjunction with linear classifiers to combine these network features with other feature data. This
two-step procedure allows us to (i) learn highly scalable and computationally efficient linear clas-
sifiers, (ii) and seamlessly combine feature-based data sources with networks. Our method is much
faster than label propagation which is already known to be computationally efficient on large-scale
prediction problems. Experiments on multiple functional interaction networks from three species
(mouse, fly, C.elegans) with tens of thousands of nodes and hundreds of binary prediction tasks
demonstrate the efficacy of our method.

Keywords: gene function prediction; graph-based learning; label propagation; ensemble learning.

1. Introduction

Network-based prediction algorithms are widely used in biomedical prediction tasks.1–3 These
prediction tasks often share a number of properties – a small number of labeled nodes (e.g.,
genes or patients), a large number of unlabeled nodes, and sparse connectivity among the nodes
– that make label propagation algorithms particularly well-suited to the domain. In particular,
algorithms proposed by Zhu et al.4 and Zhou et al.5 have only a single free parameter and
permit very efficient implementations, and can therefore be applied to very large prediction
problems with very little labeled data. Despite their simplicity, these algorithms perform
surprisingly well on prediction benchmarks, see for example, Refs. 6 and 7.

However, “feature-based” data are often available for individual nodes in the networks –
for example, gene features could include the presence of particular protein domains, sequence
conservation levels, associations with disease, phenotypes associated with its deletion mutants.
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Representing this feature data by a network-based similarity measure requires grouping fea-
tures and measuring similarity among feature profiles. This approach loses information about
individual feature values, as well as generating a dense similarity network that slows down
label propagation algorithms. In this paper, we describe a new algorithm related to label
propagation which retains many of its advantages while also allowing heterogeneous feature
and network data to be integrated into a common framework.

Although the algorithm we describe can be applied to any domain, for concreteness and
because of the existence of comprehensive benchmark data, we consider the problem of pre-
dicting gene function from heterogeneous genomic and proteomic data sources.8–11 Here, one
is given a set of genes (query) with a given annotation, and asked to find genes similar to
the query. The classic example of this type of problem is predicting Gene Ontology (GO)
annotations but could also involve predicting disease associated genes. Functional interaction
networks are a widely used representation to capture information about shared gene function
present in genomic and proteomic data sources.8,11 A popular approach to solving this prob-
lem is to combine these networks into a composite network6,12 and, along with a set of labels
that describe the gene function, use them as inputs to a graph-based learning algorithm such
as label propagation.4,5 The main advantage of these methods is that they are computation-
ally efficient. Both label propagation and the method of Tsuda et al.12 admit a solution of
the form P−1q, where P is a sparse matrix, and can be computed by solving a sparse linear
system whose time complexity is almost linear in the number of non-zero entries in P .13

Despite being computationally efficient, the algorithms proposed by Tsuda et al.12 and
Mostafavi et al.6 cannot be used to integrate feature-based data sources (attributes) with
networks. A natural solution to this problem is to construct a similarity grapha (preferably
sparse) from the feature-based data. This can be done by first computing a kernel matrix
from the features, for example, using the dot-product kernel or the radial basis function
(RBF) kernel, and then by using an appropriate method to sparsify the dense kernel matrix.
However, as mentioned above, the main drawback of this approach is the potential loss of
information during the graph construction step and the inability to produce interpretable
models. By interpretable models, we mean linear prediction models learned from feature-based
data sources that allow us to assess the importance of the learned weights/parameters.

Another solution is to use multiple kernel learning (MKL).14 Given a set of kernels {Kd},
the goal of MKL is to learn a (linear) combination of kernels, K =

∑
d µdKd (where µd ≥ 0 are

the weights assigned to the individual kernels), along with the classifier parameters. Although
there has been a lot of progress in designing efficient optimization methods for MKL (see, for
example, Refs. 15 and 16, and references therein), these methods are not efficient to solve the
specific problem of learning from multiple graphs for several reasons. In order to use MKL
on graphs, we have to first compute a kernel on graphs.17 Unfortunately, the resulting kernel
matrix is dense and storing a pre-computed kernel matrix is infeasible for graphs with tens
of thousands of nodes. Also, it is not possible to compute graph kernels “on-the-fly” unlike,
for example, an RBF kernel, thereby forcing us to store the entire kernel matrix in memory.
Furthermore, training a kernelized classifier (for example, non-linear SVMs) is computationally

aWe use the terms graph and network interchangeably.
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more expensive than training a linear classifier, and has the drawback of not being able to
produce interpretable models. Although several advances have been made in machine learning
to scale linear classifiers (see, for example, Ref. 18), large-scale learning of kernelized (non-
linear) classifiers still remains a difficult problem to solve.

We propose a computationally efficient two-step procedure to integrate multiple functional
interaction networks and feature-based data sources for gene function prediction. First, we
extract a small set of discriminative features from the network nodes. Then, we apply a
simple weighting scheme in conjunction with linear classifiers to combine these features. When
compared to the methods proposed by Tsuda et al.12 and Mostafavi et al.,6 our method has the
advantage of being able to combine networks with feature-based data sources. Furthermore,
our method allows us to learn highly scalable and efficient linear classifiers for gene function
prediction from tens of thousands of nodes and hundreds of GO biological process categories.
Using our method, we were able to train classifiers much faster than label propagation which
is already known to be computationally efficient on large-scale prediction problems.

1.1. Preliminaries

Given k undirected graphs, Gd = (V,Ed), d ∈ {1, . . . , k}, each of them having n nodes, and a
set V` ⊂ V of labeled nodes, the goal is to learn a binary classifier f : V → {0, 1} to predict
node labels by using (edge) information from all the graphs. For single graphs, the standard
approach to learn such a classifier is to propagate labels in the graph.4,5 Let W = (wij)i,j=1,...,n

denote the weighted adjacency matrix of the graph, D denote the diagonal degree matrix
whose entries are dii =

∑
j wij, ∀i ∈ {1, . . . , n}. Let L denote the unnormalized graph Laplacian

defined as L = D −W . Label propagation is reduced to the following optimization problem:

f̂ = argmin
f∈Rn

∑
i∈V`

(fi − yi)2 + λ
∑
i,j∈E

wij(fi − fj)2

= argmin
f∈Rn

∑
i∈V`

(fi − yi)2 + λf>Lf ,
(1)

where y is the label vector and λ > 0 is a regularization parameter. The estimate f̂ can be used
to score/rank the nodes where higher scores imply higher confidence in the classifier to assign
a positive label to the nodes. Label propagation is a transductive learning algorithm where
unlabeled examples are used for training. Since gene function prediction is a highly unbalanced
classification problem, we redefine the labels to take one of three values from {-1,+1,u} and
label all the unlabeled nodes with u = (n+ − n−)/n, where n+ and n− are the number of
positive and negative labels respectively.6 The solution to this problem can be computed by
solving the sparse system of equations: (L+ λI)f̂ = y, where I denotes the identity matrix.

To combine multiple graphs, we construct a composite graph with adjacency matrix
W =

∑k
d=1 µdWd, where µd ≥ 0 are the weights assigned to the individual graphs. If these

weights are known, then we can compute the corresponding composite Laplacian and plug
it into the optimization problem (1). Tsuda et al.12 showed that the weights {µd} can be
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computed by solving for

µ̂ = argmin
µ

y>

(
I +

k∑
d=1

µdLd

)−1
y, s.t.

∑
d

µd ≤ λ .

Mostafavi et al.6 proposed another algorithm to compute the network weights and showed
that it performed better than the method of Tsuda et al.12 In this algorithm, network weights
are estimated by solving the following constrained linear regression problem:

µ̂ = argmin
µ
‖T −

∑
d

µdWd‖22, s.t. µd ≥ 0, ∀d ∈ {1, . . . , k} , (2)

where T is the target matrix whose entries are tij = (n−/n)2 if genes i and j are both positive
and −n+n−/n2 if genes i and j have opposite labels.

2. Methods

2.1. Extracting features from graph nodes

We first describe a method to extract discriminative features from graphs, where by discrimi-
native we mean that the feature extraction method takes label information into account. Our
feature extraction method is based on the 3Prop algorithm proposed by Mostafavi et al.19

that labels the nodes of graphs using only three degrees of propagation. Let P = D−1W de-
note the transition probability matrix of the graph. The entries pij of P are the probability
that a random walk of length one starting from node i ends at node j. The r-step proba-
bility matrix P r can be similarly interpreted as the random walk probabilities of length r.
Let y denote the 0/1 vector of labels used for training. Now, if we compute the matrix-vector
product x(r) = P ry, then the i-th element x(r)i can be interpreted as the probability that a
random walk of length r from node i ends at a positively labeled node. Mostafavi et al.19

argued and demonstrated empirically that random walks of length at most three suffice to
propagate labels in biological networks. We use these probabilities as features for the nodes
in the graph, i.e., for every node i ∈ V , we form the three-dimensional 3Prop feature vector
[x

(1)
i , x

(2)
i , x

(3)
i ]. Note that the probability matrix P is asymmetric. A symmetric version can be

computed by setting P = D−1/2WD1/2. Algorithm 2.1 describes the feature extraction method.
It is important to note that this feature extraction method is computationally highly efficient.
As shown in Step 2 in Algorithm 2.1, it is not necessary to explicitly compute P (r) using dense
matrix-matrix products; instead, it can be computed efficiently in a recursive manner using
only sparse matrix-vector products. Given these features, we learn a binary linear classifier
h : X → {0, 1}, where X denotes the feature space, parameterized by a weight vector w ∈ R3

and make predictions as h(x) = w>x. Note that h(·) is essentially a scoring function that can
be used to score/rank nodes according to how confident the classifier is for the nodes to have
a positive label.

2.2. Combining multiple graphs

We extract 3Prop features from the nodes of all the k graphs using the feature extraction
method described in Algorithm 2.1. The next step is to learn a classifier by combining all
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Algorithm 2.1 3Prop - Feature extraction from graph nodes

Input: Graph G = (V,E) (|V | = n) with adjacency matrix W and degree matrix D, label
vector y ∈ {0, 1}n

Output: Feature matrix X ∈ Rn×3

1: Compute P = D−1W (asymmetric) or P = D−1/2WD−1/2 (symmetric)
2: Compute x(1) = Py, x(2) = Px(1), x(3) = Px(2)

3: return X = [x(1)|x(2)|x(3)]

these feature sets. A principled solution to this problem is to use multiple kernel learning
(MKL). It is important to note that we do not have to design a kernel given the features
extracted from the graph nodes. In other words, MKL can applied with a linear kernel. This
greatly reduces the computational complexity of learning classifiers in the MKL framework
and allows us to scale our method to graphs with thousands of nodes. Although several
advances have been made to solve the MKL problem, it has been found that a uniform
weighting of kernels is a hard baseline to outperform.20,21 Cortes et al.21 proposed a simple yet
computationally efficient algorithm that was shown to perform better than uniform weighting
and also traditional MKL methods.14 The algorithm consists of two steps: first, independent
classifiers are trained using each of the given kernels; then, the weights of these classifiers
are determined using an appropriate weighting scheme. We use a similar approach in our
algorithm and describe the two steps below.

We use regularized least-squares regression (RLSR) since the loss function minimized by
label propagation is squared loss noting, however, that any loss function such as the hinge loss
(SVM), the logistic loss (logistic regression) or the ranking loss (RankSVM22) can be used.
We solve the following set of (independent) optimization problems to estimate the parameters
of the classifiers, one for each of the k graphs:

ŵd = argmin
w

∑
i

(yi − w>xid)2 + λ‖w‖22 , ∀d ∈ {1, . . . , k} ,

where we have used xid ∈ R3 to denote the 3Prop feature vector for the i-th node in graph
d. The solution to this problem can be computed in closed form as ŵd = (X>d Xd + λI)−1X>d y,
where Xd ∈ Rn×3 is the feature matrix corresponding to the graph Gd (cf. Algorithm 2.1).
Note that computing this solution requires the inversion of a small 3× 3 matrix. In practice,
we found this method to be much faster than label propagation (1).

We then evaluate the performance of these classifiers on a separate validation set and use
this performance measure directly as the network weights {µd}. Specifically, we use the area
under the ROC curve (AUC) as the performance measure, which is defined as follows:

AUC(y, ŷ) ∝
∑

(i,j):yi>yj

(
[ŷi > ŷj ] +

1

2
[ŷi = ŷj ]

)
, (3)

where y and ŷ are the target and the predicted label vectors respectively, and [p] = 1 if p is
True and 0 otherwise. We use AUC since the data sets in this domain are typically highly
unbalanced and the use of other performance measures such as 0/1 error is not useful in such
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Algorithm 2.2 LMGraph - Learning from Multiple Graphs

Input: k undirected graphs, Gd = (V,Ed) (|V | = n) with adjacency matrix Wd, label vector
y ∈ {0, 1}n, training and validation set indices t, v ⊂ {1, . . . , n}

Output: classifier parameters {w1, . . . , wk}, network weights {µ1, . . . , µk}

1: For all i ∈ {1, . . . , n}: ỹi = yi if i ∈ t, 0 otherwise {training labels}
2: for d = 1 . . . k do
3: Xd = 3Prop(Gd, ỹ) {extract features}
4: wd = RLSR ((Xd)t, (ỹ)t) {train classifier}
5: For all i ∈ {1, . . . , n}: ȳi = yi if i ∈ v, 0 otherwise {validation labels}
6: µd = AUC ((ȳ)v, (Xd)vwd) {estimate network weights}
7: end for
8: return {w1, . . . , wk}, {µ1, . . . , µk}

scenarios. We note that Cortes et al.21 used a learning method (for example, SVM, Lasso
or RLSR) to learn the weights {µd} of the independent models using their predictions on
the validation set as “features.” While it is indeed possible to optimize AUC22 and learn
the weights {µd}, we refrained from following this approach because training a RankSVM
is computationally expensive. Our own experience with learning these weights by solving the
constrained least-squares regression problem: argmin0≤µ≤1

∑
i (
∑

d µdhd(xi)− yi)
2 did not result

in performance gains when compared to simply using AUC for the network weights.
Algorithm 2.2 describes our method, LMGraph, for gene function prediction from multiple

graphs. The final predictions are made according to ŷ(x) =
∑

d µdhd(x) =
∑

d µd · (w>d x). Given
this algorithm, it is straightforward to integrate feature-based data sources with the functional
interaction networks – we simply combine any additional feature-based data with the 3Prop
feature sets extracted using Algorithm 2.1 and train LMGraph described in Algorithm 2.2
using these feature sets.

3. Results and Discussion

3.1. Data sets and experimental setup

The data sets in our experiments consists of multiple functional interaction networks in three
species – mouse, fly and C.elegans. The mouse data set consists of seven networks with 19,559
genes constructed from gene expression, protein interaction and domain composition data.
To demonstrate the integration of feature-based data with networks, we also included 6,273
protein domain features extracted from Ensembl.23 The fly data set consists of 28 networks
with 13,457 genes constructed from genetic and physical interaction, co-expression, and co-
localization data. The C.elegans data set consists of 30 networks with 18,946 genes constructed
from co-expression and shared protein domain data. All the network and feature-based data
sources were downloaded from the GeneMANIA prediction server.24

To evaluate the gene function prediction task, we use the GO biological process (BP)
function categories25 as target labels. In all the experiments, we use all the categories with at
least 30 annotations. This resulted in 954, 963 and 724 categories (binary prediction tasks)
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for the mouse, fly and C.elegans data sets respectively.
We report results from three main experiments: (i) In the first experiment, we evaluate

the predictive ability of classifiers trained with 3Prop features extracted from graphs in direct
comparison to label propagation (cf. (1)). In this experiment, we combine the networks using
uniform weights. (ii) In the second experiment, we compare our algorithm to learn from
multiple graphs, LMGraph, as described in Algorithm 2.2 with both label propagation and
regularized least-squares regression trained on a composite network where the networks are
combined using uniform weights. We use 3Prop features in all the comparisons. (iii) In the
final experiment, we combine feature-based data and networks from the mouse data set and
evaluate the performance of LMGraph.

In all the experiments, we split the data sets in a stratified manner into training, validation
and test sets in the ratio of 3:1:1. We report the performance of the algorithms measured in
terms of the average ranking error, i.e., 1-AUC (cf. (3)), on the test data sets from five such
trials in all the experiments. We use the validation sets to tune the regularization parameter,
selected from the set {2−14, 2−12, . . . , 26, 28}, in label propagation and regularized least-squares
regression. We evaluate the statistical significance of the results based on the Wilcoxon signed-
rank test when comparing the AUC for all the GO categories resulting from pairs of algorithms.
In all the figures below, double asterisk (∗∗) indicates that the predictive performance gains
due to our method are significant when compared to the competing/baseline methods with
p ≤ 0.005; single asterisk (∗) indicates that the differences in performance are not significant.

3.2. Justification for 3Prop features

We begin with an empirical justification for extracting node features from random walks
of length at most three. As mentioned before, Mostafavi et al.19 argued and demonstrated
empirically that random walks of length three suffice to propagate labels in several types
of networks, including functional interaction networks. In most of these networks, random
walks quickly converge to the stationary distribution over the nodes, and therefore longer
random walks do not carry any discriminative information useful for labeling the nodes. Let
π ∈ Rn denote the stationary distribution with the property limr→∞P

r = 1π> (1 is vector
whose elements are all one), and is computed as π = d/

∑
i di, where di is the degree of the

node i. The total variation distance between probability distributions p and q is defined as
δ(p, q) := (1/2)

∑
i |pi−qi|. This distance can be used to study the convergence of random walks.

For a random walk starting from node i, we compute the total variation distance between the
distribution e>i P

r (ei is a vector with 1 at position i and 0 elsewhere) and the stationary
distribution π. The smallest value of r at which this distance falls below a fixed value ε is
known as the mixing time of the random walk, which gives us a measure of how close the
distribution for random walk of length r is to the stationary distribution π. Typically, ε is
chosen to be 0.25. The total variation distance computed for varying random walk lengths
is shown in Figure 1 for mouse, fly and C.elegans networks for 100 different random walks
starting from 100 randomly chosen nodes. Each gray line shows the effect of random walk
length on the total variation distance for a random walk starting from a random node, and
the red line shows the median of 100 such random walks. For each species, we combine all
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Fig. 1. Total variation distance for varying random walk lengths for mouse, fly and C.elegans networks,
computed for 100 different random walks. Each gray line indicates a random walk starting from a random
node, and the red line shows the median. The dashed line corresponds to a total variation distance of 0.25.

the networks with uniform weights and compute the transition probability matrix P = D−1W

from this combined network. From the figure, we observe that for r = 3, the total variation
distance has dropped below or close to 0.25 for all the networks, thus confirming the findings
of Mostafavi et al.19 for the data sets used in our experiments.

3.3. 3Prop vs. LProp

We compare the performance of label propagation (LProp) with regularized least-squares
regression (RLSR) trained with asymmetric and symmetric 3Prop features. In this experiment,
we first combine all the networks for a given species with uniform weights to construct a single
composite network. We then extract 3Prop features (cf. Algorithm 2.1) from this composite
network and train RLSR with these features. For label propagation, we optimize the objective
function (1) on the composite network. In Figure 2, we show the ranking errorsb for both
these methods trained on mouse, fly and C.elegans networks across all the GO biological
process function categories. For all the networks, RLSR trained with both asymmetric and
symmetric 3Prop features performs significantly better than or its performance is on par with
label propagation.

bWe do not show absolute AUC scores in the figures due to space constraints. In general, we observed percentage
decrease in ranking errors across a wide range of AUC scores in all the experiments.
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Fig. 2. Performance of label propagation and RLSR trained with asymmetric (left) and symmetric (right)
3Prop features on mouse, fly and C.elegans networks. The box plots show the percentage decrease in ranking
error across all the GO biological process function categories.

This experiment clearly demonstrates the predictive ability of classifiers trained with
3Prop features and their potential as an alternative to label propagation for graph-based
semi-supervised learning. We also observed that training a classifier with 3Prop features is
computationally more efficient than label propagation even on sparse networks. As an exam-
ple, on the mouse networks with 19,559 genes and a biological process function category with
100 annotations, the training time of RLSR with asymmetric and symmetric 3Prop features
were 2.64s and 3.02s respectively for one trial which includes the tuning of regularization pa-
rameter, whereas label propagation took 35.29s for the same task on a 2 x 2.66 GHz dual-core
processor with 4 GB of memory.

3.4. LMGraph vs. LProp and 3Prop

In this experiment, we first compare the performance of LMGraph with label propagation
trained on composite networks combined using uniform weights. The results are shown in
Figure 3 for asymmetric and symmetric 3Prop features. On all the networks, LMGraph per-
forms significantly better than label propagation for both asymmetric and symmetric 3Prop
features. On the C.elegans data set, we found that a slightly different version of Algorithm 2.2
wherein we first use the estimated weights {µd} to construct a composite network and then
extract 3Prop features from the resulting network, followed by training an RLSR with these
features performed better than the ensemble method described in Algorithm 2.2.

We also compare the performance of LMGraph with RLSR trained using 3Prop features
extracted from the composite networks combined using uniform weights. The results are shown
in Figure 4 for asymmetric and symmetric 3Prop features. Here, we found that LMGraph did
not significantly boost the predictive performance, especially for symmetric 3Prop features
and the C.elegans networks. However, we would like to emphasize that RLSR trained on
composite networks combined using uniform weights, where we first combine the networks
and then extract 3Prop features, is a strong baseline. In fact, this is a much stronger baseline
than training RLSR with all the 3 × K 3Prop features and this was verified by us in our
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Fig. 3. Performance of LMGraph trained with asymmetric (left) / symmetric (right) 3Prop features and
label propagation on mouse, fly and C.elegans networks.
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Fig. 4. Performance of LMGraph and RLSR trained with asymmetric (left) and symmetric (right) 3Prop
features on mouse, fly and C.elegans networks.

experiments. Indeed, as is clearly evident from Figure 2 in the previous experiment, we see
that these classifiers with a simple uniform weighting scheme performed significantly better
than label propagation trained using the same composite networks.

3.5. LMGraph with features

In the final experiment, we integrate protein domain features into our learning algorithm to
demonstrate the benefits of combining feature-based data sources with functional interaction
networks. The results are shown in Figure 5 for the mouse networks. Integrating feature-
based data into LMGraph results in significant improvements in AUC for both asymmetric
and symmetric 3Prop features when compared to LMGraph trained using only the network
data. Furthermore, when compared to RLSR trained with 3Prop features extracted from a
composite network combined with uniform weights, we found that LMGraph trained with
the protein domain features results in significant performance gains for both asymmetric and
symmetric 3Prop features. LMGraph with features also performs significantly better than
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Fig. 5. Performance comparison of LMGraph trained using asymmetric (left) / symmetric (right) 3Prop and
protein domain features with LMGraph, RLSR (3Prop) and label propagation (LProp) trained on a composite
network combined with uniform weights on the mouse networks.

label propagation trained on a composite network combined with uniform weights; we note
that it is not possible to combine features with label propagation using existing methods.12,20

4. Conclusions

We proposed a computationally efficient machine learning algorithm, LMGraph, for gene func-
tion prediction from multiple functional interaction networks. The crux and novelty of our
algorithmic contribution lies in the computationally efficient two-step procedure that allows
us to combine multiple graph-based and feature-based data sources, where in the first step we
extract features from the nodes of graphs and in the second step we combine these feature sets
and train linear predictors. Our feature extraction method is based on the method proposed
by Mostafavi et al.,19 which is known to work well on functional interaction networks. We used
a variant of the ensemble method proposed by Cortes et al.21 to combine multiple data sources
since (i) it has been shown to perform better than the traditional MKL methods,14 (ii) it has
been shown to outperform the strong uniform weighting baseline, and (iii) it is extremely easy
to implement as a machine learning practitioner in bioinformatics. However, we would like to
emphasize that the user is free to design and use other relevant feature extraction methods on
graphs such as spectral embeddings and also other standard multiple kernel learning methods
(with a linear kernel) in these steps.

We have shown experimentally that training linear predictors with symmetric and/or
asymmetric graph-based 3Prop features is a viable alternative to label propagation. Further-
more, using these features in LMGraph resulted in significant performance gains when com-
pared to propagating labels on composite networks combined using uniform weights which is
known to be a hard baseline.12,20,21 We have also demonstrated that our method, LMGraph,
can be used to combine attribute data with functional interaction networks and that this
combination can result in significant performance gains for gene function prediction tasks.
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The development of effective methods for the characterization of gene functions that are able to com-
bine diverse data sources in a sound and easily-extendible way is an important goal in computational
biology. We have previously developed a general matrix factorization-based data fusion approach for
gene function prediction. In this manuscript, we show that this data fusion approach can be ap-
plied to gene function prediction and that it can fuse various heterogeneous data sources, such as
gene expression profiles, known protein annotations, interaction and literature data. The fusion is
achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We
demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological
annotations in slime mold D. discoideum and on recognizing proteins of baker’s yeast S. cerevisiae
that participate in the ribosome or are located in the cell membrane. Our approach achieves predic-
tive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires
fewer data preprocessing steps.

Keywords: gene function prediction, data fusion, matrix factorization, Gene Ontology annotation,
membrane protein, ribosomal protein

1. Introduction

Assigning functions to genes and proteins is a major challenge of biological research. Recent
genome-scale data capture distinct but possibly noisy and incomplete views of cellular func-
tion. Collectively, these data provide valuable information for inference of gene and protein
functions but require computational approaches capable of joint treatment of heterogeneous
data sources.

Gene function prediction aims to provide a set of functional terms along with associated
confidence for a given uncharacterized or partially characterized gene. In this work, we take
a step towards improved gene function prediction through fusion of data sets that are either
directly related to genes, such as genetic interactions, or are circumstantial, such as Medical
Subject Headings (MeSH) terms assigned to the relevant biomedical literature. In our previous
work, we proposed a matrix factorization-based data fusion1 and demonstrated its utility in
detection of drug-toxicity.2 Its advantage over some well-known approaches that infer predic-
tion models through integrative data analysis is its ability to directly consider data modality
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and to retain the structure of data representation during fusion. Our algorithm can include
any data source that can be represented in a matrix whereby the concrete selection of data
sources depends on the given function prediction task.

Methods for gene function prediction often consider a metric space of genes, that is, a gene
set equipped with a notion of distance or similarity between any pair of genes.3–6 All available
data has to be expressed through relations between genes and their functions, although for
specific data sources that might not be natural in any sense. For instance, to include the
semantic structure of the MeSH terms into the prediction model we should design a metric that
would, for a pair of genes, measures the distance between the MeSH terms that are assigned
to relevant gene-pair-associated literature. Such distance function is hard to construct, and
for integration of many heterogeneous data sources, becomes a major obstacle in development
of prediction system. Our approach can consider circumstantial evidence for gene function
prediction directly even if expressed in a non-gene space. Its principal novelty is the ease of
adding new data sources without requiring their substantial preprocessing or transformation.
Data sources are simultaneous considered during data fusion and construction of predictive
model.

In the paper we outline our previously proposed data fusion algorithm2 and then study it
in computational experiments on three function prediction tasks for baker’s yeast and slime
mold’s genome-wide data sets. We fuse eleven data sources to predict the Gene Ontology
(GO)7 annotations in slime mold D. discoideum and investigate the recognition of particular
classes of proteins in baker’s yeast S. cerevisiae by combining four data sources on cytoplasmic
ribosomal class and four sources on membrane proteins. Our principal contribution in this work
is a demonstration that matrix-based data fusion approach can be applied to gene function
prediction problem and can successfully integrate a diverse set of data sources, thus raising
the accuracy of predictions.

2. Related Work

Methods to predict gene annotations either follow approaches that transfer annotations from
well-characterized to partially characterized genes,3,8 or approaches that directly associate
genes with functional classes using supervised learning.5,9–13 Although annotation transfer is
appealing at first sight, excessive transferring causes error propagation and is often outper-
formed by sophisticated classification algorithms.14

Recent methodological contributions to gene function prediction aim at extracting features
from different biological data sets and use them to train classifiers for functional categories,
such as GO terms or KEGG pathways.14 They derive features from gene expression pro-
files, genetic interactions, protein-protein interaction networks, conserved protein domains,
sequence similarity, physiochemical properties, co-expression and data on orthologs. For ex-
ample, Vinayagam et al. (2004)9 and Mitsakakis et al. (2013)13 both applied support vector
machines for the classification of GO terms from sequence data and microarray experiments,
respectively, and Yan et al. (2010)11 trained a random forest classifier for each functional
category separately and tested their prediction model on data from fruit fly. The accuracy
of developed methods for gene function prediction has been further improved by integrat-
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ing data using multi-classifier approaches,12 Bayesian reasoning,3,4,10,15 network-based analy-
sis5,16,17 and kernel functions derived from different sources by multiple kernel learning.18,19

Automated gene and protein function prediction methods are often trained to only one species,
are not available for high-volume and heterogeneous data, or require the use of data derived
by experiments, such as microarray analysis. The approach we proposed in this manuscript is
organism-independent, it can be applied for various subsets of functional terms and it provides
confidence estimates of predictions. Also, it does not impose any restrictions on the nature of
underlying data.

Due to great potential of methods for computational prediction of gene function we recently
witnessed several initiatives6,20,21 for the critical assessment of their performance in different
experimental settings. These evaluations concluded that although best methods perform well
enough to guide the experiments, there is considerable need for improvement of currently
available approaches one of which is efficient data integration.

3. Methods

Matrix factorization-based data fusion1 can in principle consider an unlimited number of data
sources. In the context of gene function prediction, these could either describe characteristics
of genes and proteins directly (e.g., their physical interactions) or indirectly (e.g., through
MeSH terms that are assigned to scientific publications, which in turn mention the genes of
interest). Fig. 1 provides a toy example that combines five data sources on objects of three
different types: genes, GO terms and experimental conditions. Given a multitude of data
sources, we assume that each source describes relations between objects of two types. Data
fusion by matrix factorization involves three main steps. First, every data source is represented
as a matrix and together they are organized in a block-based matrix representation (Fig. 1,
left; Sec. 3.2). Constraint matrices, Θi, relate objects of type i and are placed on the main
diagonal of block representation. The off-diagonal blocks, which relate objects of different
types, i and j (i 6= j), are called relation matrices, Rij. We expect that these matrices are
sparse and that some are completely missing because associated data sources are not available.
For example, a missing source from Fig. 1 would relate GO terms to experimental conditions.
Second, we simultaneously factorize all relation matrices such that low-rank matrix factors
are shared between decompositions of relation matrices that describe objects of common
type (Fig. 1, middle; Sec. 3.3). Constraints indicate pairwise similarities or dissimilarities (it
depends on signs of values) between the two objects. If constraints are violated, for instance,
if two highly similar objects have very different low-rank profiles (i.e. corresponding rows
in matrix factors), then current low-rank matrix approximations are penalized. Finally, we
employ low-rank matrix factors to complete unobserved entries in relation matrices, to predict
GO terms and to estimate confidence of predictions (Fig. 1, right; Sec. 3.4 and Sec. 3.5).

We apply data fusion to infer relations between genes or proteins and their functions. We
observe target relation matrix in the context of all other data sources. We assume that it
is encoded as a [0, 1]-matrix that is only partially observed. Its entries indicate a degree of
relation, 0 denoting that corresponding function is absent from the gene and 1 denoting the
highest confidence that gene performs a specific function. We aim to predict its unobserved
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entries by reconstructing them through matrix factorization.
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Fig. 1: An example of data fusion by matrix factorization that combines five data sources on objects of three
different types: genes, Gene Ontology (GO) terms and experimental conditions. Target matrix relates genes to
GO terms (matrix with colorful entries). Data is presented in a block-based system (left), then a compressed
representation is inferred that shares low-rank matrix factors between decompositions of relation matrices
(shown by matrices with grey entries), which relate objects of common type (middle). Constraint matrices
(shown by matrix with blue entries) penalize violations of similarity constraints. Finally, original matrix of
gene annotations is completed (right).

3.1. Data

3.1.1. Gene Annotation Prediction in Slime Mold

In this study we observe objects of six different types: genes (type 1), GO terms (type 2),
experimental conditions (type 3), publications from the PubMed database (PMID) (type 4),
MeSH descriptors (type 5), and KEGGa pathways (type 6). The organization of object types
and data sources is shown in Fig. 2a; fusion algorithm can integrate all available data if
the underlying graph is connected. We include gene expression measurements at different
time-points of a 24-hour development cycle22 (R13, 14 experiments), gene annotations with
experimental evidence code to 148 generic slim terms from the GO (R12), associations of
PMIDs and genes from dictyBaseb, March, 2013 (R14), genes participating in KEGG pathways
(R16), assignments of MeSH descriptors to publications from PubMed (R45), references to
published work associated with GO terms (R42), and associations of enzymes involved in
KEGG pathways and related to GO terms (R62). To balance the target matrix R12 for the
purpose of performance evaluation we add an equal number of non-associations for which
there is no evidence of any type in the GO.

We consider protein interaction scores from STRING v9.0c (Θ1), the number of common
ortholog groups between KEGG pathways (Θ6) and slim term similarity scores (Θ2) that are

ahttp://www.kegg.jp
bhttp://dictybase.org/Downloads
chttp://string-db.org
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computed as −0.8hops, where hops is the length of the shortest path between two terms in
the GO graph. Similarly, MeSH descriptors are constrained with the average number of hops
between each pair of descriptors in the MeSH hierarchy (Θ5).

3.1.2. Yeast Ribosomal Protein Classification

We observe three object types: proteins (type 1), cellular complexes (type 2) and experimental
conditions (type 3). Their relations are described by four data sources that correspond to arcs
in Fig. 2b. We consider the MIPS Comprehensive Yeast Genome Database (CYGD)d assign-
ments of 1150 yeast proteins to cellular complexes, of which 134 participate in the ribosome
and the remaining ∼5000 yeast proteins are unlabeled.18 We include gene expression measure-
ments from the Stanford Microarray Database (R13, 441 experiments), protein interactions
from STRING v9.0c (Θ(1)

1 ) and Smith-Waterman pairwise sequence comparisons (Θ(2)
1 ).

3.1.3. Yeast Membrane Protein Classification

We consider four data sources and three types of objects (Fig. 2c): proteins (type 1), subcel-
lular locations (type 2) and Pfame protein domain families. We consider subcellular location
information of 2318 yeast proteins from the CYGDd database (R12), of which 497 belong to
various membrane protein classes and ∼4000 proteins have uncertain location.18 We include
the expectation values from the hidden Markov models in the Pfam database (R13). Matrices
Θ

(1)
1 and Θ

(2)
1 from Fig. 2c have the same meaning as for the ribosomal protein classification.

In both yeast experiments the target R12 has a (6112 × 2)-shape, where a row of [0, 1]

denotes that the protein participates in ribosome or that it belongs to membrane protein class
and a row of [1, 0] that the protein is not assigned to the ribosomal complex or that it does
not belong to membrane protein class. Rows that correspond to unobserved proteins are set
to [0.5, 0.5].

3.2. Block-Based Data Representation

The data on slime mold from Sec. 3.1.1 can be represented in a block-based system:

R =



0 R12 R13 R14 0 R16

0 0 0 0 0 0

0 0 0 0 0 0

0 R42 0 0 R45 0

0 0 0 0 0 0

0 R62 0 0 0 0


,Θ(1) = Diag (Θ1,Θ2,0,0,Θ5,Θ6) . (1)

The number of non-zero blocks corresponds to the number of included data sources. Such
representation is then fed into fusion algorithm. The block-based schemes for yeast-related

dhttp://mips.helmholtz-muenchen.de/genre/proj/yeast
ehttp://pfam.sanger.ac.uk
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Fig. 2: Fusion configurations for the gene function prediction task in slime mold (a) and two yeast protein
classification tasks to recognize cytoplasmic ribosomal proteins (b) and membrane proteins (c). Nodes represent
types of objects and arcs correspond to relation and constraint matrices. The arcs that represent target
matrices, R12, and their object types are highlighted.

data (Sec. 3.1.2 and Sec. 3.1.3) have the structure from Eq. (2), where the individual matrices
are task-dependent:

R =


0 R12 R13

0 0 0

0 0 0

 ,Θ(t) = Diag(Θ
(t)
1 ,0,0) for t = 1, 2. (2)

Our fusion approach is different from treating an entire system from Eq. (1) or Eq. (2) as a
single large matrix. Factorization of such a matrix would disregard the structure from Eq. (1)
and Eq. (2).1

3.3. Data Fusion by Matrix Factorization

Approximate matrix factorization estimates matrix Rij as a product of low-rank matrix fac-
tors that are found by solving an optimization problem, which maximizes some quality of
approximation. A tri-factor decomposition, which we use in this study, decomposes Rij into
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a product of three low-dimensional matrix factors such that Rij ≈ GiSijG
T
j (Fig. 3).

ni

nj

Rij Gi

ki

Sij GT
j

njkjni

× ×≈

Fig. 3: Matrix tri-factorization. Matrix Rij ∈ Rni×nj relates objects of two types, i and j. For instance, we
might relate genes to their expression profiles, publications to assigned MeSH terms or genes to themselves if
they interact genetically. Rij is decomposed into a product of three matrix factors such that Rij ≈ GiSijG

T
j ,

where Gi ∈ Rni×ki , Gj ∈ Rnj×kj and Sij ∈ Rki×kj , ki � ni, kj � nj .

For data fusion we use simultaneous penalized tri-factorization to simultaneously decom-
pose all blocks Rij while considering constraints in Θ

(t)
i for t = 1, 2, . . . ti. The block matrix R

from Eq. (1) is tri-factorized into block matrices S and G:

S =



0 S12 S13 S14 0 S16

0 0 0 0 0 0

0 0 0 0 0 0

0 S42 0 0 S45 0

0 0 0 0 0 0

0 S62 0 0 0 0


,G = Diag (G1,G2,G3,G4,G5,G6) . (3)

Yeast data matrix in Eq. (2) is similarly decomposed into block matrix factors S and G,
each having 3× 3 block-shape but we omit them here for brevity. Such factorization of block-
based representation retains the block structure of our systems from Eq. (1) and Eq. (2).
Matrix factors Sij in the resulting factorized system are specific to every data source and
factors Gi are specific to every object type. Factor Gi is present in decompositions of all
relation matrices that relate objects of type i to objects of some other type, whereas Sij is
used only for decomposing Rij. Thus, they capture object type- and source-specific patterns,
respectively. Sharing matrix factors between decompositions with common object type is the
key idea of our data fusion approach.

The objective function minimized by simultaneous penalized matrix tri-factorization en-
sures good approximation of the input data and adherence to constraints, which are repre-
sented in constraint matrices:

min
G≥0
||R−GSGT ||+

maxi ti∑
t=1

tr(GTΘ(t)G), (4)

where || · || and tr(·) denote the Frobenius norm and trace, respectively. Updating rules for
decomposing relation matrices,1 iteratively improve matrix factors G and S, which converge
to a local minimum of the optimization problem in Eq. (4). The algorithm first initializes
factors Gi and then successively updates G and S until stopping criteria is met. See Žitnik et
al. (2013)1 for details about initialization algorithm, updating rules and stopping criteria.
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3.4. Predicting Gene Functions from Matrix Factors

Our target R12 is a partially observed [0, 1]-matrix, where 1 indicates that gene is assigned
the corresponding function and 0 that it is not. We complete it as: R̂12 = G1S12G

T
2 . When

the fused model is requested to propose relations for a new gene g that was not included
in the training data, we need to estimate its factorized representation and use the result-
ing factors for prediction. We formulate non-negative linear least-squares and solve them for
minhi≥0 ||GiS

T
1ihi−gi||2, where gi ∈ Rni is the original description of gene g in i-th data source

and hi ∈ Rk1 is its factorized representation. Here, i varies from 2 to the number of data
sources used for fusion. A solution vector given by

∑
i>1 h∗i is added as a new row to G1 and

new R̂12 is computed.
We then identify gene-function pairs (g, f∗) for which the predicted degree of relation

R̂12(g, f
∗) is unusually high. Candidate functions for gene g have greater estimated association

score than the mean estimated score of all known annotations of gene g:

R̂12(g, f
∗) >

1

|A(g)|
∑

f∈A(g)

R̂12(g, f), (5)

where A(g) contains functions annotated to g. Eq. (5) is a gene-centric rule. Given a test gene,
it identifies functional terms to which it might be assigned. If the gene does not have any
known annotations we use the function-centric rule to identify gene-function candidate pairs.

3.5. Assessing Strength of Predictions

We combine the gene- and function-centric rules such that, if possible, the gene-centric rule
is applied to identify gene-function candidate pairs and then the function-centric rule is used
to assess the strength of the candidate pair (g, f∗). We estimate the strength of association of
gene g to function f∗ by reporting an inverse percentile of association score in the distribution
of scores for all true annotations to function f∗, that is, by considering the scores in the f∗-th
column of R̂12 (Fig. 4). Higher value indicates higher confidence of prediction.

4. Performance Evaluation

We estimated the performance by ten-fold cross-validation. In each fold, we split the gene set
to a train and test set. The data on genes from the test set were entirely omitted from the
training data. We developed prediction models from the training data and tested them on
the genes from the test set. The performance was evaluated using an F1 score, a harmonic
mean of precision and recall, which was averaged across cross-validation runs. We selected
the parameters of our data fusion algorithm, factorization ranks for each type of objects (ki),
by observing the quality of R̂12 in internal cross-validation.1 The parameters for kernel-based
fusion, such as width of an RBF kernel and regularization weight, were also selected through
internal cross-validation.

5. Kernel-Based Fusion Setup

We compared our data fusion algorithm to state-of-the-art integration by multiple kernel
learning (MKL; Yu et al. (2010)19) that follows a multi-label classification approach. Kernel-
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Fig. 4: An example of estimating strength of candidate slime mold genes for “phagocytosis” term. Association
scores from R̂12 for all genes that are annotated with term “phagocytosis” are shown in grey. Strength of
the candidate pair (pikA, “phagocytosis”), s = 0.96, is assessed by reporting its inverse percentile in the
distribution of scores for true annotations (in grey). That is, the percentage of estimated association scores
that are smaller or equal to the score of (pikA, “phagocytosis”).

based fusion used a multi-class L2 norm MKL with Vapnik’s SVM. The MKL was formulated
as a second order cone program and solved using the conic optimization solver SeDuMif . We
generated the kernel matrices for yeast experiments using the kernels proposed by Lanckriet et
al. (2004).18 In slime mold study, we applied an RBF kernel to gene expression measurements
and three linear kernels to protein interactions, genes that participate in KEGG pathways and
to associations of genes to PMIDs. Data sources that describe relations between object types
other than genes had to be transformed to explicitly relate them to genes. We represented the
hierarchical structure of MeSH descriptors, semantic structure of the GO graph and KEGG
ortholog groups as separate weighted graphs on genes (for instance, we counted common
KEGG ortholog groups and calculated the similarities of sets of GO terms associated with
genes) and constructed kernel matrices using diffusion kernel.

6. Results and Discussion

We evaluated our algorithm from the perspective of genes and functional terms. Thus, we
addressed two related questions: “What is the function of a particular gene or protein?” and
“What are the genes or proteins associated with a particular functional term?”.

6.1. Performance on Groups of Target Genes

We divided the D. discoideum gene set into three categories to compare predictive performance
in each category. In Table 1 we present the cross-validated F1 scores when selecting the 100
or 1000 most GO-annotated genes and the accuracy obtained when considering whole slime

fhttp://sedumi.ie.lehigh.edu
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mold genome. The task was to provide a set of terms from the slim subset of GO terms for
every gene. We used the slim subset of GO terms to limit the optimization complexity of
the kernel-based approach18 with which we compare our performance. These categories were
selected to study the effects of data sparseness. Genes with many GO annotations tend to be
better characterized and more data is available about them. Thus, functional terms of such
genes would be considered easier to predict than those of genes with only few annotations.
The accuracy of our matrix factorization-based data fusion is comparable to that of kernel-
based approach. The performance of both approaches improved when we included more genes
and hence more data. Also, our approach performed well when we added genes with sparser
profiles although that increased the overall data sparsity.

Table 1: Cross-validated F1 scores for fusion by matrix factorization (MF) and kernel-based method (MKL).

Slime mold task MF MKL

100 genes 0.799 0.781

1000 genes 0.826 0.787

Whole genome 0.831 0.800

6.2. Performance on Functional Terms

We assessed the ability of our approach to predict individual GO terms when fusing whole
genome data from Fig. 2a. Table 2 shows the F1 scores for nine selected GO terms that belong
to “Biological Process” and “Molecular Function” categories from GO and which contain
variable number of annotated genes. These GO terms are of high relevance in Dictyostelium
community and were selected upon consultations. Predictions were examined in the context
of a complete set of GO terms rather than using a generic slim subset of terms. The resulting
data set had ∼2000 GO terms, each had on average 9.64 direct gene annotations.

Our approach achieved consistently higher accuracy than the kernel-based approach. With
the exception of “actin binding” and “lysozyme activity” terms, F1 scores are rather high.
We also found that prediction of less specific terms such as “chemotaxis” and “response to
bacterium” showed high performance. That was not expected because genes annotated with
less specific terms tend to have their profiles in data sets less similar. High performance is
important as all nine gene functions and processes are of interest in the current research of D.
discoideum where data fusion may propose new candidate genes for down-stream experimental
studies.

6.3. Ribosomal and Membrane Protein Classification

Table 3 shows the results of training a factorization-based fusion model and a kernel-based
method to recognize membrane and cytoplasmic ribosomal proteins in yeast. Our approach
yielded better accuracy than kernel-based method on the membrane proteins but worse on
the cytoplasmic ribosomal class. However, fused data sources were those whose kernels gave
best individual performance in kernel learning.18 Thus, the selection of data sources was
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Table 2: Gene ontology term-specific cross-validated F1 scores for fusion by matrix factorization (MF) and
kernel-based method (MKL). Terms in Gene ontology belong to one of three categories, “Biological Process”
(BP), “Molecular Function” (MFn) or “Cellular Component”.

GO term name Term identifier Namespace Size MF MKL

Activation of adenylate cyclase activity 0007190 BP 11 0.834 0.770

Chemotaxis 0006935 BP 58 0.981 0.794

Chemotaxis to cAM 0043327 BP 21 0.922 0.835

Phagocytosis 0006909 BP 33 0.956 0.892

Response to bacterium 0009617 BP 51 0.899 0.788

Cell-cell adhesion 0016337 BP 14 0.883 0.867

Actin binding 0003779 MFn 43 0.676 0.664

Lysozyme activity 0003796 MFn 4 0.782 0.774

Sequence-specific DNA binding TFA 0003700 MFn 79 0.956 0.894

biased toward kernel-based method. The approach using factorization circumvents tedious
work of transforming different objects (e.g., strings, vectors, graphs) into kernel matrices.
These transformations depend on the choice of the kernels and may affect MKL’s performance.

Results in this and previous sections suggest that factorization-based data fusion might
be useful not only to identify proteins that share the same molecular function but also to
recognize proteins that participate in the same biological processes or are located in the same
subcellular region.

Table 3: Cross-validated F1 scores for yeast membrane and cytoplasmic ribosomal proteins using matrix
factorization-based fusion (MF) and kernel-based method (MKL).

Yeast recognition task MF MKL

Membrane proteins 0.843 0.835

Ribosomal proteins 0.901 0.921

7. Conclusion

We have examined the applicability of our recently proposed matrix factorization-based data
fusion approach1 on the problem of gene function prediction. We studied three fusion scenarios
to demonstrate high accuracy of our approach when learning from disparate, incomplete and
noisy data. The studies were successfully carried out for two different organisms, where, for
example, the protein-protein interaction network for yeast is nearly complete but it is noisy,
whereas the sets of available interactions for slime mold are rather sparse and only about
one-tenth of its genes have experimentally derived annotations.

Our approach can model any number of data sources that can be expressed in a matrix, and,
unlike most current data fusion approaches, does not require transformation of data into gene-
function space. This flexibility allows us to fuse the data derived from possibly very diverse
data sources without substantial preprocessing and loss of information. Described method is
applicable to problems such as prediction of regulatory, metabolic and other functional classes,
prediction of protein subcellular location and their interactions.
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The human genome encodes a large number of non-coding RNAs, which employ a new and 
crucial layer of biological regulation in addition to proteins. Technical advancement in recent 
years, particularly, the wide application of next generation sequencing analysis, provide an 
unprecedented opportunity to identify new non-coding RNAs and investigate their functions and 
regulatory mechanisms. The aim of this workshop is to bring together experimental and 
computational biologist to exchange ideas on non-coding RNA studies.  

	  
1.  Background 

Non-coding RNAs (ncRNAs) are RNA molecules encoded by genes in the genome that 
are transcribed and functional but not translated into proteins. Recent studies have shown 
that more than 90% human genome is transcribed but coding sequences occupy only a 
small fraction of the genome (<2%) [1]. This suggests the existence of a large number of 
non-coding RNAs [2]. In fact, the FANTOM3 (Functional Annotation of Mammalian 
cDNA) project has identified ~35,000 non-coding transcripts with similar processing as 
mRNAs, including 5’ capping, splicing, and poly-adenylation, but with little or no open 
reading frame (ORF) [3]. Given the large number of non-coding RNAs, it is reasonable to 
assume that these molecules are critical players in biological processes. At present, we 
are just starting to understand the functions of non-coding RNA.   

1.1.  Classifications of non-coding RNAs 

Non-coding RNA genes include highly abundant and functionally important RNAs such 
as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as RNAs such as 
snoRNAs, microRNAs, siRNAs, snRNAs, exRNAs, and piRNAs among other types. 
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Based on the size of the mature version of non-coding RNAs, we can divide them into 
long non-coding RNAs (lncRNAs) and small non-coding RNAs. The cutoff value for size 
is arbitrarily determined with non-coding RNAs longer than 200 nucleotides categorized 
as lncRNAs and the rest as small. Compared to the small non-coding RNAs, existing 
knowledge about lncRNAs is even more limited.  

According to their genomic locations, lncRNAs can be grouped into stand-alone 
lncRNAs, natural antisense transcripts, long intronic RNAs, transcribed pseudogenes and 
other lncRNAs (e.g. promoter associated RNAs, enhancer RNAs). Importantly, stand-
alone lncRNAs are transcription units that do not overlap protein-coding genes. Some of 
these are referred to as lincRNAs (large intergenic noncoding RNAs). A recent study 
indicates that the human genome produce tens of thousands of lincRNAs [4].  

1.2.   Functions of non-coding RNAs 

The functions of certain non-coding RNA types such as microRNAs have been 
intensively studied under a variety of biological contexts. However the functions of most 
of the lncRNAs including lincRNAs remain elusive or unclear. Despite of this, the 
functionality of lncRNAs is suggested by (1) the conservation of their promoters, splice 
junctions, exons, predicted structures, genomic; (2) their association with particular 
chromatin signatures that are indicative of active transcription; (3) their regulation by key 
molecular signals and transcription factors; (4) their dynamic expression and alternative 
splicing during differentiation; (5) their tissue- and cell-specific expression patterns and 
subcellular localization; (6) their altered expression or splicing patterns in cancer and 
other diseases [5]. 

In fact, lncRNAs are known to be able to exert regulatory functions at the 
transcriptional, post-transcriptional and epigenetic levels by different mechanisms. At the 
transcriptional level lncRNAs target transcriptional activators or repressors, different 
components of the transcription reaction including RNA polymerase II and the DNA 
duplex to regulate gene transcription and expression [6]. At the post-transcriptional level 
they participate in pre-mRNA processing, splicing, transport, translation, and 
degradation. At the epigenetic level they are involved in gene imprinting, X-chromosome 
inactivation and many other biological processes.  

Several regulatory mechanisms of lncRNAs have been elucidated [7]. First, some 
lncRNAs can serve as decoys to prevent regulatory proteins from binding to DNA. For 
example, the lncRNA Gas5 contains a hairpin sequence motif in its secondary structure 
that resembles the DNA-binding site of the glucocorticoid receptor (GR) and decoy GR 
to inhibit the transcription of its target genes [8]. Second, some lncRNAs can serve as 
adaptors to bring two or more proteins into complexes. Third, some lncRNAs are 
required for guiding the proper localization of specific protein complexes; Finally, some 
linRNAs can compete with miRNAs for miRNA-binding sites or serve as “sponges” to 
sequester miRNAs away from their mRNA targets [9].  
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2.  Major directions and challenges 

The goal of this workshop is to encourage the development of advanced methods for 
identification and functional characterization of ncRNAs through a combination of 
experimental and bioinformatics approaches.  

2.1.  Application of bioinformatics to studies of non-coding RNAs 

Computational and bioinformatics techniques have been applied to study non-coding 
RNA mainly in the following directions: (1) prediction and identification of new non-
coding RNAs from genome sequence analysis or by combining computational analysis 
with experimental data (e.g. tiling array, RNA-seq data); (2) prediction of miRNA target 
genes; (3) prediction the secondary and tertiary structures of RNAs; (4) investigation on 
the conservation and evolution of non-coding RNA genes or miRNA target genes; (5) 
non-coding RNA function prediction by computational analysis such as “guilt by 
association”; (6) construction of  integrated regulatory networks that include non-coding 
RNA regulatory layers; (7) construction of databases and webservers to facilitate non-
coding RNA studies.      

2.2.  Main challenges in computational analysis 

Compared to protein studies, application of computational methods to non-coding RNA 
field is still in its infancy. There are several challenges that limit its application. First, 
non-coding RNAs represent heterogeneous classes of molecules; each has their specific 
characteristics and regulatory mechanisms. Second, non-coding RNA genes are non-
conserved or less than conserved than protein coding genes; many of them have low 
expression levels and no obvious knockout phenotypes. Third, the knowledge about non-
coding RNAs is still limited, can consequently there is no training data large enough for 
implementing machine learning techniques or statistical models. Fourth, the quality of 
non-coding RNAs gene annotation is relatively low. With the technical advancement and 
accumulation of data, we expect these challenges would be overcome in a short future.   

2.3.  Main topics of this workshop 

2.3.1 Identification, annotation, classification and the evolution of lncRNAs. 

Computational and experimental methods have been proposed to annotate lincRNAs with 
special consideration to their lower expression profile. Phylogenetic analysis of 
lincRNAs in mammalian has demonstrated an interesting evolutionary history of them. 

2.3.2 Prediction RNA Secondary Structure 

Secondary structure is highly important to the correct processing and function of many 
non-coding RNAs. Many computational methods have been proposed for modeling and 
understanding RNA structure.   

Pacific Symposium on Biocomputing 2014

414



2.3.3 Expression analysis of lncRNAs 

To gain insight into the potential cellular functions of lncRNAs, systematic gene 
expression profiling has been performed by RNA-seq or tiling array. In particular, disease 
associated lncRNAs have been predicted by integrative analysis. 

2.3.4 Complexity of RNA regulatory mechanism 

The regulatory mechanism of non-coding RNAs is very diverse and complicated. With 
the advancement of non-coding RNA studies, we would expect the discovery of more 
regulatory mechanisms. 
	  
3.  Workshop contributions 

The workshop includes six invited speakers.  
Dr. Runsheng Chen is a Professor in the Institute of Biophysics of Chinese 

Academy of Sciences. He is a member of Chinese Academy of Sciences. His research 
focuses on the identification of non-coding RNA genes in multiple organisms, function 
prediction and annotation of long non-coding RNAs, and the construction of non-coding 
RNA annotation databases. His lab has developed computational methods and tools for 
predicting, annotating and classifying non-coding RNAs.  

Dr. Yiwen Chen received his PhD in physics from the University of North Carolina 
at Chapel Hill and is currently a Postdoctoral Fellow in Dr. Shirley Liu's Lab at the Dana-
Farber Cancer Institute at Harvard School of Public Health. Dr. Liu’s research focuses on 
developing bioinformatics methods and tools for analyzing high throughput data, using 
the dynamics of histone mark ChIP-seq and DNase-seq to infer in vivo transcription 
factor binding and regulation, employing genome wide approaches to understand the 
specificity and mechanism of epigenetic enzymes and lncRNAs, as well as integrating 
publicly available high throughput data to better understand cancer mechanisms. 

Dr. David Corey is a Professor in the Department of Pharmacology at University of 
Texas Southwestern Medical Center. He received his PhD in Chemistry from the 
University of California, Berkeley. His research focuses on the mechanism of promoter-
targeted antigene RNAs, the function of Argonaute and small RNA-dependent pathways 
in mammalian cell nuclei, the allele-selective inhibition of Huntington protein expression 
as well as the recognition of RNA and DNA by chemically modified nucleic acids and 
locked nucleic acids.    

Dr. Manuel Garber is an Associate Professor in the Program in Bioinformatics and 
Integrative Biology, and the Director of the Bioinformatics core at University of 
Massachusetts Medical School. He received his PhD in Mathematics from Brandeis 
University. His research focuses on the evolutionary history of non-coding genes as well 
as the systematic dissection of the transcriptional regulation of the immune response. His 
lab has also been developing the tools to analyze, integrate and fully leverage the 
advancements in genome wide experimental technologies. 

Dr. John Hogenesch is an Associate Professor of Pharmacology and the Associate 
Director of the Penn Genome Frontiers Institute at the University of Pennsylvania. He 
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received his PhD in Neuroscience from Northwestern University. His research focuses on 
the study of the mammalian circadian clock using genomic and computational tools. His 
lab has a longstanding interest in understanding noncoding RNA function through global 
gene expression analysis, and functional screening to gain insight into the potential 
cellular functions of lincRNAs and microRNAs.  

Dr. David Mathews is an Associate Professor in the Department of Biochemistry 
and Biophysics at University of Rochester Medical Center. He received his PhD in 
Chemistry and MD in Medicine from University of Rochester. His research focuses on 
predicting RNA structure and developing computational tools for targeting RNA with 
pharmaceuticals and for using RNA as a pharmaceutical. His lab has developed software 
for predicting secondary structure of RNAs, software for predicting base pairing 
probabilities using a partition function and methods for predicting a secondary structure 
common to multiple sequences.  
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Many colleges and universities across the globe now offer bachelors, masters, and doctoral degrees, along 
with certificate programs in bioinformatics.  While there is some consensus surrounding curricula 
competencies, programs vary greatly in their core foci, with some leaning heavily toward the biological 
sciences and others toward quantitative areas.  This allows prospective students to choose a program that best 
fits their interests and career goals.  In the digital age, most scientific fields are facing an enormous growth of 
data, and as a consequence, the goals and challenges of bioinformatics are rapidly changing; this requires that 
bioinformatics education also change.  In this workshop, we seek to ascertain current trends in bioinformatics 
education by asking the question, “What are the core competencies all bioinformaticians should have at the 
end of their training, and how successful have programs been in placing students in desired careers?”
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1.  Background 

Bioinformatics is an intrinsically multidisciplinary field, which makes educating students across 
this educational continuum difficult.  Therefore bioinformatics education has been dubbed an NP-
hard problem.1 In 1998, Professor Russ Altman led the charge to formalize bioinformatics 
education at the graduate level.  He specified five competency areas for bioinformatics training:  
biology, computer science, statistics, ethics, and core bioinformatics yet cautioned against 
defining the curriculum too narrowly.2 Previous workshops, RECOMB-BE and ISMB-WEB, have 
discussed bioinformatics education at the graduate and undergraduate levels1, and the AMIA has 
suggested a list of biomedical informatics core competencies.3 Defining bioinformatics curricula is 
a global effort.4–8 

1.1.  Challenges 

There are many challenges associated with bioinformatics education, including faculty/instructor 
knowledge, computing resources, and breadth of knowledge required for bioinformatics training.9 
One of the major challenges graduate programs face is a lack of widespread adoption of these 
courses at the high school and undergraduate levels.  Professors Ned Wingreen and David 
Botstein state, “The problem begins early in undergraduate education, and by the doctoral level 
there are severe interdisciplinary communication difficulties that are encountered by even the most 
motivated of collaborators.”10 Many have examined tactics to bring bioinformatics into the high 
school classroom in order to make the connection between biology and computation.11–13 Others 
have incorporated bioinformatics into biology, chemistry, and computer science undergraduate 
courses.14–23 Summer programs have been shown to be efficacious in helping students step into 
bioinformatics careers.24 Strategies to mitigate problems surrounding this educational divide are 
paramount to having an efficacious program that trains successful students.   

Another challenge for graduate training programs is the depth of multidisciplinary 
understanding needed to produce bioinformatics scientists instead of technicians.9, 25 Ranganathan 
et al. have proposed a “minimum skillset” for bioinformaticians26, and we would like to further 
address this to ask, “What are the key concepts and skills that one must graduate with in order to 
be successful today?” The modern biomedical researcher must be able to speak more than one 
language to successfully collaborate in a highly interdisciplinary environment; therefore it is 
beneficial to train a new generation of researchers who are well versed in the quantitative 
biomedical sciences and thus crucial to understand how such training programs succeed or fail. It 
would be valuable to faculty and directors of current programs or for those interested in bringing 
multidisciplinary programs to their institution to learn approaches and strategies for program 
development from existing and nascent programs.  A few of the presentation and discussion topics 
include: curriculum design, effectively integrating multiple disciplines into a training program, 
getting first year students up to speed, the impact of a bioinformatics training program on faculty 
research, effectiveness (what works & what does not?), online curricula, student success, and the 
skills and tools students should have at program completion. 
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2. Workshop Contributions 
 
Russ B. Altman is the Director of the Biomedical Informatics Training Program (BMI) at 
Stanford University.  BMI is an interdisciplinary program that focuses on learning to develop and 
apply quantitative and computational methods to various biological and medical problems.  BMI 
students represent a spectrum of educational backgrounds such as biology, research and clinical 
medicine, computer science, statistics, engineering, and a number of other fields.  The faculty 
members come from a broad range of departments, including Bioengineering, Computer Science, 
Genetics, Medicine, Pediatrics, Radiology, and Statistics to provide research training and 
coursework in a number of related fields.    

Ph.D. candidates are required to take core BMI classes, electives in computer science, 
statistics, mathematics, engineering, and allied informatics-related disciplines, coursework in 
social, legal, and ethical issues, and have access to unrestricted electives. BMI also aims to ensure 
students develop the ability to communicate their ideas and research effectively by having 
requirements and opportunities to present in journal clubs, colloquia, and lab meetings.   BMI has 
successfully produced over 100 graduates who have pursued a number of different careers and can 
be found as distinguished faculty at top universities and medical schools as well as industry 
leaders at major corporations and startups. 

James A. Foster is a Professor of Biological Sciences and Founding Member of the Institute 
for Bioinformatics and Evolutionary Studies (IBEST) and the Bioinformatics and Computational 
Biology (BCB) graduate program at the University of Idaho.  Students in the BCB graduate 
program participate in research that encompasses the disciplines of computer science, biology, 
mathematics, and statistics and are affiliated with IBEST.  BCB Ph.D. students may choose to 
focus their training in either the computer/mathematical sciences or the biological sciences. 

Faculty members include physicists, chemists, molecular biologists, organismal biologists, 
ecologists, behavioral biologists, mathematicians, statisticians, and computer scientists. With 
access to such resources and technology in numerous scientific disciplines, BCB graduate students 
can no doubt become versatile members of the scientific community in whatever career path they 
decide to follow.  

Lawrence E. Hunter is the Director of the Center for Computational Pharmacology and the 
Computational Bioscience Program at the University of Colorado Denver.  The Computational 
Bioscience Ph.D. program curriculum is designed to integrate training in both computation and 
biomedical sciences with a student's research and teaching activities. Therefore, graduate students 
are expected to emerge from this program as independent researchers with a solid foundation in 
computational methods and molecular biomedicine, the science and technology comprising the 
two, as well as the skills to collaborate, communicate, and develop computational approaches that 
can be applied to a wide variety of biological problems. 

Faculty represent a breadth of scientific research with multiple appointments in the 
departments of Medicine, Pharmacology, Biometrics, Biochemistry & Molecular Genetics, 
Computer Science, as well as from National Jewish Health.  Four key competencies: knowledge, 
communication, professionalism, and life-long learning skills structure the core of the program’s 
teaching philosophy.   The Computational Bioscience Program recognizes that bioinformatics is a 
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rapidly evolving field, and while these core objectives will remain steadfast, they are committed to 
continually reviewing, revising, and improving their curriculum to keep pace with this evolution.  

Jason H. Moore is the Director of the Institute for Quantitative Biomedical Sciences (iQBS) 
at Dartmouth College.  IQBS is based on the idea that biomedical research studies move through a 
series of related activities that require a specific skillset and a specific scientific language. In any 
given study, there are specialists who design the experiment, who collect and organize the data, 
who analyze the data and who interpret the data. The major areas of expertise are bioinformatics, 
biostatistics and epidemiology. While there is some overlap, there is no one discipline that 
incorporates understanding across the entire process.  

To cover these three disciplines both in student research and coursework, the program is 
interdepartmental with faculty from the Departments of Biological Sciences, Community and 
Family Medicine, Computer Science, Genetics and Medicine at Dartmouth College and the Geisel 
School of Medicine. Numerous collaborations exist between QBS members and those in other 
Ph.D. programs at Dartmouth including the Molecular and Cellular Biology Program, the Program 
in Experimental and Molecular Medicine and the Graduate Programs at The Dartmouth Institute 
for Health Policy and Clinical Practice. 

The overarching goal of QBS is to prepare students for productive careers as quantitative 
scientists in the biomedical sciences by cross-training Ph.D. students and providing in-depth 
collaborative experiences in specific applications. Successful students will be able to effectively 
lead biomedical research studies from start to finish or participate as interdisciplinary members of 
large collaborative groups.  QBS is an innovative approach to graduate training that combines 
multiple disciplines to train the next generation of collaborative scientists.  

David A. Ross is the Director of Computational Biology at Celera. Celera is well known for 
its original mission to sequence the human genome and subsequently provide clients with early 
access to this data. Since then Celera has made important contributions to scientific research by 
developing “shotgun” sequencing and commencing the Applera Genomics Initiative, an effort that 
identified over 40,000 novel SNPs which became the foundation for new genetic tests that Celera 
is developing. Today, they provide a number of services including diagnostic products used for 
personalized disease management. Celera represents the interdisciplinary nature of biotechnology, 
where a student with interdisciplinary training would be an asset in many ways.  Dr. Ross’ 
perspective on the bioinformatics training needed to be successful in an industry-based career will 
be welcomed. 
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A clear and predictive understanding of the etiology of autism spectrum disorders (ASD), a group of 
neurodevelopmental disorders characterized by varying deficits in social interaction and communication as well as 
repetitive behaviors, has not yet been achieved. There remains active debate about the origins of autism, and the 
degree to which genetic and environmental factors, and their interplay, produce the range and heterogeneity of 
cognitive, developmental, and behavioral features seen in children carrying a diagnosis of ASD. Unlocking the causes 
of these complex developmental disorders will require a collaboration of experts in many disciplines, including 
clinicians, environmental exposure experts, bioinformaticists, geneticists, and computer scientists. For this workshop 
we invited prominent researchers in the field of autism, covering a range of topics from genetic and environmental 
research to ethical considerations. The goal of this workshop: provide an introduction to the current state of autism 
research, highlighting the potential for multi-disciplinary collaborations that rigorously evaluate the many potential 
contributors to ASD. It is further anticipated that approaches that successfully advance the understanding of ASD can 
be applied to the study of other common, complex disorders. Herein we provide a short review of ASD and the work 
of the invited speakers.  
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1.  Autism Spectrum Disorders a Brief Introduction 

Autism spectrum disorders (ASD) are characterized by a range of clinical features that can vary 
from individual to individual in both the degree of severity and variability of the clinical 
presentation. This can include abnormalities in language, reciprocal social interactions, and/or 
other communication skills as well as repetitive behaviors1.  Autism spectrum disorders are 
divided into three basic categories: autistic disorder (frequently referred to as autism), Asperger 
syndrome, and pervasive developmental disorder (PDD-NOS)1. These disorders, as of 2008, affect 
1 in 88 children, and are more prevalent in males than females2.  The prevalence estimates of ASD 
have increased, above increases due to changes in diagnostic criteria1,3. In addition, children with 
ASD often have intellectual disability, estimated as high as 68% of ASD cases4, and 
approximately 75% have lifelong disability requiring social/educational support5. The presence of 
ASD can have a significant impact on the quality of life of affected persons, but also for their 
family and/or other caregivers.  
 
2.  The Pacific Symposium on Biocomputing (PSB) ASD Workshop 

Many studies have been investigating the connection between genetic variation and ASD.
 Twin studies have indicated that ASD are highly heritable6,7.  Linkage studies have implicated a 
polygenic basis for autistic disorder8. However, genome-wide association studies (GWAS) for 
ASD have identified few potential loci associated with ASD9–11.  Copy-number variation (CNV) 
studies, in contrast, have been more successful in identifying genomic regions associated with an 
increased risk for autism, and also other neurodevelopmental disabilities such as schizophrenia 
and epilepsy, with overlap of several genomic regions5,12,13. Copy number variations can be 
deletions, duplications, inversions, or translocations. While the location of CNVs may differ from 
individual to individual with ASD, these CNVs can still result in similar clinical features and 
outcomes12.  

 During the workshop, Dr. Santhosh Girirajan and Dr. Evan Eichler will describe work 
investigating the genetic and phenotypic heterogeneity of neurodevelopmental disorders in the 
context of CNVs, particularly for ASD12,14–16. Dr. Girirajan’s research has been focused on the 
discovery of genetic variants associated with the causation, diagnosis, and biological interpretation 
of ASD. A recent manuscript by Girirajan et al. showed evidence that individuals with autism 
have higher numbers of larger copy-number variants, and that these are more duplication based 
instead of deletion events17.   

Dr. Eichler will be speaking about the successful application of exome sequencing for 
children with ASD and their parents, as well as work determining copy-number variant (CNV) 
burden differences across neurodevelopmental phenotypes.  Dr. Eichler is a leader in study of the 
relationship between CNVs and human disease and has focused his research on building an 
understanding of the evolution, pathology and mechanism(s) of recent gene duplication and DNA 
transposition within the human genome18.  This research has included discovery of these important 
genomic regions, development of methods to assess their variation, detection of rapid gene 
evolution, and identifying the correlation between discovered genetic variation and phenotypic 
differences, including autism spectrum disorders.  
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Dr. Neale will describe the impact of high-throughput sequencing on ASD gene discovery, 
highlighting the contribution of rare variation to ASD as well as the pleiotropic effects of ASD 
associated mutations. His talk will also review challenges that remain in this field for detection 
and interpretation of inherited and de-novo rare-variants in ASD.  Dr. Neale has conducted 
analyses for genetic data focused on psychiatric illness, particularly ADHD and autism, but also 
Tourette’s obsessive compulsive disorder, schizophrenia19 and eating disorders. 

Investigation of environmental risk factors for ASDs is a growing research field19,20.  The 
wide heterogeneity of ASD symptoms, and how to best ascertain individuals for study, are 
challenging.  Different clinical features and the range of severity across individuals may stem from 
varying genetic contributors, but could also be due, in part, to variations in environmental 
exposures.  Further, increasing rates of ASD indicate the potential for environmental exposure 
playing an important role in the etiology and/or heterogeneity of ASD.  There is also a need for the 
exploration of gene-environment interactions20. Identifying both genetic variants concomitant with 
environmental exposure may provide important insights into the etiology of ASD.  

Dr. Heather Volk will be speaking at the workshop, describing her work exploring the 
relationship between environmental exposure and the etiology of autism. Her research focuses on 
the environmental and genetic epidemiology of autism and other neurodevelopmental disorders 
and on gene-environment interactions in complex disease.  Oxidative stress and inflammation may 
play a key role in ASD, with adverse prenatal effects. Dr. Volk will describe the impact of 
exposure to traffic-related air pollution on prenatal development and risk of ASD.  In two recent 
reports by Volk et al., children with autism were more likely be have the highest exposure to 
traffic-related air pollution during gestation and the first year of life, compared to non-autistic 
controls21 and maternal residence at time of delivery was more likely to be close to a freeway for 
autism cases vs. controls22. 

Dr. Pessah will be describing work from the UC Davis Medical Investigation of 
Neurodevelopmental Disorders (MIND) Institute.  Researchers at the MIND Institute are among 
the world’s experts on molecular and environmental contributors to ASD as well as the use of 
epidemiological data for testing the cellular and molecular mechanisms of ASD. These researchers 
have established the most comprehensive database in the world of the environmental exposures of 
children with confirmed ASD or atypical development, linked to an extensive archive of clinical 
samples, and Dr. Pessah will describe interdisciplinary approaches that leverage this unique set of 
resources. 

Epigenetic changes are another potential contributor to the etiology of ASD. Epigenetics is 
the study of heritable changes in chromosomes, not encoded in the DNA sequence, including 
DNA methylation and chromatin organization. DNA methylation is an important link between 
genetic and environmental interaction, as DNA hypomethylation is known to lead to genome 
instability. “Environmental epigenetics” explore this connection, identifying important 
environmental influences on epigenetic change23. For example, arsenic, cadmimum, benzene and 
other exposures have been associated with DNA methylation in genes, as well as dietary factors23. 
The invited speaker, Dr. LaSalle of the MIND Institute, has performed pioneering studies on the 
epigenetic etiologies of ASD. The clinical applications of her research include understanding the 
pathogenesis of the neurodevelopmental disorders autism, Rett syndrome, Prader-Willi syndrome, 
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Dup15q syndrome, and Angelman syndrome, through identifying epigenetic pathways disrupted 
in rare genetic disorders on the autism spectrum. Dr. LaSalle’s recent research is on environmental 
exposures affecting the DNA methylome and employing novel bioinformatics methods for 
analysis and visualization of epigenomic data relevant to autism. 

 An important part of any research is any potential ethical implications of those discoveries, 
this is true for ASD research as well. Because of the large numbers of individuals affected with 
autism, and the impact on children and families, as well as the potential for environmental 
exposure during pregnancy/youth to play a role, publications and press outside of the research-
manuscript realm are more likely to report research results from studies of environmental 
exposures and ASD. A well known example is a paper published in 1998 in The Lancet24, later 
retracted, linking measles, mumps, and rubella (MMR) vaccine and autism.  A review by the 
Institute of Medicine clearly showed no link between the thimerosal-containing vaccines after 
review of over 200 studies25. However the controversy that emerged over vaccines due to the 
initial publication has had a lasting impact on parents choosing to vaccinate children, and public 
health, even while autism is no more common among vaccinated than unvaccinated children26.   

 With the increasing amount of ASD research and the recent extension of research in 
different complex directions, there are a range of important ethical considerations when reporting 
the results of ASD studies to families, clinicians and the research community. Dr. Newshaffer is 
an epidemiologist and his currently involved in large risk factor epidemiology studies, autism 
phenotyping studies, genomic and epigenomic research, and studies focused on the utilization and 
evaluation of health care and behavioral intervention services1,27–29. He will discuss a number of 
issues including the uncertainty, comprehension, inadvertent harm, as well as appropriate roles of 
clinicians, scientists, and the media, in ASD communication.  

 
3.  Conclusions 

While a complete understanding of ASD is still growing, through comprehensive and 
collaborative efforts we may begin to identify additional pieces of the ASD puzzle that can be 
linked with our existing current knowledge to grow a clearer picture of these disorders. The 
collaboration of multiple domain-experts will be required to effectively analyze the growing 
genetic and epidemiological data being collected. To foster these cross-disciplinary interactions 
and research projects, we have developed this workshop for PSB, to share the current knowledge 
of the genetic and environmental contributions to ASD and to highlight methods for future 
research in this field, including important ethical considerations.  The intention is to grow new 
ideas, collaborations, and possibilities for future research in this field, between current autism 
spectrum researchers and other scientists in attendance at PSB. In addition to improving the 
understanding of the etiology of ASD, methodologies developed for the ASD field have the 
potential for expanding and improving the study of other common, complex disorders.  
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