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Modeling genetic networks and metabolic networks is an important topic in bioin-

formatics. We propose a qualitative network model which is a combination of the

Boolean network and qualitative reasoning, where qualitative reasoning is a kind

of reasoning method well-studied in Arti�cial Intelligence. We also present algo-

rithms for inferring qualitative networks from time series data and an algorithm

for inferring S-systems (synergistic and saturable systems) from time series data,

where S-systems are based on a particular kind of nonlinear di�erential equation

and have been applied to the analysis of various biological systems.

1 Introduction

Due to the recent progress of the DNA microarray technology 1, it has become

possible (to some extent) to measure the gene expression levels of most of the

genes of an organism simultaneously. Recently, many studies have been done in

order to develop computational methods for reconstructing underlying genetic

networks from time series data of gene expression patterns.

Several studies have been done using the Boolean network 2, where a gene

takes one of two states (ON or OFF), and a gene regulation rule is given as a

Boolean function. Liang et al. 2 developed the REVEAL algorithm (reverse en-

gineering algorithm) for inferring genetic networks from state transition tables

which correspond to time series data of gene expression patterns. We proved

mathematically a small number (precisely, O(log n)) of expression patterns are

necessary and su�cient to identify the underlying Boolean network of n genes

correctly with high probability if the maximum indegree is bounded 3.

Since there are many criticisms on the Boolean network approach, other

models are becoming important. Thie�ry and Thomas 4 studied a qualitative

model, which is similar to our model. However, they did not give a concrete

inference algorithm. Although other hybrid models are proposed5;6, the meth-

ods for determine model parameters are unclear. Arkin et al. 7 proposed a
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statistical method to infer chemical networks. Chen et al. 8 and D'haeseleer

et al. 9 proposed methods to infer genetic networks based on linear di�erential

equations. However, no method seems to be su�cient.

Since the Boolean network model is too simple whereas the di�erential

equation model is too speci�c, we propose a qualitative network model (Al-

though it is similar to the model proposed by Thie�ry and Thomas 4, there

exist several di�erences). This model can be considered as a medium model

between the Boolean network model and the di�erential equation model. This

model can also be considered as a combination of the Boolean network and

qualitative reasoning 10. In this model, regulation rules are represented as

qualitative rules and embedded in network structures. We also present algo-

rithms for inferring qualitative networks from time series data. Although the

algorithms are based on linear di�erential equations, it can be applied to non-

linear models to some extent. Moreover, one of the algorithm can be applied

to the inference of S-systems 11;12, where S-systems are based on a particular

kind of nonlinear di�erential equation and have been successfully applied to

the analysis of various biological networks 11.

By the way, it is also important to develop inference algorithms robust for

noises. Thus, we propose such an algorithm for a Boolean network model with

noises, where the technique can also be applied to qualitative networks.

The organization of the paper is as follows. First, we present a robust algo-

rithm for Boolean networks with noises. Next, we present a qualitative network

model and inference algorithms. Then, we show the results of computational

experiments. Finally, we conclude with future work.

2 Identi�cation of Boolean Networks with Noises

2.1 Boolean Network and Its Identi�cation

In this subsection, we brie
y review the Boolean network model 2 and our

previous result on its identi�cation 3. For details, see Ref. (3).

A Boolean network G(V; F ) consists of a set V = fv1; : : : ; vng of nodes

representing genes and a list F = (f1; : : : ; fn) of Boolean functions, where a

Boolean function fi(vi1 ; : : : ; vik) with inputs from speci�ed nodes vi1 ; : : : ; vik
is assigned to each node vi. An expression pattern  is a function from V to

f0; 1g. That is,  represents the states of nodes (genes), where each node is

assumed to take either 0 (not-express) or 1 (express) as its state value. In a

Boolean network, the expression pattern  t+1 at time t + 1 is determined by

Boolean functions F from the expression pattern  t at time t (i.e.,  t+1(vi) =

fi( t(vi1); : : : ;  t(vik))).
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In the identi�cation, we are given a set of INPUT/OUTPUT pairs f(I1; O1),

: : :,(Im; Om)g, where each Ij corresponds to an expression pattern ( t) at some

time t and each Oj corresponds to an expression pattern ( t+1) at time t+ 1.

The identi�cation problem is, given n and f(I1; O1); : : : ; (Im; Om)g, to �nd the

original (underlying) Boolean network.

We say that a Boolean network is consistent with INPUT/OUTPUT pat-

terns if Oj(vi) = fi(Ij(vi1); : : : ; Ij(vik)) holds for all vi and for all (Ij ; Oj). We

say that the Boolean network is identi�ed if an identi�cation algorithm �nds

that there is only one consistent Boolean network.

In most part of this paper, we assume that the indegree (i.e., the number

of input nodes) of each node is bounded by a constant K, because it has

been proved that exponentially many patterns are required in order to identify

input nodes to a high indegree node 3. The importance of the constraint on

the indegree is also pointed out in several papers 2;8.

In our previous work 3, we developed an algorithm (denoted by BOOL-1)

for identifying Boolean networks. BOOL-1 is quite simple: it examines each

node independently whether there exists a unique Boolean function consistent

with given patterns. Moreover, we proved the following theorem 3. Note that

we do not require that Boolean networks are given randomly, but we require

that INPUT patterns (Ii's) are given randomly.

Theorem 1. [Ref. (3)]

If O(22K � (2K + �) � log n) INPUT patterns are given uniformly randomly,

BOOL-1 correctly identi�es the underlying Boolean network of maximum in-

degree � K with probability at least 1� 1
n�
, where � > 1 is any �xed constant.

2.2 Noisy Boolean Network and Its Identi�cation

Since real expression patterns may contain noises, we de�ne a noisy Boolean

network. Let G(V; F ) be a Boolean network as de�ned in Section 2.1. Then,

a noisy Boolean network consists of G(V; F ) and pnoise, where pnoise is a

constant such that 0 � pnoise < 1. There is only one di�erence between

the standard Boolean network and the noisy Boolean network: Oj(vi) =

fi(Ij(vi1); � � � ; Ij(vik)) holds for each node in a standard Boolean network,

whereas Oj(vi) 6= fi(Ij(vi1); � � � ; Ij(vik)) holds with probability � pnoise for

each node in a noisy Boolean network, where the probability is taken over all

possible INPUT pattern Ij 's.

The identi�cation algorithm (denoted by BOOL-2) for noisy Boolean net-

works is obtained by slightly modifying BOOL-1. In BOOL-1, each Boolean

function inconsistent with at least one INPUT/OUTPUT pattern is discarded.

But, in BOOL-2, each Boolean function inconsistent with at least � �m pat-
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terns is discarded. In this paper, we use � = 1
22K+1 for theoretical analysis,

where other appropriate values can be used in practice. The following is a

PASCAL-like code of BOOL-2.

for i = 1 to n do

count 0;

for all combinations of K nodes (vi1 ; : : : ; viK ) do

for all Boolean function f with K inputs do

mismatch 0;

for j = 1 to m do

if Oj(vi) 6= fi(Ij(vi1); : : : ; Ij(viK )) then

mismatch mismatch+ 1;

if mismatch < � �m then output f(vi1 ; : : : ; viK ) as a function

assigned to vi; count count+ 1;

if count 6= 1 then output "NOT IDENTIFIED"; halt;

It is easy to see that BOOL-2 works in O(nK+1m) time, which is the same

order as in BOOL-1. On the number of expression patterns, we can prove the

following theorem using the Cherno� bound 13, where the proof is omitted.

Theorem 2.

Assume that p < 1
e�22K+2 . If O(2

2K � (�+K+1) � (1+ 1
log 1

p
�log e�(2K+2)

) � log n)

INPUT patterns are given uniformly randomly, BOOL-2 correctly identi�es

the underlying Boolean network with maximum indegree K with probability

at least 1� 1
n�
, where � > 1 is any �xed constant.

Note that the assumption on p is too strong in Theorem 2. As suggested in

Section 6, it seems that a similar property will hold for much larger p.

3 Qualitative Network Model

In Arti�cial Intelligence, qualitative reasoning 10 has been extensively studied.

Theories of qualitative reasoning were developed for predicting and explaining

the behavior of physical mechanisms in qualitative terms. In qualitative rea-

soning, instead of continuous real-valued variables, each variable is described

quantitatively - taking on only small number of values, usually +, �, or 0.

Instead of di�erential equations, qualitative equations are also used.

Using the concept of qualitative reasoning, we de�ne a qualitative network

model in the following way. A qualitative network is a directed graph G(V;E),

where each node in V = fv1; : : : ; vng corresponds to a gene or a chemical

substance, and each directed edge (vj ; vi) 2 E has a label: either activation or

inhibition. In this paper, vj ! vi denotes an activation edge (from vj to vi)

and vj a vi denotes an inhibition edge (from vj to vi).
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Let Xi(t) be the value (expression level of a gene or concentration of a

chemical substance) of vi at time t, where we sometimes omit \(t)". Then, in

the simplest model, there is the following correspondence:

vj ! vi ()
dXi

dt
> 0 if Xj > 0;

dXi

dt
< 0 if Xj < 0;

vj a vi ()
dXi

dt
> 0 if Xj < 0;

dXi

dt
< 0 if Xj > 0:

Although we use 0 as a threshold value here, we will use other appropriate

values later. It should be noted that we intend to use qualitative networks not

for simulation, but for representing biological knowledge. Thus, we do not need

to know precise values of parameters in di�erential equations but we only need

to know topologies of networks. Exact �tting of parameters does not seem to

be realistic because it is very di�cult to make precise quantitative models of

complex biological systems.

4 Inference of Qualitative Networks

4.1 A Simple Case

For ease of explanation, we begin with a very simple case, where it is to be

extended to more realistic cases later. In this case, we assume that time series

data of a biological system are produced according to the following simple

system of linear di�erential equations:

dX1

dt
= a1Xj1 ;

dX2

dt
= a2Xj2 ; � � � ;

dXn

dt
= anXjn :

For example, if n = 2, j1 = 2, j2 = 1, a1 = 1 and a2 = �1, then X1(t) =

sin(t+ �) and X2(t) = cos(t+ �) where � is determined from the initial values.

The following qualitative network corresponds to this case.

v1 v2

The task of an inference algorithm is, given n and Xi(t)'s, to infer a

qualitative network G(V;E) consistent with Xi(t)'s. Note that, if su�cient

time series data are given, the consistent network is uniquely determined (i.e.,

E = fvji ! vi j ai > 0g [ fvji a vi j ai < 0g).

The inference algorithm (denoted by QNET-1) is given below. QNET-1 is

similar to BOOL-1 and BOOL-2. It examines all possible edges and discards
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edges inconsistent with given data. Note that we assume that values of Xi(t)'s

are given for t = t1; t1 +�; t1 + 2�; t1 + 3�; : : : ; t1 +m�. Note also that we

approximate
dXi(t)

dt
by

�Xi(t)

�
, where �Xi(t) denotes Xi(t+�)�Xi(t).

E  fvj ! vi; vj a vi j i = 1 : : : n; j = 1 : : : ng;

for i = 1 to n do

for j = 1 to n do

for t = t1 to t1 + (m� 1)� do

if �Xi(t) > 0 and Xj(t) < 0 then delete vj ! vi from E;

if �Xi(t) < 0 and Xj(t) > 0 then delete vj ! vi from E;

if �Xi(t) > 0 and Xj(t) > 0 then delete vj a vi from E;

if �Xi(t) < 0 and Xj(t) < 0 then delete vj a vi from E;

if indegree of vi > 2 then output "NOT IDENTIFIED"; halt;

In practice, �Xi(t) > 0 (resp. �Xi(t) < 0) should be replaced by �Xi(t) > �

(resp. �Xi(t) < ��) using some threshold value �.

It is easy to see that this algorithm works in O(n2m) time. Here, we brie
y

discuss about input time series data. It is easy to see that correct edges are

not deleted (under the assumption that sign(
�Xi(t)

�
) = sign(

dXi(t)

dt
), where

sign(x) denotes the sign of x). However, wrong edges may remain if su�cient

data are not given. In most cases, time series data beginning from only one

set of initial values (i.e., f(t1)'s) are not su�cient because time series data

may fall into attractors. In such a case, time series data beginning from other

sets of initial values are required and then it is expected that time series data

from other attractors are newly given. The importance of using time series

data beginning from multiple sets of initial values is discussed in Ref. (3). The

following theorem holds regardless of existence or sizes of attractors.

Theorem 3.

Assume that initial values are chosen from f1;�1g uniformly randomly. Then,

QNET-1 identi�es the correct qualitative network with probability at least

1� 1
n�
, if time series data beginning from O(� � log n) sets of initial values are

given, where � > 1 is any �xed constant.

Note that �1 in Theorem 3 can be replaced by other appropriate values. Al-

though we do not examine details, it seems that similar results hold if initial

values that are chosen near-uniformly randomly are used.

We can extend QNET-1 to equations of the form dXi

dt
= aiXji + bi. Let

X
(�;max)
i;j = maxfXj(t)j�Xi(t) < 0g, X

(�;min)
i;j = minfXj(t)j�Xi(t) < 0g,

X
(+;max)
i;j = maxfXj(t)j�Xi(t) > 0g, and X

(+;min)
i;j = minfXj(t)j�Xi(t) > 0g.

If dXi

dt
= aiXji + bi and ai > 0, then X

(�;max)
i;j < X

(+;min)
i;j holds. Moreover,

X
(�;max)
i;j < � bi

ai
< X

(+;min)
i;j holds (see Fig. 1). Similarly, X

(+;max)
i;j < � bi

ai
<
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0 Xj

dXi

dt

Xi,j
(-,max)

Xi,j
(+,min)

Figure 1: For any monotonically increasing function f(x), the inference algorithm QNET-2

can be applied.

X
(�;min)
i;j holds in the case of ai < 0. Based on this observation, we obtain the

following algorithm (QNET-2).

E  fvj ! vi; vj a vi j i = 1 : : : n; j = 1 : : : ng;

for i = 1 to n do

for j = 1 to n do

if X
(�;max)

i;j � X
(+;min)

i;j then delete delete vj ! vi from E;

if X
(+;max)

i;j � X
(�;min)

i;j then delete delete vj a vi from E;

if indegree of vi > 2 then output "NOT IDENTIFIED"; halt;

Although we assumed linear equations of the form
dXi(t)

dt
= aiXj(t)+bi, QNET-

2 can be applied to any di�erential equation of the form
dXi(t)

dt
= f(Xj(t)) if

f(x) is a monotonically increasing or decreasing function.

4.2 An LP-based Method

Although the maximum indegree (K) is assumed to be 1 in QNET-1 and

QNET-2, we can develop an inference algorithm (denoted by QNET-3) for

graphs with no constraint on indegrees, using LP (linear programming).

In general, a linear di�erential equation has the following form:

dXi(t)

dt
= �i;1X1(t) + �i;2X2(t) + : : :+ �i;nXn(t) + �i ;

where �i;1's and �i's are parameters to be inferred. D'haeseleer et al. 9 used

the linear regression method in order to determine the parameters. However,

for that purpose, we should know precise values of
dXi(t)

dt
's. Therefore, instead

of linear regression, we use linear programming.

For each Xi, we make a set of linear inequalities as follows. If
dXi(t)

dt
> �

where � is some constant, we make the following inequality

�i;1X1(t) + : : :+ �i;nXn(t) + �i > 0:
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If
dXi(t)

dt
< ��, we make the inequality in which `> 0' is replaced by `< 0'. Next,

solving the set of linear inequalities by LP, we determine values of parameters.

Then, we let vj ! vi if �i;j > 0 and we let vj a vi if �i;j < 0.

This LP based method can also be applied to the case where the maximum

indegree is bounded. For example, in the case ofK = 2, we examine di�erential

equations of the form
dXi(t)

dt
= �i;jXj(t)+�i;kXk(t)+�i for all triplets (i; j; k).

Although much longer time may be required, parameters will be determined

more precisely. It should be noted that the time complexity is still O(nK+1m)

by using theoretically e�cient algorithms for LP in �xed dimensions 13.

In a noisy case, LP solver may fail to determine the values of parameters.

In such a case, robust linear programming 14 might be useful.

5 Inference of S-systems

In order to analyze biological systems, the S-system (synergistic and saturable

system) has been developed 11. S-systems have been successfully applied to

the analysis of biochemical pathways, genetic networks and immune networks
11. An S-system is a set of nonlinear di�erential equations of the form

dXi(t)

dt
= �i

nY

j=1

Xj(t)
gi;j � �i

nY

j=1

Xj(t)
hi;j

where �i and �i are multiplicative parameters called rate constants and gi;j
and hi;j are exponential parameters called kinetic orders.

Since S-systems are nonlinear, we can not apply linear regression9 to infer-

ence of S-systems. Tominaga and Okamoto12 applied GA (Genetic Algorithm)

to inference of S-systems with a few parameters. However, it is unclear whether

their method can be extended for inference of large S-systems.

Using the idea of the LP-based method described in Section 4.2, we devel-

oped a method (denoted by SSYS-1) for inference of S-systems. The method

is quite simple. Assume that
dXi(t)

dt
> 0 at time t. By taking `log' of each side

of �i
Q
Xj(t)

gi;j > �i
Q
Xj(t)

hi;j , we have

log�i +

nX

j=1

gi;j logXj(t) > log �i +

nX

j=1

hi;j logXj(t) :

Since Xj(t)'s are known data, this inequality is linear if we treat log�i's and

log �i's as parameters. In the case of
dXi(t)

dt
< 0, we can obtain a similar

inequality. Therefore, solving these linear inequalities by LP, we can determine

parameters.
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However, parameters are not determined uniquely even if a lot of data are

given, because the inequality can be re-written as (log�i � log �i) +
P
(gi;j �

hi;j) logXj(t) > 0. Therefore, only relative ratios of log�i � log �i and gi;j �

hi;j 's are determined (for each i). But, this information is useful for qualitative

understanding of S-systems. Since
Q
Xj(t)

gi;j contributes to the net produc-

tion of Xi,
Q
Xj(t)

hi;j contributes to the net degradation of Xi and it is not

usual that Xj contributes to both the net production and the net degradation,

either gi;j = 0 or hi;j = 0 holds for each (i; j) in most cases. Thus, the fact

that jgi;j � hi;j j is large means that Xi is in
uenced by Xj .

6 Computational Experiments

We have implemented BOOL-2, QNET-1 and SSYS-1 using C-language. Since

we do not have appropriate data set, we use arti�cial time series data. Because

of the space limit, we show results on BOOL-2 and SSYS-1.

6.1 Noisy Boolean Networks

We made computational experiments on BOOL-2, using SUN ULTRA EN-

TERPRISE 10000 (with 64CPU). The result of preliminary experiment showed

that pnoise does not strongly a�ect the sample complexity (m) if pnoise <
1
2
�.

Therefore, we examined cases of n = 10; 20; 40; 80; 160, � = 0:08; 0:10; 0:12,

where K = 2 and pnoise = 0:04 are �xed. Note that these values of � and

pnoise are larger than those in Theorem 2.

Fig. 2 shows the number m of INPUT/OUTPUT patterns required to

identify the underlying Boolean network uniquely, where the average number

over randomly generated 10 Boolean networks is shown for each case. It is

10 20 40 80 160

20

40

60

80

100

#patterns

#nodes

120

=0.08θ

=0.10θ=0.12θ

140

Figure 2: Result on the number of expression patterns required to identify the noisy Boolean

network of K = 2 correctly. Note that X-axis is log-scaled.
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seen that the numbers are proportional to log n. Although the numbers are

larger than in the noiseless case 3, the ratios are not large (< 3).

6.2 Inference of S-systems

Wemade computational experiments on SSYS-1, using a SUN ULTRA-2Work-

station (with 1 CPU). In order to solve LP, we used SOPT 15.

First we examined the following simple cases of n = 2, where case (A) was

examined in Ref. (12) too.

i �i gi;1 gi;2 �i hi;1 hi;2

(A) 1 3.0 0.0 -2.5 3.0 0.125 0.0

2 3.0 2.5 0.0 3.0 0.0 0.125

(B) 1 3.0 0.0 -2.5 3.0 1.25 0.0

2 3.0 2.5 0.0 3.0 0.0 1.25

As input data, time series data beginning from randomly generated initial val-

ues in [0:5; 2:0] were used. The Euler method was used to generate the time

series data, where �t = 0:02 was used. Since SSYS-1 can only compute relative

values of gi;j � hi;j 's, we compare the ratios r1 =
g1;1�h1;1
g1;2�h1;2

and r2 =
g2;2�h2;2
g2;1�h2;1

.

The following table shows the result, where average values and standard devi-

ations over 20 trials are shown. m denotes the total number of time points in

the data, where 50 point data are generated from each set of initial values.

Correct m = 1� 50 m = 5 � 50 m = 10� 50

(A) (r1; �) (0.05, -) (0.129, 0.032) (0.081, 0.009) (0.077, 0.011)

(r2; �) (-0.05,-) (-0.261,0.232) (-0.086,0.023) (-0.085,0.011)

(B) (r1; �) (0.5, -) (0.653, 0.099) (0.598, 0.054) (0.574, 0.040)

(r2; �) (-0.5,-) (-0.648,0.108) (-0.568,0.032) (-0.538,0.029)

In each case, parameters were inferred within 1 second, which is much faster

than the GA-based algorithm 12. On the other hand, the errors (in case (A))

are larger. But, it is not a serious problem because we do not aim at determin-

ing precise values. We only want to know whether each jgi;j � hi;j j is relatively

large or small. Note that the errors are small for m = 50 in case (B), whereas

the errors are not small even for m = 500 in case (A). This observation sug-

gests that good values are not inferred if parameters in the di�erent levels are

included.

Next we examined whether or not qualitative relations are correctly in-

ferred, by applying SSYS-1 to the case of n = 10 and K = 2 and the case of

n = 10 and K = 4. Note that only the case of n = 2 was examined in Ref.

(12). In these cases, we did not try to infer precise values of parameters, but
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we tried to infer whether or not Xi is in
uenced by Xj , using the method de-

scribed in Section 5. We say that the set of input nodes fXi1 ; � � � ; XiKg to Xi

is correctly inferred if SSYS-1 outputs the same set for Xi, where we say that

Xj is an input node to Xi if hi;j 6= 0 and gi;j 6= 0 hold in the original S-system.

We count the number of nodes for which the sets of input nodes are correctly

inferred. The result is shown in the table below. In the table, the average

ratios (%) of correctly inferred nodes over 10 randomly generated S-systems

are shown, where the following values are used: �t = 0:01, �i = �i = 3:0,

0:5 < jgi;j j < 3:0, 0:5 < jhi;j j < 3:0. Even in the case of m = 100 � 20, each

inference can be done within 30 sec. (CPU time).

m = 25� 20 m = 50� 20 m = 100� 20

K = 2 30% 86% 100%

K = 4 26% 69% 87%

From this table, it is seen that the sets of input nodes are correctly inferred

for most nodes if m is large enough.

Finally, we examined the case of n = 100, K = 4, and m = 1000� 20. In

this case, SSYS-1 inferred the sets of input nodes correctly for 96 nodes using

less than 5 hours (with 1 CPU), where �t = 0:005. This result demonstrates

the power of SSYS-1 because we are tackling a very hard problem, inference

of nonlinear systems with more than 100� 100� 2 parameters.

7 Concluding Remarks

In this paper, we proposed novel methods which might be useful for inferring

biological networks from time series data. The most important feature of the

methods is that they can be applied to nonlinear systems to some extent.

However, as shown in computational experiments, the proposed methods

require many time series data beginning from di�erent sets of initial values,

where di�erent sets correspond to di�erent environments or di�erent condi-

tions. Since time series data of 7 or 17 points beginning from a few di�erent

sets of initial values were only available 1;16, we could not apply the proposed

methods to real data. It seems almost impossible to get more information than

those obtained by clustering, if only a small number of time series data can

be used. However, many biological experiments are currently being done us-

ing gene disruptions and gene overexpressions, and it is expected that a large

number of more precise data will be available in the near future. For example,

several hundreds of disruptants of Saccharomyces cerevisiae are being made

by the group to which the third author of this paper belongs. Therefore, the

assumption of existence of times series data beginning from many initial value
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sets will become realistic in the near future. Of course, much faster algorithms

should be developed for handling a large amount of data.

Another drawback of the proposed methods is that complex enzymatic

reactions (for example, three-stage enzymatic reactions) can not be handled:

these reactions can not be represented in the form of the S-system. Therefore,

development of the methods to infer complex enzymatic reactions is important

future work.
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