
Session on Gene Expression and Genetic Networks

Pacific Symposium on Biocomputing, 1999

Hawaii , January 4-9, 1999

Tutorial:

Gene Expression Data Analysis and Modeling

Patrik D’haeseleer, Shoudan Liang and Roland Somogyi

Patrik D’haeseleer
University of New Mexico, Dept. Computer Science, Albuquerque, NM 87131
(patrik@cs.unm.edu)

Shoudan Liang
SETI Institute, NASA Ames Research Center, Moffett Field, CA 94035
(sliang@mail.arc.nasa.gov)
Also consulting for Incyte Pharmaceuticals Inc., 3174 Porter Dr., Palo Alto, CA 94304

Roland Somogyi
Incyte Pharmaceuticals Inc., 3174 Porter Dr., Palo Alto, CA 94304
(rsomogyi@incyte.com)





D’HAESELEER, LIANG, SOMOGYI PSB99 TUTORIAL: GENE EXPRESSION ANALYSIS AND MODELING

2

Introduction
The traditional approach to research in Molecular Biology has been an inherently local
one, examining and collecting data on a single gene, a single protein or a single
reaction at a time. This is, of course, the classical reductionist stance: to understand
the whole, one must first understand the parts. Over the years, this approach has led to
remarkable achievements, allowing us to make highly accurate biochemical models of
such favorites as bacteriophage Lambda.

However, with the advent of the "Age of Genomics" an entirely new class of data is
emerging. To date, analysis of this large scale data has consisted of little more than
descriptions of how many genes were previously unknown, which genes are over- or
underexpressed under certain circumstances, etc. Of course, such data is a valuable
resource for researchers who are focusing on individual genes. But can we really
expect to construct a detailed biochemical model of, say, an entire yeast cell with some
6000 genes (only about 1000 of which were defined before sequencing started, and
about 50% of which are clearly related to other known genes), by analyzing each gene
and determining all the binding and reaction constants one by one? Likewise, from the
perspective of drug target identification for human disease, we cannot realistically
hope to characterize all the relevant molecular interactions one-by-one as a
requirement for building a predictive disease model.

There is a need for methods that can handle this data in a global fashion, and that can
analyze such large systems at some intermediate level, without going all the way
down to the exact biochemical reactions. At the very least, such an analysis could help
guide the traditional pharmacological and biochemical approaches towards those
genes most worthy of attention among the thousands of newly discovered genes.
Ideally, a sufficiently predictive and explanatory model at an intermediate level could
obviate the need for an exact understanding of the system at the biochemical level.

Large scale gene expression mapping is motivated by the premise that the information
on the functional state of an organism is largely determined by the information on gene
expression (based on the central dogma). This process may be conceptualized as a
genetic feedback network, in which information flows from gene activity patterns
through a cascade of inter- and intracellular signaling functions back to the regulation
of gene expression. Gene sequence information in cis regions (regulatory inputs) and
protein coding regions (regulatory outputs; determines biomolecular dynamics) is
expanded into spatio-temporal structures defining the organism. Some principles of
this behavior may be captured by computational models, such as Boolean networks.

In order to draw meaningful inferences from gene expression data, it is important that
each gene is surveyed under several different conditions, preferably in the form of
expression time series. Such data sets may be analyzed using a range of methods
with increasing depth of inference, such as cluster analysis, correlation analysis, and
determination of mutual information content. Abstract computational models may serve
as a test bed for the development of these inference techniques. Only in such models
can the dynamic behavior of many elements (trajectories, attractors) be unequivocally
linked to a selected network architecture (wiring and rules). Beyond cluster analysis
lies the more ambitious realm of genetic network inference: complete reverse
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engineering of the underlying regulatory interactions from the expression data, either
using idealized models such as Boolean networks, or using more realistic continuous
models.

1. Introduction to principles of network behavior in the Boolean
network model

1.1. Multigenic & pleiotropic regulation: the basis of genetic networks
From a strictly reductionist viewpoint, we may begin by asking “which gene underlies
this disease?” or “with which molecule does this protein interact?”. The resulting
investigations have shown
us that more often than not,
several genes contribute to a
disease, and that molecules
interact with more than one
partner (Fig.1). The
challenge now lies in
discovering what the
significant connections are
in these regulatory networks,
and which abstract
principles underlie the
network architecture and
dynamics allowing it to
function in reliable way.

1.2. A simple, binary conceptualization of a biomolecular network
Perhaps a model based on idealized, elementary mechanisms can illustrate the
nature of complex behavior. Boolean networks constitute such a model:

•  Each gene may receive one
or several inputs from other
genes or itself (Fig. 1).

•  Assuming a highly
cooperative, sigmoid input-
output relationship, a gene
can be modeled as a binary
element (Fig. 2).

•  The output (time=t+1) is
computed from the input
(time=t) according to logical
or Boolean rules. Time is
discrete, and all genes are
updated simultaneously.
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Figure1. From pair-wise interactions to networks. Somogyi R, Fuhrman
S, Askenazi M, Wuensche A (1997) The Gene Expression Matrix:
Towards the Extraction of Genetic Network Architectures. Nonlinear
Analysis, Proc. of Second World Cong. of Nonlinear Analysts
(WCNA96), 30(3):1815-1824.
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Figure 2. From continuous to discrete kinetics. Sigmoid
interactions represent a form of data reduction, a “many to one
mapping”, which has profound implications on systems stability.
Somogyi, R (1998) Many to One Mappings as a Basis for
Life.Interjournal (http://rsb.info.nih.gov/mol-
physiol/ICCS/ms/mappings.html)
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1.3. Wiring and rules determine network dynamics
The dynamics of Boolean networks of any complexity are determined by the wiring
and rules, or state-transition tables. The wiring diagram is shown in the top panel of
Fig. 3.  The lines connect the upper row of output elements (time=t) to the lower row of
input elements (time=t+1). The no. of inputs and the pertaining decimal rule are shown
underneath each wiring diagram. Time space patterns or trajectories (lower panels)
can be directly calculated from the wiring and rules. The middle panel shows a point
attractor, its basin of attraction including 5 states. The lower panel illustrates a 2-state
dynamic attractor (repeating pattern), with a basin of 3 states. The basins of attraction
cover all 8 possible states of the system.

           

A B C

A B C
2 1 1inputs

rule 2 24

Basis for rules:

1. A activates B
2. B activates A and C
3. C inhibits A

Wiring and rules

Trajectory 1 results in a point attractor

Trajectory 2 results in a 2-state dynamic attractor

iteration A B C

1 1 0 0

2 0 1 0

3 1 0 1

4 0 1 0

iteration A B C

1 1 1 0

2 1 1 1

3 0 1 1

4 0 0 1

5 0 0 0

6 0 0 0

Figure 3. Network wiring diagram & rules. Somogyi & Sniegoski,1996; Complexity 1(6):45-63
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1.4. Many states converge on one attractor

All Boolean network time series terminate in specific, repeating attractor patterns.
These can be visualized as basin of attraction graphs (Fig. 4). The network trajectory
(upper right panel) inexorably leads to a final state or state cycle - an attractor (center).
Each state of the trajectory is shown as a point (labeled by its time step number). The
labeled series of state transitions is one of many trajectories converging on the
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Figure 4. Basin of attraction of 12-gene Boolean genetic network model. Somogyi & Sniegoski,1996; Complexity
1(6):45-63. The model network trajectories and basins of attraction shown here were generated using the DDLAB
software by Andy Wuensche, Ph.D. Andy Wuensche's web site: http://www.santafe.edu/~wuensch/
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repeating, six-state attractor pattern. All of the centripetal trajectories leading to the
attractor form the basin of attraction.

In summary, our perusal of Boolean genetic network models has given us some
insight into network principles. Even given complex architecture of wiring and rules,
these systems produce predictable and stable behavior: all trajectories are strictly
determined, and many states converge on one attractor. This suggests for living
systems that small perturbations altering a particular state of the system may have no
effect on general system outcome. While distributed signaling systems may appear
unwieldy from a superficial standpoint, they confer the stability and robustness that
characterize evolved living systems.

1.5. Network terminology
    Architecture

wiring <-> biomolecular connections
rules (functions, codes) <-> biomolecular interactions

     Dynamics
state <-> set of molecular activity values; e.g. gene 

expression, signaling molecules
state transition <-> response to previous state
trajectory <-> series of state transitions; e.g. differentiation,

perturbation response
attractor <-> final outcome; e.g. phenotype, cell type,

chronic illness

2. Gene expression data

2.1. What's available?

2.1.1. mRNA levels

2.1.1.1. cDNA microarrays

Developed at Stanford University, the microarrays are glass slides on which cDNA has
been deposited by high-speed robotic printing. They are ideally suited for expression
analysis of up to 10,000 cDNA clones per array from EST (expressed sequence tag)
sequencing projects (such as the private effort at Incyte Pharmaceuticals and the
public Washington University project).

Microarrays measurements are carried out as differential hybridizations to minimize
errors originating from cDNA spotting variability: mRNA from two different sources (e.g
control and drug-treated), labeled with two different fluorescent dyes, is passed over
the array at the same time. The fluorescence signal from each mRNA population is
evaluated inependently, and then used to calculate the treated/control expression
ratio.

Patrick Brown's lab at Stanford has used microarrays to measure gene expression
levels for the entire yeast genome (approximately 6400 distinct cDNA sequences)
during the diauxic shift (transition from sugar metabolism to ethanol metabolism),
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sporulation and the entire cell cycle. These data sets are publicly available. The Brown
Lab also has an online guide to build your own arrayer and scanner. These
microarrays have been commercialized by Incyte Pharmaceutical’s Microarray
Division (formerly Synteni). Incyte Gene Expression Microarrays (GEMs) are available
with templates from human, rat, mouse, plant and microbial genomes.

2.1.1.2. Oligonucleotide chips
These chips, produced by Affymetrix, consist of small glass plates with thousands of
short 20-mer oligonucleotide probes attached to their surface, The oligonucleotides
are synthesized directly onto the surface using a combination of semiconductor-based
photolithography and light-directed chemical synthesis. Due to the combinatorial
nature of the process, very large numbers of mRNAs can be probed at the same time.
However, manufacturing and reading of the chips requires expensive equipment.
Current chips have over 65,000 different probes, with typically several probes for each
mRNA.

Affymetrix currently manufactures GeneChips for 42,000 human genes and ESTs,
30,000 murine genes and ESTs, and 6,100 yeast ORFs (whole genome). Little data is
publicly available, with the exception of a S. cerevisiae expression database
generated in collaboration with Ron Davis' lab.

2.1.1.3. RT-PCR
To measure gene expression using RT-PCR (Reverse Transcriptase Polymerase
Chain Reaction), the mRNA is first reverse-transcribed into cDNA, and the cDNA is
then amplified to measurable levels using PCR.  Using built-in calibration techniques,
RT-PCR can achieve high accuracy coupled with an exceptional sensitivity of
10molecules/10µl assay volume and a dynamic range covering 6-8 orders of
magnitude. The method does require PCR primers for all the genes of interest, and is
not inherently parallel like the previous three, so automation is crucial to scale up.

Roland Somogyi has used this method to measure the expression levels of 112 genes
at nine different time points during the development of rat cervical spinal cord, and 70
genes during development and following injury of the hippocampus. The former data
set is publicly available, the second should be available soon.

2.1.1.4. Serial Analysis of Gene Expression
SAGE uses a very different technique for measuring mRNA levels. First, double
stranded cDNA is created from the mRNA. A single 10 base pair (long enough to
uniquely identify each gene) "sequence tag" is cut from a specific location in each
cDNA. Then the sequence tags are concatenated into a long double stranded DNA
which can then be amplified and sequenced. This method has two advantages: the
mRNA sequence does not need to be known a priori—so it will also detect previously
unknown genes—and it uses sequencing technology that many labs already have.
The method is rather complex though, and requires a large amount of sequencing.

SAGE has been used to analyze the set of genes expressed during three different
phases of the yeast cell cycle. SAGE has also been used to monitor the expression of
at least 45,000 human genes in normal colon cells, colon tumors, colon cell lines,
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pancreatic tumors and pancreatic cell lines. Some of this data is available upon
request.

2.1.2. Protein levels
Protein levels are much harder to quantify than mRNA levels. 2D-PAGE separates
proteins on a two-dimensional sheet of gel, first in one direction based on their
isoelectric point, and then in the other direction based on their molecular weight. The
result is a two-dimensional image with a large number of protein "spots". The intensity
of each spot is proportional to the amount of the specific protein present.

It is not a priori known which protein each spot represents, although the position of
known proteins can be estimated. Also, new microsequencing and mass spectrometry
techniques allow spots to be identified with proteins of which the sequence is known.
The resolution of the spots may not be high enough to separate all proteins, and 2D
gel results have been hard to reproduce, because of sensitivity to operating
parameters and a host of possible artifacts. These problems have been somewhat
alleviated lately by the use of highly standardized protocols and higher accuracy
techniques.

There are several 2D gel databases for E. coli, yeast, Drosophila, rat, mouse, human,
etc. One of the most important ones is the SWISS-2DPAGE database, containing a
total of 518 entries from human, yeast, E. coli and Dictyostelium. . 2D-PAGE
proteomics is currently being commercialized in a partnership between Incyte
Pharmaceuticals and Oxford Glycosciences.

2.2. Data requirements for gene network inference
The purpose of this section is twofold: (1) to examine some of the difficulties and
pitfalls associated with inferring gene networks from large-scale data; and (2) to
provide some guidelines for experimentalists who are collecting such data with the
intent of using it for genetic network inference.

2.2.1. The Curse of Dimensionality
Measuring more variables allows for a more exact model, but makes the correct model
exponentially harder to find.

Our human intuition when faced with the task of modeling an unknown process is to
observe as many parameters of the system as possible. This is clearly reflected in the
current effort to measure the expression levels of more and more genes
simultaneously, rather than to measure these expression levels as often as possible
(which would require reusable or continuous measurement techniques).

However, in Machine Learning it is well known that the more variables one needs to
model, the harder the modeling task becomes, because the size of the search space
increases exponentially with the number of parameters of the model. This is often
referred to as the Curse of Dimensionality.

Does this mean that our human intuition about modeling is wrong? Not necessarily.
Although we humans do want to be able to look at as many variables of the problem
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as possible, we rather quickly select those we think are really important to the system,
and simply ignore the others. Our reason for wanting to know all the variables is so we
wouldn't miss any of the important ones, not so we could include all the non-important
ones in our model. Similarly, in Machine Learning, careful selection of the input
variables is crucial to get around the Curse of Dimensionality. Use of a priori
information can also help narrow down the range of plausible models.

2.2.2. What are the important variables?
The state of a cell consists of all those parameters--both internally and externally--
which determine its behavior. Following the Central Dogma of molecular biology, the
activity of a cell is determined by which of its genes are being expressed or not. If a
particular gene is being expressed, its DNA is transcribed into complementary
messenger RNA (mRNA), which is then translated into the specific protein the gene
codes for. We can measure the level of expression of each gene by measuring how
many mRNA copies are present in the cell.

"The mRNA levels sensitively reflect the state of the cell, perhaps
uniquely defining cell types, stages, and responses. To decipher the
logic of gene regulation, we should aim to be able to monitor the
expression level of all genes simultaneously ... " [Lander]

This cartoon picture of the Central Dogma is of course highly incomplete. Apart from
the classical DNA → mRNA → protein pathway, the genes in the DNA are themselves
regulated by the presence or absence of certain proteins. Furthermore, many of the
interactions going on in the cell occur entirely at the protein level, which can cause
significant discrepancies between protein and mRNA levels. In a recent comparison of
selected mRNA and protein abundances in human liver, a correlation of only 0.48 was
observed between the two. Clearly, protein levels form an important part of the internal
state of a cell.

In addition to mRNA and protein levels, one could imagine measuring a number of
other parameters, including cell volume, growth rate, methylation states of DNA,
phosphorylation state of proteins, localization of proteins and mRNA within the cell, ion
levels, etc. One class of data which could be very useful is metabolite and nutrient
levels.

For example, during the diauxic shift in yeast (transition from glucose metabolism to
ethanol metabolism), one would of course need to measure glucose levels, but
preferably also a number of other metabolites involved such as acetate, pyruvate,
glycogen, trehalose, etc. Arkin et al. uses capillary zone electrophoresis to
simultaneously measure eight of the small molecular species in an in vitro glycolysis
reaction.

Currently, most studies trying to infer expression mechanisms from cell state data use
mRNA levels, because they are the easiest to measure (especially with the new large-
scale gene expression technologies). Large-scale protein measurements tends to be
very incomplete (typically only measuring the highest abundancy proteins), but can be
supplemented with more exact measurements of individual proteins which are known
to play an important role. If most protein levels turn out to be exactly correlated with the
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corresponding mRNA levels, they can always be left out of the model. Similarly, when
measuring gene expression data on a process involving metabolism (and which
cellular process doesn't?), an effort should be made to quantitate the most important
metabolite and nutrient levels.

2.2.3. Constraining the model
The space of models to be searched increases exponentially with the number of
parameters of the model, and therefore with the number of variables. Narrowing down
the range of plausible models by putting on extra constraints can simplify the search
for the best model considerably. For example, constraining the genes to be regulated
by no more than 7 other genes will drastically simplify the number of regulatory
interactions we need to consider. Similarly, for Boolean networks, constraining the
rules for each gene to be biologically plausible can significantly reduce the number of
Boolean rules that match the data we have on the regulation of each gene.

Constraining the model by using a priori information about what is biologically known
or plausible is probably the most important weapon we have to fight the Curse of
Dimensionality! How precisely to include this information into the inference process is
the true art of modeling.

2.2.4. Number and variety of data points needed
The gene network inference techniques we will cover have one thing in common: they
tend to be data-hungry. Measuring gene expression time series has the nice feature of
yielding lots of data. However, all the data points in a single time series tend to be
about a single dynamical process in the cell, and will be related to the surrounding
time points. A data set of ten expression measurements under different environmental
conditions, or with different mutations, will actually contain more information than a
time series of ten data points on a single phenomenon. The advantage of the time
series is that it can provide crucial insights in the dynamics of the process.

Both types of data, and multiple data sets of each, will likely be needed to unravel the
regulatory interactions of the genes. Indeed, to correctly infer the regulation of a single
gene, we need to observe the expression of that gene under many different
combinations of expression levels of its regulatory inputs. This implies a wide variety of
different environmental conditions and perturbations.

How much data points do we really need to infer a gene network on N genes? For a
completely unconstrained, potentially fully connected Boolean network model, we
would need to measure al possible 2N input-output pairs. This is clearly inconceivable
for realistic numbers of genes (30 genes would imply more than a billion data points
needed). If we constrain the genes to have no more than K inputs from other genes,
the number of (independent!) data points needed becomes proportional to log(N).
John Hertz estimated K log(N/K) at PSB '98, but preliminary experimental results from
Liang et al at PSB '98 and Akutsu et al at this Symposium, as well as calculations
based on the probability that all the entries in the rule tables are uniquely specified
after n independent input-output pairs, suggest the number of data points needed
scales as 2K log(N).
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Similarly, for a fully connected linear or quasi-linear continuous model, we would need
at the very least as many data points as genes. For models with restricted connectivity,
we expect a similar improvement as for the Boolean case. From an information theory
viewpoint, we retain more information by not quantizing the expression levels.
Assuming a 15-20% quantitation error for RT-PCR, each measurement can give us up
to 2-3 bits of information, whereas quantizing into Boolean values would give us only
one bit. From cDNA microarrays and oligonucleotide chips, we can get 1-2 bits per
measurement (assuming a 30-50% quantitation error).

3. Essential network analysis

3.1. Inference of shared control processes
In addition to studying models for the purpose of identifying organizational and
dynamic principles, they provide an exploratory framework for the development of
analytical tools. One of the major challenges in molecular signaling biology today lies
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in extracting functional relationships from e.g. gene expression time series. We will
show how this can be accomplished using model networks.

3.1.1. Euclidean cluster analysis of a model network
As a first step toward, we need to address the classification of gene activity patterns:

•  Similarities in gene expression patterns suggest shared control.

•  Clustering gene expression patterns according to a heuristic distance measure is
the first step toward constructing a wiring diagram.

•  Euclidean distance as a measure for the difference between gene expression
patterns: A gene expression pattern over n time points is a point in n-dimensional
parameter space, therefore distance = √Σ(ai-bi)

2

In the example above (Fig. 5), we used Euclidean clustering to generate dendrograms
of genes grouped according to shared inputs and shared dynamics . Note that the
clustering pattern in the functional time series (lower panel) closely resembles the
gene groupings according to wiring (upper panel). This analysis suggests that such
clustering may be applied to biological activity data for the inference of shared control
processes.

3.2. Principles of reverse engineering using Boolean networks

3.2.1. Biological information flow
As our experimental technologies become more sophisticated in sensitivity and
throughput, we are generating vast amounts of information at all levels of biological
organization. The challenge lies in inferring important functional relationships from
these data. This problem is becoming acute as we are preparing to generate
molecular activity data (e.g. mRNA and protein expression) for organisms in health
and disease . This new perspective suggests to us to treat the organism as an
information processing system. But how can we conceptualize information flow in
living systems? There are several issues we need to address before applying the
information concept in a non-trivial way.

•  What is information?
•  Can information be quantified?
•  Can information measures be used in network analysis?

3.2.2. Information can be quantified: Shannon entropy (H)
From a mathematical-statistical standpoint, information can be quantified as the
Shannon entropy (after Claude Shannon, the founder of information theory). The
Shannon entropy (H) can be calculated from the probabilities of occurrences of
individual or combined events as shown below:

H(X)= - Σ px log px

H(Y)= - Σ py log py

H(X,Y) = - Σ px,y log px,y
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The determination of H is illustrated in a numerical
example (Fig. 6) . A single element is examined in
a). Probabilities (p) are calculated from frequency
of on/off values of X and Y. The distribution of
value pairs is shown in b). H is calculated from the
probability of co-occurrence of x, y values over all
measurements.

3.2.3. The Shannon entropy is maximal if
all states are equiprobable
The Shannon entropies for a 2-state information
source (0 or 1) are graphed in Fig. 7. Since the
sum of the state probabilities must be unity,
p(1)=1-p(0) for 2 states.

3.2.4. Mutual information (M): the
information (Shannon entropy) shared by
non-independent elements
Figure 8 illustrates the relationships between the
information content of individual and combined,
non-independent information sources using Venn
diagrams. Mutual information, M, is defined as the
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(1998) Pacific Symposium on
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observations. Liang S, Fuhrman S, Somogyi R (1998) REVEAL,
A General Reverse Engineering Algorithm for Inference of
Genetic Network Architectures. Pacific Symposium on
Biocomputing 3:18-29.
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sum of the individual entropies minus the
entropy of the co-occurrences:

M(X,Y) = H(X)+H(Y) - H(X,Y) .

In each case, add the shaded portions of both
squares to determine one of the following:
[H(X)+H(Y)], H(X,Y), and M(X,Y). The small
corner rectangles represent information that X
and Y have in common. H(Y) is shown smaller
than H(X) and with the corner rectangle on the
left instead of the right to indicate that X and Y
are different, although they have some mutual
information.

3.2.5. A candidate Boolean network for
reverse engineering
Can measures of information be used to quantify causal relationships between
elements fluctuating in a dynamic network? Using the example of Fig. 9, we will
attempt to reconstruct the wiring diagram, a), and the Boolean rules, b), from the  state
transition table, c) (input column shows all states at time=t, outputs (prime) correspond
to the matching states at time=t+1).

3.2.6. The principle behind REVEAL (REVerse Engineering ALgorithm)
The illustration in Fig. 10 (see next page) details the steps taken in REVEAL for the
inference of functional connections and rules from the dynamics (i.e. state transition
tables) of the Boolean network shown in Fig. 9. Hs and Ms are calculated from the time
series or look-up tables according to the definitions (shaded). The wiring of the
example Boolean network can
be inferred from the state
transition table using
progressive M-analysis (left, odd
steps). Once the inputs (wiring)
to a gene are know, one can
construct the rule table by
matching the states of the inputs
to those of the output from the
state transition table (right, even
steps).

3.2.7. Inference from
incomplete time series or
state transition tables
REVEAL will quickly find a
minimal solution for a Boolean
network given any set of time
series (Fig. 11). For n=50

A   B   C

A’   B’  C’

input output
A B C A' B' C'
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

A' = B
B' =  A or C
C' = (A and B) or (B and C) or (A and C)

a c

b

Figure 9. Target Boolean network for
reverse engineering. Liang S, Fuhrman
S, Somogyi R (1998) Pacific Symposium
on Biocomputing 3:18-29.
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Figure 11 Calculation of Shannon entropy from a series of
observations. Liang S, Fuhrman S, Somogyi R (1998) REVEAL, A
General Reverse Engineering Algorithm for Inference of Genetic
Network Architectures. Pacific Symposium on Biocomputing 3:18-29.
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(genes) and k=3 or less (number of inputs per gene), the correct or full solution can be
unequivocally inferred from 100 state transition pairs. Note that for n=50 (genes) and
k=3 (inputs per gene) only a small fraction (~100) of all possible state transitions (250 ~
1015 !) is required for reliable inference of the network wiring and rules.

Input entropies

H(A) 1.00
H(B) 1.00
H(C) 1.00

H(A,B) 2.00
H(B,C) 2.00
H(A,C) 2.00

H(A,B,C) 3.00

Rule table for A
Determination of inputs for element A rule no. 2

input output
H(A') 1.00 B A'

H(A',A) 2.00 M(A',A) 0.00 M(A',A) / H(A') 0.00 0 0
H(A',B) 1.00 M(A',B) 1.00 M(A',B) / H(A') 1 .00 1 1
H(A',C) 2.00 M(A',C) 0.00 M(A',C) / H(A') 0.00

Rule table for B
Determination of inputs for element B rule no. 14

input output
H(B') 0.81 A C B'

H(B',A) 1.50 M(B',A) 0.31 M(B',A) / H(B') 0.38 0 0 0
H(B',B) 1.81 M(B',B) 0.00 M(B',B) / H(B') 0.00 0 1 1
H(B',C) 1.50 M(B',C) 0.31 M(B',C) / H(B') 0.38 1 0 1

H(B',[A,B]) 2.50 M(B',[A,B]) 0.31 M(B',[A,B]) / H(B') 0.38 1 1 1
H(B',[B,C]) 2.50 M(B',[B,C]) 0.31 M(B',[B,C]) / H(B') 0.38
H(B',[A,C]) 2.00 M(B',[A,C]) 0.81 M(B',[A,C]) / H(B') 1 .00

Rule table for C
rule no. 170

Determination of inputs for element C input output
A B C C '

H(C') 1.00 0 0 0 0
H(C',A) 1.81 M(C',A) 0.19 M(C',A) / H(C') 0.19 0 0 1 0
H(C',B) 1.81 M(C',B) 0.19 M(C',B) / H(C') 0.19 0 1 0 0
H(C',C) 1.81 M(C',C) 0.19 M(C',C) / H(C') 0.19 0 1 1 1

H(C',[A,B]) 2.50 M(C',[A,B]) 0.50 M(C',[A,B]) / H(C') 0.50 1 0 0 0
H(C',[B,C]) 2.50 M(C',[B,C]) 0.50 M(C',[B,C]) / H(C') 0.50 1 0 1 1
H(C',[A,C]) 2.50 M(C',[A,C]) 0.50 M(C',[A,C]) / H(C') 0.50 1 1 0 1

H(C',[A,B,C]) 3.00 M(C',[A,B,C]) 1.00 M(C',[A,B,C]) / H(C') 1 .00 1 1 1 1

H(X) = - ∑ p(x) log p(x)
H(X,Y) = - ∑ p(x,y) log p(x,y)

M(X,Y) = H(X) + H(Y) - H(X,Y)
M(X,[Y,Z]) = H(X) + H(Y,Z) - H(X,Y,Z)

1
2

3
4

5
6

Figure 10 REVEAL principles. Liang S, Fuhrman S, Somogyi R (1998) REVEAL, A General Reverse Engineering
Algorithm for Inference of Genetic Network Architectures. Pacific Symposium on Biocomputing 3:18-29.
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4. Fundamental gene expression data visualization and analysis

4.1. Visualization of gene expression patterns using the density plot
By measuring relative gene expression levels for multiple genes at multiple time
points, we obtain a measure of the dynamic output of a genetic network. The time
points for Fig. 11 were selected because of their appropriateness to the time scale of
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•samples: cervical spinal cord RNA, triplicate animals
•procedure: ratiometric RT-PCR with internal standard
•analysis: PAGE, densitometry, averaging, normalization

Roland Somogyi, Ph.D.
•NIH - rolands@helix.nih.gov - (301)-402-1407
Xiling Wen, M.D.
Stefanie Fuhrman, Ph.D.
Susan Smith

Figure 11. Temporal expression patterns for 112 genes expressed in rat spinal cord, as determined by RT-PCR.
(Wen et al. (1998). Proc Natl Acad Sci USA, 95:334-339.)
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rat central nervous system development. Time points range from embryonic day 11
(E11, when spinal cord development begins) to adult or postnatal day 90(P90).
Darkest color, highest expression level detected; white, undetectable. For each gene,
expression levels are normalized to maximal expression for that gene. Each data point
(colored square) is the average of results from three animals. Although the genes we
selected are only a tiny fraction of the total number of genes expressed during spinal
cord development, they are representative of the different types of proteins that are
expressed during the differentiation of tissue. The neurotransmitter- and peptide-
related genes encode the proteins and peptides responsible for intercellular
communication during CNS development. We have focused on intercellular signaling
genes, since these are directly responsible for differentiation in a multicellular
organism.

4.2. Cluster and visualization using the dendrogram
Genes with similar temporal expression patterns may share common genetic control
processes, and may therefore be related functionally. Clustering gene expression
patterns according to a heuristic distance measure is the first step toward constructing
a "wiring diagram" for a genetic network. Such diagrams should permit the
development of new hypotheses concerning gene interactions during recovery from
injury and disease, or in therapeutic drug treatments.

Exhaustive reverse engineering--the inference of wiring diagrams and functional rules
from expression data--is only possible for model networks with current algorithms and
limited data sets. However, careful experimental designs and optimization of inference
tools may allow significant progress in the future.

4.2.1. Euclidean cluster analysis
•  Euclidean distance: A gene expression pattern over n time points is a point in n-

dimensional parameter space:
Distance = √Σ(ai-bi)

2

•  Euclidean cluster analysis implies shared wiring and rules (see above, Fig. 6).

We have used the Euclidean distance measure to group genes according to
similarities in their temporal expression patterns. This method is similar to clustering
according to positive linear correlations. Figure 12 shows a tree generated by the
FITCH clustering algorithm using the Euclidean distance matrix for 112 genes
expressed in the rat spinal cord. Similarities in temporal expression patterns are
indicated by common branch points. According to visual inspection of the tree, the
genes appear to cluster into groups, or "waves." Each wave (shown as an inset)
corresponds to an average pattern for all the genes of the corresponding cluster: wave
1 genes are expressed at a high level early in development and then decrease in
expression toward adult; wave 2 genes are expressed at low levels early, and then
plateau; etc. One cluster, "constant," contains the genes whose expression levels are
relatively invariant over the time course. Within each wave, the genes may be said to
share the same expression kinetics over the time course E11 (embryonic day 11) to
adult (P90 or postnatal day 90). The generation of Euclidean distance trees may
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provide clues as to which genes share a common genetic control process. For
example, the members of wave 3 may all be regulated by a particular gene. Clustering
trees are a first step toward the generation of a "wiring diagram" for a genetic network.

4.2.2. Mutual information cluster analysis
Mutual information: Most general measure of correlation M(A, B) = H(A) + H(B) - H(A,
B). M is the information shared by (temporal gene expression patterns) A and B. H
refers to the Shannon entropy (H = -Σ pilogpi), which for our purposes is a measure of
the number of expression levels exhibited by a gene. H is high if a gene shows a large
number of expression levels over a time course; H is low if the expression pattern is
relatively invariant over time. The higher the value of H, the more information the
pattern contains. A completely flat, or constant, expression pattern carries no
information, and has an H of zero. Note: H reveals nothing about specific expression
levels at individual time points, because it is based only on the relative frequencies,
i.e. the probability of occurrence, (pi), of expression levels within a time course.

"Coherence" (normalized mutual information): Captures similarities in patterns
independent of individual information entropies. "In how far is pattern A able to predict
pattern B?"  C = M(A, B) / Hmax(A, B). Coherence is an important consideration
because mutual information increases with entropy. We can correct for this bias by
dividing the mutual information by the maximum entropy of the pair. For example, even
though two genes with relatively "constant" expression patterns have low Hs (and

• Euclidean distance measure on combined 
expression value and slope vectors.

• Branch lengths determined from pair-wise 
distance matrix.

• Optimization of tree using least squares 
routine (Joe Felsenstein’s FITCH).

Roland Somogyi, Ph.D.
NIH - rolands@helix.nih.gov 

Xiling Wen, M.D.
Stefanie Fuhrman, Ph.D.
Susan Smith
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Fig. 12. Euclidean distance tree for genes expressed in rat spinal cord. Carr DB, Somogyi R, Michaels G (1997)
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therefore, low M) we
may wish to use C to
acknowledge that
they nevertheless
have highly similar
patterns.

Mutual information
(Coherence) cluster
analysis implies
shared wiring, with no
constraints on rules
(Fig 13). Unlike the
Euclidean distance
measure, mutual
information
determines negative
and nonlinear, as well
as positive and linear,
correlations. Mutual
information therefore
clusters genes that
may share inputs, but
respond to those
inputs with different

kinetics. For example, genes A and B may receive an input from C (shared wiring), but
A would respond to C by increasing, while B would respond by decreasing (different
rules).  This relationship between A and B would be recognized by mutual information,
but not by the Euclidean distance measure.

4.3. Visualization of connectivity across functional categories
Developmental gene expression exhibits apparent redundancy, i.e. is far from
maximally diverse. The fact that we have been able to cluster more than one hundred
genes into a small number of temporal expression patterns suggests that the number
of genetic control processes is much smaller than the number of regulated genes. Of
course, the present sample of genes is quite small compared with the whole genome
(estimated at 60,000 genes in the rat). Without further studies, it is impossible to know
whether any of the remaining genes exhibit as-yet unobserved expression patterns,
such as a U-shaped pattern.

4.3.1. Correspondence between expression clusters and general
functional classes
It is interesting to note that two Euclidean distance clusters (waves) consist almost
entirely of neurotransmitter signaling genes from both the ionotropic and metabotropic
classes (Fig. 14). This particular category of genes therefore appears to be confined to
specific genetic control processes, and may share a functional role in development
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Fig. 13. Mutual information tree for genes expressed in rat spinal cord. Michaels
G, Carr DB, Wen X, Fuhrman S, Askenazi M, Somogyi R (1998) Cluster Analysis
and Data Visualization of Large-Scale Gene Expression Data. Pacific
Symposium on Biocomputing 3:42-53.
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despite differences in DNA sequences. It is also interesting that while another cluster,
Euclidean wave 1, contains neurotransmitter signaling genes, these are exclusively
ionotropic, suggesting that some ionotropic receptors have a function distinct from that
of other neurotransmitter receptors (Fig. 15).
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Fig. 14  Functional gene families map to distinct control processes. Michaels G, Carr DB, Wen X, Fuhrman S,
Askenazi M, Somogyi R (1998) Cluster Analysis and Data Visualization of Large-Scale Gene Expression Data.
Pacific Symposium on Biocomputing 3:42-53.
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Some proportion of the 60,000 genes of the rat will fall into the constant category,
having relatively invariant expression levels over time. For our purposes, constant
genes convey no information about phenotypic change, although they may be
necessary for maintenance. In higher organisms, it will be necessary to focus on
intercellular signaling genes, as these are essential for development in multicellular
organisms. Some genes (involved in both intra- and intercellular signaling) can be
expected to fall into the constant cluster, even after a perturbation, and may
subsequently be ignored. This will allow researchers to concentrate their efforts on the
genes most relevant to development or other phenotypic change, such as the
response to a disease, injury, or therapeutic drug treatment.

4.3.2. Correspondence between expression clusters and
neurotransmitter receptor gene families

Sequence or 
functional

family

Expression
profiles

Wave 

1
Wave 

2
Wave 

3
Wave 

4

receptor - 
ion channel

G-protein coupled 
receptor

ACh GABA glutamate 5HT

ACh GABA glutamate 5HT

Fig. 15. Neurotransmitter receptors follow particular expression waveforms according to ligand and functional
class. See Euclidean distance tree (above) for pictograms showing typical expression profile for each wave.
Note that the early expression waves 1 and 2 are dominated by ACh and GABA receptors, and by receptor ion-
channels in general. Agnew, B (1998) Science, 280:1516-1518
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4.3.3. Mapping of developmental expression patterns to injury-induced
expression responses: recapitulation of developmental programs
In Fig. 16, average expression patterns for all clusters are shown as pictograms.
Colors correspond to developmental clusters (matches shadowing of developmental
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Fig. 16. Mapping of hippocampal developmental gene expression clusters to KA-injury clusters
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pictograms). Lines connect genes in developmental clusters to their respective KA-
injury clusters. Each gene can be followed from its label (left column) along a line
connecting it to the first focus (developmental cluster) and then, according to the mirror
image of this line, to the focus of the KA-injury cluster. Clusters are labeled by Ts, Ws
and Cs, corresponding to "Transient,” "Waveform," and "Constant" patterns. In
development, Ts mark genes that are expressed at significantly higher levels during
early to mid development in relation to adult; Ws indicate genes that show other
fluctuating patterns; and Cs mark clusters that exhibit relatively invariant expression
over the time course. Note that T, W and C cluster members in development generally
map to the corresponding T, W and C patterns following KA-injury.  We could describe
this as a recapitulation of developmental programs in response to a perturbation
(seizure).  This result suggests that genes may operate within expression modules,
and provides a clue about the organization of the genetic network.

5HT1b R (metabotropic) Brm (transcription) PDGFb (peptide)
5HT3 R (ionotropic) TH (enzyme) PDGF R (receptor)
same ligand, different family no known gene relationship peptide / receptor pair
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Fig. 17. Gene co-expression pairs in CNS development and injury.
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4.3.3. Patterns of global gene co-regulation in rat CNS
Gene expression time series may be useful in determining putative functional

connections between genes. As shown in the above figure 17, we found that some
pairs of genes exhibit parallel expression patterns under three different conditions:
spinal cord development (top), hippocampal development (middle), and hippocampal
injury (bottom). Such parallelism may not be surprising in the case of, for example,
PDGFb and its receptor. However, to our knowledge, there is no known functional
relationship between the transcription factor Brm and the neurotransmitter
metabolizing enzyme TH. It is particularly interesting that Brm and TH continue to
fluctuate in parallel even after an injury perturbation (chemically-induced seizure).
Further studies will be necessary to confirm a functional connection between these two
genes. Gene expression time series may also be useful in establishing possible
functions for newly discovered genes. This is particularly relevant now that whole
genomes are being sequenced. A large proportion of yeast (S. cerevisiae) genes, for
example, have no known homologues in other organisms, leaving molecular
biologists clueless as to their functions. Large-scale temporal gene expression studies
in different tissues and under different conditions can provide a starting point for
investigations of these novel genes by comparing their expression time series with
those of known genes.

5. Continuous expression data modeling and reverse engineering

5.1. Advantages of continuous models over Boolean
Examining some of the publicly available gene expression data sets, it is clear that
genes spend a lot of their time at intermediate values: gene expression levels tend to
be continuous rather than discrete, and discretization can lead to a large loss of
information. Furthermore, important concepts in control theory that seem
indispensable for gene regulation systems either cannot be implemented with discrete
variables, or lead to a radically different dynamical behavior: amplification, subtraction
and addition of signals; maintaining equilibrium using negative feedback; smoothly
varying an internal parameter to compensate for a continuously varying environmental
parameter; smoothly varying the period of a periodic phenomenon like the cell cycle,
etc.

Granted, some of these problems can be alleviated by hybrid Boolean systems. In
particular, Glass has proposed sets of piecewise linear differential equations, where
each gene has a continuous-valued internal state, and a Boolean external state.
Thomas has proposed an asynchronously updated logic with intermediate threshold
values. These systems allow for easy analysis of certain properties of networks, but
still do not seem appropriate for quantitative modeling of real gene networks.
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5.2. Correlation analysis

5.2.1. Linear and rank correlation
Observation of correlations between variables has long been used in biology to
predict causal relationships. Although correlation can never provide proof of a causal
relationship, it can lead us to propose hypotheses that can be tested by other means.
In terms of gene regulation, a high correlation (or anti-correlation) between A and B
can be caused by (1) gene A regulating gene B, (2) gene B regulating gene A, (3)
gene A and B being co-regulated by a third gene C, or (4) accident. Of course, all of
these regulatory interactions can be indirect, through one or more intermediates.
Nevertheless, a sufficiently high correlation between two genes (taking into account
number of data points, error levels on the data, general regulation trends, etc.)
warrants an investigation of the genes in question.
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Fig. 18. High positive correlation between gene expression patterns 5HT1b and GRa4 (a, b); high negative
correlation between aFGF and IGF II (c, d). Expression levels for each gene are normalized with respect to the
maximum expression level for that gene. D'haeseleer P, Wen X, Fuhrman S, Somogyi R (1998) Mining the Gene
Expression Matrix: Inferring Gene Relationships from Large Scale Gene Expression Data. Proceedings of the
International Workshop on Information Processing in Cells and Tissues 1997, pp. 203-212 , Plenum Press..
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We have presented a preliminary statistical analysis of the rat spinal cord data set, in
which relationships between individual genes were inferred based on both linear
correlation and rank correlation. Rank correlation allows the detection of tight but
nonlinear relationships between variables. Several gene pairs with very high linear
correlation were identified (from 0.992 to -0.986), as well as a number of genes with
high rank correlation but small linear correlation.

Positive linear correlation is related to Euclidean distance between expression
patterns, but is not sensitive to an absolute shift in expression levels. Negative
correlation, even though it may indicate a strong linkage between genes, will not show
up in a Euclidean distance analysis at all. Clustering based on correlation (using the
residual variance, 1-r2) may give a better appreciation of co-regulation among genes.

5.2.2. Correlation Metric Construction
Adam Arkin and John Ross at Stanford University have been working on a method
called Correlation Metric Construction, to reconstruct reaction networks from measured
time series of the component chemicals This approach is based in part on electronic
circuit theory, general systems theory and multivariate statistics.

The system (a reactor vessel with chemicals implementing glycolysis) is driven using
random (and independent) inputs for some of the chemical species, while the
concentration of all the species is monitored over time. First, the time-lagged-
correlation (cross correlation) matrix is calculated, and from this a distance matrix is
constructed based on the maximum correlation between any two chemical species.
This distance matrix is then fed into a simple clustering algorithm to generate a tree of
connections between the species. To visualize the results, the chemical species and
the tree connecting them is displayed using multidimensional scaling (MDS), mapping
each species to a point in 2D space while trying to preserve the distances between
each prescribed in the distance matrix. It is also possible to use the information
regarding the time lag between species at which the highest correlation was found,
which could be useful to infer causal relationships. More sophisticated methods from
general systems theory, based on mutual information, could be used to infer
dependency.

5.3. Reverse engineering: network inference

5.3.1. Linear and quasi-linear model
The correlation analysis from section 5.2.1. can trivially be extended to finding the
subset of genes whose weighted sum correlates best with the expression levels of a
specific gene of interest:

xi(t+1) = Σwji xj(t) + bi

Where xi is the expression level of gene i at time t, bi is a bias term indicating whether
gene xI is expressed or not in the absence of regulatory inputs, and weight wji

indicates the influence of gene j on the regulation of gene i. We can rewrite this as a
difference equation:
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∆xi = Σw’ji xj + bi

Where w’jj = wjj - 1. Given a set of expression patterns equidistant in time, we can use
linear algebra to solve for the weights wji to match the data (provided we have more
data points than variables).

We have used this approach to model the 65 genes that make up the intersection of
the rat spinal cord and hippocampal data set. An extra input to the weighted sum was
added to cover differences in gene regulation among the two tissue types, and another
to model the effect of kainate on the hippocampus (half of the hippocampal data set
consists of a perturbation experiment tracking the changes in gene expression after
kainate injection). Combining the two data sets gives us 22 non-uniformly spaced data
points. Very finely spaced equidistant data points were derived through interpolation.
The interpolation imposes a smoothness constraint on the expression levels between
the original data points, so it does buy us some extra information. Of course we would
have preferred to have more than 22 data points to model 65 genes in the first place.

Despite the fact that this technique was only borderline feasible due to the limited
amount of data, some of the results were quite interesting: The resulting weight matrix
turned out to be sparse, in agreement with our intuition that genes are not regulated by
all other genes (note that this model is unconstrained with respect to number of
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Fig. 19. Reconstructed gene expression time series for nestin (top), Gra4 (middle) and aFGF (bottom). Nestin and
Gra4 levels are offset by 2.0 and 1.0 respectively. Time is in days from birth (embryonic day 22). Dotted line:
spinal cord, starting at embryonic day 11. Solid line: hippocampus development, starting at embryonic dat 15.
Dashed line: hippocampus kainate injury, starting at postnatal day 25. Circles: original data points. P.
D'haeseleer, X. Wen, S. Fuhrman, and R. Somogyi (1999) Linear Modeling of mRNA Expression Levels During
CNS Development and Injury. Pacific Symposium on Biocomputing.
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regulatory interactions); some biologically important genes were regulating many
other genes, whereas many others had very few regulatory outputs (the number of
regulatory inputs to genes had a much narrower distribution); some of the genes
seemed to have a primarily positive or negative regulatory role. Starting with the initial
gene expression levels, the model could accurately regenerate the entire trajectories
(spinal cord development, hippocampus development and hippocampus injury) by
iterating the difference equation for each time step. Eigenvector analysis showed three
attractors of the system at the adult spinal cord, adult hippocampus and injured
hippocampus expression patterns. However, most of the specific predictions of the
model could not be verified because so little is known about regulatory interactions in
mammal CNS.

For added biological realism, we can include a sigmoidal squashing function into the
equation above:

xi(t+1) = g(Σwji xj(t) + bI)

Weaver et al show in a paper in this Symposium that this sort of quasi-linear model
can be solved by linear algebra as well, by first applying the inverse of the squashing
function:

g-1(xi(t+1)) = Σwji xj(t) + bI

They also showed that randomly generated networks can be accurately reconstructed
using this modeling technique.
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Fig. 20. Subgraph with main interactions between GAD and GABA-receptors, derived from the linear model. P.
D'haeseleer, X. Wen, S. Fuhrman, and R. Somogyi (1999) Linear Modeling of mRNA Expression Levels During
CNS Development and Injury. Pacific Symposium on Biocomputing.
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Mjolsness, Reinitz and Sharp have used a similar approach to model small gene
networks involved in pattern formation during the blastoderm stage of development in
Drosophila. They added a simplified cellular model, with synchronized cell divisions
(cell divisions are under the control of a maternal clock at this stage) along a
longitudinal axis, alternated with updating the gene expression levels. Because of the
more complex hybrid model, simulated annealing was used to find a least-squares fit
to real gene expression data. The model was able to successfully replicate the pattern
of eve stripes in Drosophila, as well as some mutant patterns on which the model was
not explicitly trained.

Various people have coined different names for this sort of models: connectionist
model (Mjolsness, Reinitz and Sharp), linear model (D’haeseleer), linear transciption
model (Chen et al), weight matrix model (Weaver et al). Considering the core of these
models contain a weighted sum to implement gene regulation, perhaps we should call
them additive models.

5.3.2. Differential equation models
The difference equations from the previous section should remind us that differential
equations have been used for years to model known biomolecular interactions on
individual operators.

One implicit assumption is that the concentrations of the chemical species are
continuous, i.e. that stochastic fluctuations due to single molecules can be ignored. We
know that this does not hold at least for some proteins which are present in
concentrations of only a couple of molecules per cell. Indeed, there are indications that
stochastic fluctuations may actually be exploited by some organisms. However,
differential equations are widely used to model biochemical systems. Hopefully, a
continuous approach will prove to be appropriate for the majority of interesting
mechanisms.

Chen et al at this Symposium present a number of linear differential equation models,
including both mRNA and protein levels. They show theoretically how to solve for the
parameters of the models using linear algebra (as in 5.3.1.) and Fourier transforms.
They find that their model can not be solved from mRNA concentrations alone, without
at least the initial protein levels. Conversely, the model can be solved given only a
time series of protein concentrations.

5.3.3. Recurrent neural networks
Neural networks have the undeserved reputation of being no more than a black-box
modeling tool, without any power to illuminate the underlying structure of a system.
However, keep in mind that there exist many entirely different kinds of neural networks.
The one that concerns us here is essentially equivalent to a set of differential
equations similar to the difference equation listed in 5.3.1.:

dxi/dt = g(Σwji xj(t) + bI) - Di xi

where Di is a decay constant. This is a very accepted, although simplified, differential
equation model for gene regulation. What the neural network viewpoint buys us is a
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way to adjust ("train") the parameters of this set of nonlinear differential equations to
match the expression data. Training algorithms exist for both time series data (training
on a trajectory) and single-point expression patterns (training on an attractor).
Additionally, the training algorithms allow us to incorporate various kinds of a priori
information regarding expected degree of connectivity, distribution of connection
weights, known or hypothesized interactions, etc. Given proper constraints, it should
be feasible to arrive at a neural network model of which the wiring reflects the
biological system, given limited data.
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