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Though the electrostatic, ionic, van der Waals, Lennard-Jones, hydrogen bonding,
and other forces play an important role in the energy function minimized at a
protein's native state, it is widely believed that the hydrophobic force is the dom-
inant term in protein folding. Here we attempt to quantify the extent to which
the hydrophobic force determines the positions of the backbone �-carbon atoms
in PDB data, by applying Monte-Carlo and genetic algorithms to determine the
predicted conformation with minimum energy, where only the hydrophobic force
is considered (i.e. Dill's HP-model, and re�nements using Woese's polar require-
ment). This is done by computing the root mean square deviation between the
normalized distance matrix D = (di;j) (di;j is normalized Euclidean distance be-
tween residues ri and rj) for PDB data with that obtained from the output of our
algorithms. Our program was run on the database of ancient conserved regions
drawn from GenBank 101 generously supplied by W. Gilbert's lab 1;2, as well as
medium-sized proteins (E. Coli RecA, 2reb, Erythrocruorin, 1eca, and Actinidin
2act). The root mean square deviation (RMSD) between distance matrices derived
from the PDB data and from our program output is quite small, and by compar-
ison with RMSD between PDB data and random coils, allows a quanti�cation of
the hydrophobic force contribution. A preliminary version of this paper appeared
at GCB'99 (http://bibiserv.techfak.uni-bielefeld.de/gcb99/). Keywords:

lattice, face-centered-cubic, hydrophobic force, automorphism

Introduction

Though not experimentally established, it is commonly believed that a protein's
native state can be characterized as that conformation, for which the protein achieves
a global free energy minimum. Molecular dynamics modeling, which simulates the
conformation changes of a peptide by taking into account the electrostatic, ionic,
van der Waals (dipole-dipole), Lennard-Jones, hydrogen-bonding, and other forces
considered at the atomic level (for the atoms of the peptide, together with those of the
solvent), can currently simulate around 10�7 seconds of the folding sequence. This
is orders of magnitude less than the time required for a protein to fold (milliseconds
to seconds). Moreover, certain studies 3;4 have shown that the energy function used
in molecular dynamics is not fully correct, leading to rather di�erent predictions. In
summary, molecular dynamics cannot be used singly to determine a protein's native
state from its amino acid sequence, because of uncertainties in the energy function
and computational intractability due to simulation at the atomic level.

An alternate approach is to simulate the backbone of �-carbons of an n-residue

protein as a self-avoiding walk, where n beads on a string occupy adjacent lattice
sites. Such lattice models have been investigated by a number of researchers, includ-
ing 5;6;7;8;9;10;11;12;13;14;15. In particular, K. Dill 5 proposed the HP-model, where a
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residue is labeled either as hydrophobic (H) or polar (P), and the global energy is
minimized by a self-avoiding walk (excluded volume requirement), which maximizes
the number of H-H unit distance contacts; i.e. conformation (r1; : : : ; rn) 2 Z2 [re-
sp. Z3] for 2-dimensional [resp. 3-dimensional] lattice such that jri � ri+1j = 1 for
1 � i < n, ri 6= rj for 1 � i < j < n, and (r1; : : : ; rn) minimizes the contact energy

E = �
X

1�i<j�n

Bi;j�(ri; rj) (1)

where �(ri; rj) is 1 if if jri � rj j = 1, else 0, and Bi;j = 1 provided the i-th and j-th
residue are both hydrophobic, else 0. The HP-model approximates the hydrophobic
force, which is not really a force, but rather an aggregate tendency for nonpolar
residues to minimize their contact with the solvent. The HP-model is conceptually
simple, allows the incorporation of re�nements (HPNX-model including electrostatic
forces, etc.), and is appears to be computationally less intractable than that of
molecular dynamics.a In 3 dimensions, the principal disadvantage of the HP-model
is its degeneracy; i.e. a given HP-sequence might have distinct conformations having
a maximum number of unit-distance H-H contacts.b

In this paper we attempt to quantify the contribution of the hydrophobic force in
protein folding, using the HP-model (and its extension, using Woese's polar require-
ment) on a 3-dimensional face-centered-cubic lattice (FCC). The paper is organized
as follows. In section 1, we describe the genetic algorithms used, how to encode a
random walk in the FCC lattice using a sequence of relative directions, and top-
level pseudocode of our program. Though we tested Monte-Carlo (MC) with pivot
moves, MC with local moves 11;12, a genetic algorithm (GA), a 3-dimensional ver-
sion of Unger-Moult's 18 hybrid genetic algorithm (UM), and local-to-global versions
thereof,c due to space constraints we report only results obtained with UG. In sec-
tion 2, we describe the general approach using automorphism groups in describing
arbitrary lattices, which avoids the use of relative direction sequences. In section 3,
we describe our output from the data listed in the abstract.

Overall program structure

Relative direction sequences

In the 3-dimensional cubic lattice, each lattice point p = (x; y; z) has 6 nearest
neighbors. If p is the position of a monomer in a self-avoiding walk, then the walk

aNote that determining the conformation which maximizes unit distance H-H contacts in the HP-
model for 2- and 3-dimensional cubic lattices is NP -complete 16;17.
bOur algorithm actually uses normalized Woese polar requirement values, hence is less likely to
su�er the degeneracy problem of the HP-model.
ci.e. modify equation ( 1) to obtain Ek = �

P
1�i<j� Bi;j�k(ri; rj) where �k(ri; rj) = 1 if

jri � rj j = 1 and ji� jj � k, else 0. Now de�ne a neighborhood enlargment schedule starting with
k = 3 and gradually increasing k to n� 1.
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can possibly be continued in one of 5 relative directions: front (F), left (L), right
(R), up (U), down (D), where back (B) is not admissible because of the excluded
volume condition. The conformation of an n-mer can then be speci�ed by a sequence
of n � 1 relative directions. Such a sequence can be considered as an individual

or chromosome in a genetic algorithm, where a pointwise mutation involving the
change of a relative direction causes a bending of the polymer. Following along the
self-avoiding walk involves retaining a frame of reference, which is changed using
rotation matrices. This is described in the next section.

In the 3-dimensional FCC lattice, each lattice point p = (x; y; z) has 12 nearest
neighbors, where 6 are arranged in a hexagon in the same plane, and 3 are arranged
in the plane above and 3 in the plane below. These neighbors can be described as
those points at unit distance from p, determined by the angles �;  , where � is the
angle of rotation of the x-axis in the xy-plane, and  is the angle of rotation of the
y-axis in the xz-plane. If p is the position of a monomer in a self-avoiding walk, then
the walk can possibly be continued in one of 11 relative directions.d For instance,
for the relative direction of N, � = 0,  = 0, while for WE (west up), the � = �=2,
 = =pi=3, etc.

Pseudocode

Input: �-carbon coordinates and their hydrophobicity (H/P) from PDB data for a protein.e

Output: RMSD between the conformation C found to have minimal energy and the orig-

inal PDB data (denoted as RSMDC), along with percent contribution of the hydrophobic

force. The latter is determined as the quotient of the number of random coils, whose RSMD

is larger than RSMDC , divided by the number of random coils.

1. Using combinatorial optimization (MC, GA, UM, or their local-to-global variant), de-

termine the predicted conformation C as a self-avoiding walk in the FCC lattice.
2. Compute Dhp = (di;j), where di;j is Euclidean distance from the i-th to j-th monomer

in C.
3. Compute Dpdb = (ei;j), where ei;j is Euclidean distance from the i-th residue �-

carbon to the j-th residue �-carbon, normalized (i.e. divided) by the average distance

between successive �-carbons in the linear chain.

4. Compute RSMD(Dhp; Dpdb), de�ned by

rP
1�i<j�n(di;j�ei;j )

2

(n2)
:

dWU is the direction west up, and ED east down, etc. while S is not available, due to excluded
volume. Despite the compass directions, these are relative directions with respect to the current
frame of reference.
eFor more than 30-40 residues, we contract the PDB data from a protein of length L to a rep-
resentation of size 30, by taking the average position of �-carbons in successive L=30-size region-
s, and rather than using the HP-model, by taking the average Woese polar requirement value
19 in successive L=30-size regions, renormalized to values between 0 and 1 (polar requiremen-
t values are otherwise between 4.8 and 13.0). The contact energy (1) is then rede�ned to be
E = �

P
1�i<j�n pi � pj � �(ri; rj), where the pi; pj are normalized polar requirement values for

the i-th and j-th region.
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5. Generate M random coils (M � 200), analogously compute their Drc,
f and output

the number of random coils, whose Drc > Dhp, divided by then numberM of random

coils. We take this value to be the percent contribution of the hydrophobic force in

protein folding.

Hybrid genetic algorithm

In 18, a hybrid genetic algorithm was described for folding on a 2-dimensional square
lattice. Representing an n-mer by a sequence of n�1 relative directions, a pointwise
mutation of the i-th relative direction corresponds to a rotation of the latter portion
of the n-mer about the i-th monomer, which can be generalized by pivot moves and
lattice automorphisms. This, along with space management using oct-trees, provides
a new technique for extending the genetic algorithm to arbitrary lattices, where the
user de�nes the lattice without needing to know the automorphisms. For clarity of
exposition, we concentrate on the 3-dimensional cubic lattice, though our results are
actually for the FCC lattice.

Given an input length n HP-sequence (or sequence of normalized Woese polar
requirement values), we maintain a population of P many conformations (P � 200),
as represented by a chromosome, or relative direction sequences of length n � 1.
The population at time t is denoted P (t). The �tness F (c) of conformation c equals
�E(c), where the energy is given by equation (1), or its modi�cation for polar
requirements.

Methods

Representing an n-mer by a sequence of n�1 relative directions, a pointwise mutation
of the i-th relative direction corresponds to a rotation, which then can be generalized
by pivot moves and lattice automorphisms. This, along with space management
using oct-trees, provides a new technique for extending the genetic algorithm to
arbitrary lattices, where the user de�nes the lattice without needing to know the
automorphisms. For clarity of exposition, we concentrate on the 3-dimensional cubic
lattice, though our results are actually for the FCC lattice.

Relative moves in the cubic lattice

In the case of the 2-dimensional cubic lattice, the relative directions or moves right,
forward, and left correspond to rotations of �90Æ, 0Æ and +90Æ, respectively. In
three dimensions, it is necessary to apply a base transformation with every relative
move. In the following, we writeM ÆM 0 for the product of the matricesM and M 0,
which represents the composition of the linear maps represented by M and M 0.

fThe graphical display of this distribution is similar to that of an extremal distribution, see ap-
pendix for an example
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A relative move m is an element of fF;L;R; U;Dg. The vector vm assigned to

a relative move m is de�ned as

vF =
�
1
0
0

�
vL =

�
0
1
0

�
vU =

�
0
0
1

�
vR =

�
0
�1
0

�
vD =

�
0
0
�1

�

A sequence w 2 fF;L;R; U;Dg� is called a relative move sequence. Given such
a sequence, we de�ne gbasem(w) to be

gbasem(w) =

�
I3 if w = �

gbasem(w
0) ÆBm if w = w0m

where I3 is the 3 � 3 identity matrix and the matrices Bm for m 2 fF;L;R; U;Dg

are de�ned to be a �90 degree rotation turning the vector vm into
�
1
0
0

�
. Hence, we

know that Bm is de�ned as follows:

BF =
�
1 0 0
0 1 0
0 0 1

�
BL =

�
0 �1 0

1 0 0
0 0 1

�
BU =

�
0 0 �1
0 1 0
1 0 0

�
BR =

�
0 1 0
�1 0 0

0 0 1

�
BD =

�
0 0 1
0 1 0
�1 0 0

�

Given sequence w, we de�ne con(w) to the conformation c of length jwj+1 with

c[0] =
�
0
0
0

�
, and 81 � i � jwj : (c[i] = c[i� 1] + gbasem(w1 : : : wi�1) Æ vwi)

Example 1 Let w = FULLDL. Then

c[0] =
�
0
0
0

�
gbasem(�) =

�
1 0 0
0 1 0
0 0 1

�
c[1] =

�
1
0
0

�
gbasem(F) =

�
1 0 0
0 1 0
0 0 1

�
c[2] =

�
1
0
1

�
gbasem(FU) =

�
0 0 �1
0 1 0
1 0 0

�
c[3] =

�
1
1
1

�
gbasem(FUL) =

�
0 0 �1
1 0 0
0 �1 0

�

c[4] =
�
1
1
0

�
gbasem(FULL) =

�
0 0 �1
0 �1 0

�1 0 0

�
c[5] =

�
2
1
0

�
gbasem(FULLD)=

�
1 0 0
0 �1 0

0 0 �1

�

c[6] =
�
2
0
0

�
gbasem(FULLDL)=

�
0 �1 0

�1 0 0

0 0 �1

�

The resulting conformation c is

0 1

2

4
5

6

3

F

L
L

U
D

L

Note that although the absolute move c[5] � c[4] is (1; 0; 0), the following relative
move L corresponds (in absolute coordinates) to a right turn. Hence, the relative
moves are not maps that are applied to the previous absolute move. The next
proposition states that a move always corresponds to (1; 0; 0) in the base de�ned by
this move. 2

Proposition 2 Let � 6= w = w1 : : : wh, and let c = con(w). Then

c[h]� c[h� 1] = gbasem(w) Æ
�
1
0
0

�
:
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Proof. By Induction. For jwj = 1, this is given by the de�nition of the Bm-matrices.
For the induction step, let w = w0m be a sequence of length h+1, and let c = con(w).

By de�nition of Bm, we know that vm = Bm Æ

�
1
0
0

�
. Then

c[h+ 1]� c[h] = gbasem(w
0) Æ vm = gbasem(w

0) Æ (Bm Æ

�
1
0
0

�
)

= gbasem(w) Æ
�
1
0
0

�
2

We can now specify the e�ects of changing a single relative move in a sequence
of relative moves. This corresponds to the pointwise mutation of a chromosome in
the genetic algorithm. We will show that this is nothing else than the application of
a rotation.

Theorem 3 Let w = mu be some relative move sequence, and let w0 = m0u. Let

c = con(w) and c0 = con(w0). Then there exists a rotation M of Z3 such that for all

0 � i � jwj we have c[i] =M Æ c0[i]:

Proof. We will show that for all w = mu and w0 = m0u, there is an M such that

gbasem(w) =M Æ gbasem(w
0): (2)

From this, the claim follows immediately by induction since c[0] =M Æ

�
0
0
0

�
= c0[0],

and for every i � 1 we have

c[i] = c[i� 1] + gbasem(w1 : : : wi�1) Æ
�
1
0
0

�

=M Æ c0[i� 1] + (M Æ gbasem(w
0
1 : : : w

0
i�1)) Æ

�
1
0
0

�
(Ind. Hyp)

=M Æ c0[i� 1] +M Æ (c0[i]� c0[i� 1]) (Prop. 2)

=M Æ
�
c0[i� 1] + (c0[i]� c0[i� 1])

�
(Linearity)

=M Æ c0[i]:

We prove the existence ofM as required by claim (2) by induction on the length
of w. For jwj = 1 let w = m and w0 = m0, we set M = Bm ÆB�1

m0 . Then

gbasem(m) = Bm = Bm Æ (B�1
m0 ÆBm0)

= (Bm ÆB�1
m0 ) ÆBm0 =M ÆBm0 =M Æ gbasem(m

0)

For the induction step, let jwj be a word of length h+ 1, where h � 1. Then w and
w0 satisfy jwj = jw0j = h+ 1 and wh+1 = w0h+1. Hence,

gbasem(w1 : : : whwh+1) = gbasem(w1 : : : wh) ÆBwh+1

=M Æ gbasem(w
0
1 : : : w

0
h) ÆBw0

h+1
(Ind. Hyp.)

=M Æ gbasem(w
0
1 : : : w

0
hw

0
h+1)

2
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Corollary 4 (Mutation) Let w = w1mw2 and w0 = w1m
0w2 be two relative move

sequences which di�er in one position. Let c = con(w) and c0 = con(w0) be the

corresponding structures. Then there is a rotation M of Z3 such that

� for all 1 � i � jw1j : (c[i] = c0[i]), and

� for all jw1j+ 1 � i � jwj : (c[i] =M Æ c0[i]).

Thus, a mutation in the genetic algorithm corresponds to a rotation of the
remaining part of the conformation. This concept is already known in the literature
on Monte-Carlo methods for self-avoiding walks, where this kind of mutation is called
a pivot move 20. Actually, pivot moves are more than rotations, since also re
ections
are allowed. Rotations are matrices with determinant 1, whereas re
ections have
determinant �1. Thus, mutations (and pivot moves) correspond to automorphisms,
mapping the lattice to itself. This concept can be de�ned for arbitrary lattices.

Lattices and lattice automorphisms

De�nition 5 (Lattice) Let ~v1; : : : ; ~vm be vectors in Rn . The lattice generated by

these vectors is the smallest set L � R
n such that

1. f~v1; : : : ; ~vmg � L,

2. if ~u 2 L and ~v 2 L, then ~u+ ~v and ~u� ~v are also in L.

The vectors ~v1; : : : ; ~vm are called the basis of L.

Note that a lattice is not a vector space, since one allows only linear combinations
with integral coeÆcients. Thus, a lattice can have a basis of vectors which are not

linearly independent. Now we want to de�ne the automorphisms corresponding to
pivot moves. A linear map b is an isometry if it is distance preserving (i.e., if for
every ~v we have k~vk = kBÆ~vk, where k�k is Euclidean distance. Since we are dealing
with the Euclidean space Rn , an isometry is given by an orthogonal matrix.

De�nition 6 (Lattice Automorphism) Let L be a lattice. A lattice automor-
phism B is an isometry of Rn with the property that L = fB Æ ~v j ~v 2 Lg.

For many reasons, it is simpler to use the integral representation of a lattice L.

Let ~v1 =

0
@

v11
v12

...
v1n

1
A ~v1 =

0
@

v21
v22

...
v2n

1
A : : : ~vm =

0
@

vm1
vm2

...
vmn

1
A be the basis of the lattice L.

Let M be the matrix 0
@

v11 v21 ::: vm1
v12 v22 ::: vm2

...
...

...
...

v1n v2n ::: vmn

1
A

Then M is called the generator matrix of L.
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Proposition 7 (Integral representation) Let ~v1; : : : ; ~vm be the basis of the lat-

tice L, and letM be the corresponding generator matrix. Then L = fM Æ� j � 2 Zmg

Thus, we can represent every lattice by the m-dimensional cubic lattice Zm

(using the generator matrix to translate from the integral representation into real
coordinates). Note that we might have to change the dimension (i.e., m 6= n; usually,
we have m � n).

Example 8 Consider the two-dimensional, hexagonal lattice A2. The center (0; 0)
and the six nearest points of A2 are as follows:

v

v1

2

p

Now v1 = (1; 0) and v2 = ( 1
2
;
p
3

2
) is a basis of f , and the generator matrix is

MA2
=
�
1

1
2

0

p
3

2

�
The point p = (�1

2
;
p
3

2
) shown above has the integral representation

(�1; 1). 2

EÆcient implementation of pivot moves

The main time consuming operation in the genetic algorithm as described in Section
is the application of the pivot moves. If ones uses arbitrary lattices and real coordi-
nates, then the cost for testing self-avoidingness after the application of a pivot move
is O(len), and to calculate the energy of the new conformation is O(len2) (where
len is the length of the input sequence).

We have reduced this time complexity by using the integral representation of
lattice coordinates. Chromosomes (which represent conformations of the input se-
quence) are stored in arrays of lattice coordinates CONF [len]. Additionally, we
maintain for every conformation a corresponding arrayCOORD[len+1][len+1][len+
1].g COORDS maps lattice coordinates to 0, if the corresponding position is not
occupied by some monomer, and i, if the position is occupied by the ith monomer.
Formally, we get

COORD(x; y; z) =

8<
:
i if CONF [i] = (x0; y0; z0) and x = x0modlen+ 1,
y = y0modlen+ 1 and z = z0modlen+ 1

0 else

Using mod len+ 1 guarantees that all monomers will be stored in COORDS, even
when they will achieve coordinates (by the application of a pivot move) that are

gthe description here is for the FCC and cubic lattice, where the integral representation uses
coordinates of Z3
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greater than len + 1. This technique is the reason that we have to use len + 1
in the de�nition of COORDS. If we would have used len, then a monomer with
position (1; 0; 0) would have a contact (in COORDS) with a monomer with position
(len; 0; 0) (since (len; 0; 0) would then have been stored under (0; 0; 0)). With len+1,
this cannot happen, since the maximal extension in any coordinate is len.

Now we can describe the application of a pivot move. We assume that A is an
integral matrix representing a pivot move.

1 function pivot(int len,matrix A,int CONF[len], int COORDS[len+1][len+1][len+1])

2 site = random(1..len)

3 for i=site+1 to len do

4 (Xold,Yold,Zold) = CONF[i]

5 (X,Y,Z) = A(CONF[i] - CONF[site]) + CONF[site]

6 if COORDS[X mod len+1][Y mod len+1][Z mod len+1] = 0

7 or COORDS[X mod len+1][Y mod len+1][Z mod len+1] >= i

8 then

9 C[i] = (X,Y,Z)

10 COORDS[Xold mod len+1][Yold mod len+1][Zold mod len+1] = 0

11 COORDS[X mod len+1][Y mod len+1][Z mod len+1] = i

12 else

13 RETURN ``not self-avoiding''

14 endif

15 endfor

Clearly, one has to undo the e�ects of applying the pivot function in the case it
returns \not self-avoiding". One can do this without the need of copying COORD
before applying pivot. After the application of the function pivot, the energy of the
new conformation has to be calculated. Again, using COORD, this can be done
with one pass through the conformation (i.e., in O(n)).

Since COORD is very space consuming on the one hand, and sparse on the
other, we use an oct-tree representation for COORD. Thus, energy calculation is
O(n ln(n)) instead of O(n).

The only part that is missing is that we need an integral representation A of an
automorphism B of a lattice L (as used by the function pivot). As described in 21,
this can easily be generated as follows. Let M be the generator matrix of L. Then
A is an automorphism of the integral representation of L if 1.) A is integral, and 2.)
there is an orthogonal matrix B such that M Æ A = B ÆM . Our program can, in a
preprocessing step, calculated all possible automorphisms (in integral representation)
from the generator matrix.
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RMSD Distributions

We show here the distribution of the RMSD between randomly generated conforma-
tions and the original protein conformation, for 2reb:
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Results

The tables 1 and 2 summarizes the output for the the database of ancient conserved
regions drawn from GenBank 101 from W. Gilbert's laboratory 1;2. For every pro-
tein, they show three runs of our algorithm. For each run, we have listed the energy
of the best conformation found, the RMSD between this conformation and the orig-
inal conformation, and how many percent of random generated conformations have
an RMSD greater than the RMSD of the best conformation found (as described in
Step 4 on page ).
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Run #1 Run #2 Run #3
Code Energy RMSD % Energy RMSD % Energy RMSD %
aat -12.013 0.924 100.00 -11.805 1.040 99.95 -12.004 1.028 99.95
acidamy -10.318 1.003 99.94 -10.828 1.053 99.82 -10.454 0.918 100.00
acyl -11.396 0.931 100.00 -11.328 1.069 99.94 -11.532 1.043 99.97
adea -13.671 0.880 100.00 -13.625 1.003 99.85 -13.803 0.984 99.90
adh -10.942 1.096 99.87 -15.966 1.086 99.23 -15.637 1.199 97.65
aldehy -12.575 1.059 99.96 -12.728 1.188 99.52 -12.376 1.094 99.90
aldol -11.987 1.175 99.84 -12.488 1.117 99.94 -12.126 1.089 99.97
alk -12.501 0.928 100.00 -12.338 0.930 100.00 -12.444 0.996 100.00
asp -10.592 0.880 99.99 -10.551 1.004 99.93 -10.719 0.957 99.98
csyn -10.849 1.083 99.86 -10.280 1.026 99.96 -10.402 1.086 99.86
cusod -16.928 0.990 99.98 -17.237 0.956 99.99 -16.722 0.983 99.98
dhfr -12.511 1.109 98.64 -13.141 1.109 98.64 -12.696 0.905 99.94
dihydro -11.248 0.997 99.95 -10.926 1.039 99.89 -11.192 1.028 99.89
eftu -14.716 1.017 100.00 -14.041 0.962 100.00 -14.516 1.114 99.91
enolase -13.934 0.995 99.92 -13.918 0.956 99.97 -11.839 0.991 99.92
g6pd -14.915 1.085 99.95 -14.766 0.913 100.00 -14.940 1.041 100.00
glyphos -12.084 0.958 99.99 -13.156 0.899 100.00 -11.785 1.009 99.98
gra -10.734 0.935 99.99 -10.685 1.055 99.81 -10.890 0.969 99.97
hemo -10.215 1.383 88.32 -9.433 1.520 75.77 -9.963 1.434 84.65
highpi -12.695 1.052 99.79 -13.382 0.962 99.94 -12.930 1.045 99.79
hsp70 -13.408 0.861 99.99 -13.321 1.012 99.94 -13.489 0.981 99.98
lyso -16.714 1.443 88.17 -16.695 1.421 89.28 -16.644 1.340 93.38
pgk -14.586 1.161 99.20 -13.541 1.154 99.37 -13.970 1.086 99.78
pk -12.914 1.135 99.27 -13.210 1.063 99.66 -12.617 1.088 99.54
thio -15.698 1.074 99.14 -15.713 1.115 98.26 -15.771 1.106 98.26
xyla -12.590 1.112 99.67 -13.101 0.965 99.98 -12.497 1.004 99.93

Table 1. Results for the Gilbert data

Run #1 Run #2 Run #3
Code Energy RMSD % Energy RMSD % Energy RMSD %
1eca -16.554 2.122 48.15 -15.612 2.061 52.25 -16.552 2.119 49.49
2act -13.846 1.123 99.85 -12.974 1.039 99.98 -13.545 1.126 99.85
2reb -12.055 1.062 99.25 -12.266 1.167 97.42 -12.524 1.146 97.79

Table 2. Results for real proteins
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