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In this paper we address the problem of identifying which of various possible spatial

residue-residue neighbor pairs are plausible physical contacts without reference to

the native structure side chain geometry. We propose an algorithm that eliminates

most of the implausible physical contacts from the fold models. This algorithm

exploits the correlations between the amino acid side chain rotamers and the di-

rection of the physical contacts between the amino acid side chains. We use this

algorithm to \�lter" the score of the sequence-to-structure alignment. Filtering

is dynamic, in the sense that the set of neighbor pairs contributing to the align-

ment score varies during threading. Whether or not a neighbor pair contributes to

the score depends on the threaded amino acids. This score �ltering improves the

accuracy of the predicted sequence-to-structure alignment.

1 Introduction

Results of the recent CASP3 structure prediction contest a indicate that se-
quence similarity between the query and the sequence of the fold model is still
the key aspect of successful structure prediction. Threading methods are still
unable to predict the structure of a protein with the same fold as a protein
of known structure but that is unrelated in sequence. The threading method
described here does not rely on sequence similarity and attempts to improve
the structure prediction for those proteins. The core of this method is the in-
corporation in the sequence-to-model-structure alignment score of only those
contributions from residue-residue neighbor pairs that are plausible physical
contacts. This method does not use any information about the physical con-
tacts that are present in the native model structure.

The basic idea of threading is extremely simple. It relies on the obser-
vation that many nonsimilar protein sequences adopt the same basic three-
dimensional structure 1. This is seen in the limited number of distinct folds
present in the PDB 2;3;4;5. The principal components of the threading ap-
proach are: (1) a fold library; (2) a description of the three-dimensional struc-
ture environments for each fold and an associated scoring function; and (3) a
sequence-to-structure alignment or threading procedure.

Many threading methods 6;7;8;9;10;11;12;13 use a scoring function that de-
pends on the residue-residue neighbor preferences in a given structural envi-
ronment. These terms are intended to model interactions between residues

ahttp://PredictionCenter.llnl.gov/casp3/papers/murzin
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that are far apart in sequence. The structural environments describing bare
(no side chain atoms) backbone structure necessarily lack the details of the
actual packing of the amino acid side chains that a�ect the long-range phys-
ical contacts between the residues. On the other hand, the scoring functions
that explicitly use some measure of the positions of the side chain atoms (e.g.
center-of-mass of the side chain 14) are not appropriate, since the fold model
should not contain any information about the position of the native side chain
in order to avoid bias against dissimilar sequences.

Two basic approaches to including the spatial neighbor preferences in the
scoring scheme have been used in threading. In the �rst approach (see for ex-
ample 8;9) the amino acid structural positions are identi�ed as neighbors solely
by their spatial proximity. The neighbor pair contributes to the alignment score
whether or not the amino acids threaded onto those positions could make a
physical contact in the native structure. In the method proposed by Taylor 10,
the contribution of the neighbor pair thus identi�ed is mitigated by a shielding
factor. The shielding factor is an additional structural environment parameter
that describes the packing around the amino acid positions. A neighbor pair
always contributes to the alignment score. In the second approach, the so-
called frozen approximation (see for example 13), only the amino acid positions
that were in physical contact in the native structure are consider as neighbors.
Clearly, in such a scheme, many likely contacts among query side chains will
never be taken into account.

Whether or not two spatially neighboring positions can make a physical
contact depends on the backbone atoms positioned between them, the distance
between their beta carbon atoms and the space available to accommodate their
side chains, but also depends on the amino acids occupying those positions and
the orientation of their side chains. We address this problem by distinguishing
three classes of pairs of structural positions. The term \neighbor pair" denotes
any pair of spatially neighboring positions as de�ned in section 2. The term
\physical contact" refers to a neighbor pair occupied by amino acids whose
side chain atoms are in physical contact. The term \noncontacting" neighbor
refers to a neighbor pair occupied by amino acids whose side chain atoms are
not in physical contact.

It has been observed recently 15 that scoring functions that reect fre-
quencies of spatial residue-residue neighbors are essentially random and that
inclusion of those neighbor pair preferences does not improve threading struc-
ture predictions 16. The problem of misrepresenting residue-residue neighbor
preferences is most notable for the same-charge polar amino acid pairs 7, but
is clearly present for other amino acid pairs. For example, two alanines will
never make physical contact if their beta carbon (C�) atoms are further than
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5�A apart, even if they are frequently observed in positions separated by much
greater distances. In comparison the alanine and phenylalanine side chains can
actually make contact when their C� atoms are 7.5�A away.

This simple observation suggests that besides having a good description of
the structural environment one needs also to devise a method of distinguishing
which neighbor pairs are plausible physical contacts when those positions are
occupied by particular amino acids. One could attempt to construct the fold
model from many similar structures and include in the scoring function contri-
butions from all physical contacts or from a set of conserved physical contacts
that are observed in those structures. However, for most folds only one or
two representative structures are available 3. Even for the folds currently most
populated in the structural database there are no means of checking whether
the fold representation is complete.

Here, we present a threading method that attempts to overcome these
problems. We distinguish those amino acid structural neighbors that can make
physical contacts from those that cannot and we exploit this information in
a score �ltering scheme. We have identi�ed a partition of a multidimensional
space of structural environment parameters that separates physical contacts
from other neighbor pairs. Using this partition, we have developed a dynamic
score �ltering method for protein threading. During the search for the op-
timal sequence-to-structure alignment (threading), this �ltering allows us to
assign a score only to those amino acid pairs that, when placed in structural
environments, are likely to make physical contacts.

In the sections below we describe: the local structure description, the scor-
ing function and the structural environment states that determine the scoring
function. We introduce the partition of the structural environment space of
the neighbor pair into physical contacts and noncontacting neighbors and we
describe the neighbor pair score �ltering method that uses this partition. The
last section compares the results of threading experiments performed using the
\standard" neighbor pair scoring method, the new neighbor pair score �ltering
threading method, and threading with randomly �ltered pair scores.

2 Local structure description

The three backbone atoms C, C� and N, and the beta carbon (C�) of any
amino acid uniquely de�ne a local reference frame centered at C� (modeled
C� for GLY positions).

Local coordinates may be seen as corresponding to an idealized side chain
rotamer tetrahedron 17;18, centered at C� . Its orientation is �xed as shown in
Figure 1. The observed side chain rotamers can be assigned a discrete value
(2, 3 or 4) by the face through which the beta to gamma carbon (or oxygen in
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Figure 1: An example of the idealized tetrahedron constructed around a beta carbon with

faces numbered 1, 2, 3 and 4, the C��C� bond pierces face 1. Projection onto a local X, Y

plane with respective space regions indexed by tetrahedral faces. Vectors C� � C� , C� �N ,

C� � C de�ne a local orthonormal frame ẑ0 = C� � C�=kC� � C�k, ŷ0 = ẑ0� ( C��N

kC��Nk
+

C��C

kC��Ck
)=k C��N

kC��Nk
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kC��Ck
k and x̂0 = ŷ0� ẑ0. Local spherical coordinates (r; �; ') are

de�ned by: x0 = r cos � cos', y0 = r cos � sin' and z0 = r sin �.

the case of SER and THR) vector protrudes. These rotamer states correspond
to the g+; g�; t rotamer states that are classi�ed by the side chain dihedral
angle �1 (de�nitions as in Dunbrack and Karplus 19).

The secondary structure SS (as de�ned by DSSP 20), the nonoccluded
volume, the number and distances to other C� and backbone atoms seen within
each third of the solid angle provides a detailed local description of the native
fold around each residue position i. This description is independent of the
detailed placement of the side chains.

A given pair of residue positions i and j is also characterized by:

� A distance D(i; j) - distance between the beta carbons.

� Line-of-sight neighbors - positions i, j are called line-of-sight neighbors
when the vector C�(i)� C�(j) does not pass through any other atom (see
Figure 2). Each line-of-sight neighbor pair is indexed by the tetrahedral
faces F (i; j) and F (j; i). Local spherical coordinate '(i), '(j) of the vector
C�(i)� C�(j) uniquely corresponds to a region of space around C�(i), C�(j)
indexed by F (i; j), F (j; i).

� Neighbor pairs - Within the same strand only the positions (i; i+2) are
called neighbors. Within the same helix only the positions (i; i+ 1), (i; i+ 3)
and (i; i+ 4) are called neighbors. For the intersegment pairs the line-of-sight
neighbors are called neighbors. We have chosen the cuto� distance D(i; j)
= 11.2�A, the threshold where the number of physical contacts starts to drop
down signi�cantly.

� Physical contact - a pair of residue positions occupied by amino acids
whose side chains are in physical contact.
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Figure 2: Two-dimensional representation of the line-of-sight and visible volume concept.

The space in gray is considered \not visible" from C�(i) position. Atoms A, C�(j), and

C�(j') (light gray) are line-of-sight neighbors of C�(i). Atoms C�(k), C�(k') (dark grey) are

not line-of-sight neighbors of C�(i). The limiting sphere within which the visible volume and

atoms are calculated is illustrated as the outer dashed arc. We use atom radii: R(N)=1.01�A,

R(C�)=1.24�A, R(C)=1.13�A, R(O)=1.01�A, R(C�)=1.24�A(scaled down by 25% from stan-

dard values). The visible volume is calculated as percentage of the maximum possible visible

volume - the visible volume in the space occupied only by the backbone atoms of that residue.

Representative structures

We selected a set of 368 nonsimilar protein structures from the PDB 2.
These sequences were checked for similarity using BLAST-p 21 with the upper
bound probability of 10�10 and for shared functional de�nitions. Some of these
proteins are multidomain, thus this set represents 417 unique single-domain
SCOP 3 structural superfamilies. The set was reduced by eliminating small
folds with fewer than four secondary structure elements, membrane proteins,
and designed proteins. We call these 368 proteins the scoring-function-training
set. The complete list of the PDB four-letter locus name and a chain identi�er
is available by e-mail request to: jadwiga@darwin.bu.edu.

3 Scoring Function

In our approach to threading methodology we adopt the description of the
sequence-to-structure alignment given by the Markov Random Field (MRF)22.
A structural environment state is assigned to each position and to each neigh-
bor pair. For each structural environment state, a probability distribution
characterizes the amino acid or amino acids pair preferences for that state.
The probability of observing a given sequence-to-structure alignment (assign-
ment of an amino acid to each position) is equal to:

P (a) = 1
N

Q
l2L Pl(aljEnv(l))

Q
i2V Pi(aijEnv(i))�

�
Q

fi;jg2E
Pi;j(ai;ajjEnv(fi;jg))

P
(i)
i;j

(aijEnv(fi;jg))�P (j)
i;j

(aj jEnv(fi;jg))
(1)
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Here a = (a1:::an) is the sequence of amino acids, where ai denotes an amino
acid at position i. V is the set of residue positions in helix or strand and Env(i)
is the i-th position structural environment. E is the set of neighbor pairs and
Env(fi; jg) is the fi; jgth neighbor pair structural environment. al denotes
an amino acid in a loop position l. L is a set of loop positions and Env(l)

is the loop environment. In equation 1, P
(i)

i;j

�
ai
�
�Env(fi; jg)

�
denotes the sum

P
aj
Pi;j

�
ai; aj

�
�Env(fi; jg)

�
. N is the overall normalization constant of the

MRF probability distribution. The log(P (a)) represents the scoring function.

The scoring function is represented as two score tables S(ai; Env(l)) and
S(ai; aj ; Env(k)). For l = 1 : : : L singleton environments and k = 1 : : :K
pairwise environments the score tables are:

S(ai; Env(l)) = � logPi(aijEnv(l)) (2)

S(ai; aj ; Env(k)) = � log
Pi;j(ai; aj jEnv(k))

P
(i)

i;j (aijEnv(k)) � P
(j)

i;j (aj jEnv(k))
(3)

For the scoring-function-training set of proteins we record the amino acid and
amino acid pair occurrences in each structural environment state. This gives
us a set of conditional probability distributions that are then translated into
the score tables.

4 Structural Environment States

The scoring function is de�ned in terms of the structural environment states.
We use a new method to select structural environment states that maximizes
the information content of the amino acid probability distribution that deter-
mines the scoring function23. This method rigorously selects various parameter
thresholds that de�ne structural environment states.

The structural environment state of a single position i is characterized by
its secondary structure SS(i) (alpha-helix or beta-strand) and its visible vol-
ume V V E(i) within a sphere of 14�A radius. The visible volume is partitioned
into ten discrete states, requiring nine visible volume threshold parameters
vvtr=(38, 43, 47, 52, 56, 60, 67, 71, 79). The structural environment of the
loop is characterized by the loop length and is represented by two states: loops
shorter than six residues and loops at least six residues in length.

Each pair of neighboring residue positions i; j is characterized by:
� pair secondary structures SS(i) and SS(j). Based on distinct secondary

structure geometries we identify six pairwise states of the residues in: same-
strand, same-helix, same-sheet-di�erent-strand, di�erent-sheets, di�erent-helices,
sheet-helix.
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� pair solvent exposure assignments EXP (i), EXP (j). Two exposure
states of the fold position i are de�ned the visible volume V V E(i) and the
exposed-buried threshold value vvbur�exp = 60:0. Thus there are four exposure
states for a neighbor pair.

� the distance between C�s D(i; j). The simplest classi�cation of neighbor
pairs based on the C� distance divides them into near, D(i; j) less than dtr
and far, D(i; j) greater than dtr. Simple geometry suggests that small amino
acids will preferentially interact with each other when their C� atoms are
closer, while the big amino acids will more likely make physical contact when
their C� 's are further apart. We de�ne two distance-dependent structural
environment states: DIST (i; j) = 1(far) if D(i; j) � dtr and DIST (i; j) =
2(near) if D(i; j) � dtr. Where dtr = 6:0�A for same-strand, dtr = 5:6�A for
same-helix, dtr = 5:7�A for same-sheet-di�erent-strand, dtr = 4:5�A for di�erent-
sheets, dtr = 5:6�A for di�erent-helices, dtr = 6:6�A for sheet-helix.

� the visible volume V V (F (i; j))(i) and V V (F (j; i))(j) - amount of space
visible through face F (i; j) from position i (through face F (j; i) from position j)
within a sphere of 7.5�A radius. The visible volume vector contains considerable
information about the rotamer state of an aromatic amino acid and, to a
lesser extent, of other amino acids with big side chains 17. The information
contained in the visible-volume-dependent probability distribution of rotamer
states suggests that the visible volume within the sphere of 7.5�A radius best
predicts the rotamer state, consequently, the plausible physical contacts. We
de�ne two additional states associated with a pair of residue positions: state
V V P (i; j) = 1(large) if V V (F (i; j))(i) � V Vtr and V V (F (j; i))(j) � V Vtr,
and otherwise state V V P (i; j) = 2(small). We found that the threshold values
of V Vtr(strand) = 69.7 and V Vtr(helix)=74.3 provide best predictions of the
discretized rotamer states (data not shown).

5 Identi�cation of plausible physical contacts

In native structures, physical contacts can be identi�ed using the minimal
distance between side chain atoms or an energy-like variable describing the
strength of interaction. However, the description of the fold model is purely
geometrical and, as mentioned before, any a posteriori identi�cation of the
plausible physical contacts should rely only on the side-chain-independent vari-
ables. To determine the geometrical characteristics that distinguish the physi-
cal contacts from noncontacting neighbors we analyzed all neighbor pairs from
the scoring-function-training set of proteins (our structural database).

For each pair of neighbors (i; j) characterized by secondary structure,
D(i; j) and V V (F (i; j))(i), V V (F (j; i))(j) variables we considered six addi-
tional variables:

Pacific Symposium on Biocomputing 5:104-115 (2000) 



� V V E(i), V V E(j) - the visible volume within a sphere of 14�A radius from
positions i and j.

�V CB(F (i; j))(i), V CB(F (j; i))(j)- number of C� atoms visible through face
F (i; j) from position i (through face F (j; i) from position j) within a sphere
of 7.5�A radius.

� V BB(F (i; j))(i), V BB(F (j; i))(j) - number of backbone atoms visible through
face F (i; j) from position i (through face F (j; i) from position j) within a
sphere of 7.5�A radius.

Since our structural database is relatively small and the physical con-
tacts between the amino acids depend on the side chain size, charge, etc., we
pooled amino acids into seven classes according to the side chain size:1=fALA,
PRO, and SERg; 2=fPHE, HIS, TRP, and TYRg; 3=fASP, GLU, ASN, and
GLNg; 4=fLYS and ARGg; 5=fCYSg; 6=fILE, LEU, and METg; 7=fTHR
and VALg. The size of the side chain is an important factor in determining
whether a physical contact between neighboring positions is possible. Thus 28
amino acid pair classes are identi�ed. This amino acid pooling is used only
for the partition of the neighbor environment space. We describe below the
algorithm that partitions the neighbor environment space for each amino acid
pair class.

A neighbor environment is a 9-dimensional vector ~X(i; j) of real or discrete
variables. Let 
 be the space of all possible neighbor environments. We
map the set of all observed pairs of neighboring positions in the structural
database onto 
. All observed pairs are characterized as physical contacts or
noncontacting neighbors.

The following procedure �nds the analytical formula for the hyper-plane
� that best partitions the neighbor environment space 
 into: physical con-
tacts, 
0, and noncontacting neighbors, 
�
0. Let us de�ne the variable:
C(i; j) = 1 for physical contact and C(i; j) = 0 otherwise. Let N be the
number of pairs of neighboring positions in the database. Let A represent
an N�9 matrix of all pairs of neighboring positions ~Xn(i; j); n = 1 : : :N
over our structural database. Let the N-vector b represent the values of the
C(i; j) for neighboring positions. In the space 
 the vector v perpendicular to
the hyper-plane � is given by the minimization of the following �2 function:
�2 = jA � v � bj2. The value of v is obtained using any general linear least
squares method 24. Sliding the � along the v, we select the position of � such
that at least 90% (more if the number of physical contacts is small) of the
structurally determined physical contacts are in the 
0 region.

If the pair of neighboring positions is mapped onto the 
0 region of the
neighbor environment space, it is identi�ed as a plausible physical contact,
otherwise it is identi�ed as an implausible physical contact. The selection
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of the position of the hyper-plane is an essential part of the procedure. For
example, the covariance matrix group classi�cation method 24 typically leaves
more than 30% of the physical contacts out of the plausible physical contact
region 
0.

Scoring residue-residue neighbor pairs

Each pair of neighboring positions is characterized by a detailed side-chain-
independent structural environment. For a given sequence-to-structure align-
ment, those positions are occupied by speci�c amino acids. Using the partition
of the neighbor environment space, the threading algorithm checks whether
the neighbor environment is classi�ed as a plausible physical contact for those
amino acids. If so, the neighbor pair is scored normally using the score for
that amino acid pair in the corresponding structural environment state; if not,
the neighbor pair does not contribute to the alignment score. The alignment
score calculation does not depend on the identi�cation method of the plausible
physical contact region. We call this method of scoring neighbor pairs �ltered
neighbors threading (FNT).

6 Comparison of Performance of Threading Methods

We compared three threading scoring methods: the usual un�ltered neigh-
bors threading (UNT), the FNT method and the randomly �ltered neighbors
threading (RFNT). In the RFNT, the amino acid pairs that contributed to the
alignment score were selected randomly such that the number of contributing
amino acid pairs that were selected for each neighbor pair was the same as
were chosen via �ltering by the FNT procedure.

We assessed the performance of the threading scoring method by com-
paring its sequence-to-structure alignments to the alignments reported by the
Dali/FSSP database 5. We evaluated the threading accuracy using measures
de�ned for the CASP2 competition 25: the alignment sensitivity (ASns) and
the alignment sensitivity �4 (ASn4). The ASns and ASn4 were always cal-
culated in the same manner, over the whole sequence-to-structure alignment.
Each threading experiment was fully cross-validated by eliminating from the
scoring-function-training set any member with similar sequence (BLAST-p 21

score not lower than 10�10) and/or belonging to the same functional family as
the threaded protein or the native protein of the fold model.

We tested the performance of the threading method using a set of 57 pairs
of fold models and structurally homologous protein sequences. This set of
fold models represents globular proteins selected previously for testing branch-
and-bound algorithm and a variety of scoring functions 6. Using the FSSP
and SCOP databases, we selected structural homologues with lowest sequence
similarity to the native sequence of the fold model. 52 out of 57 threadings
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converged to the optimal alignment within the time limit that was set to eight
hours per threading. The detailed results of these experiments are reported
in Table 1. The UNT method had on average the alignment accuracy with
ASns=15.8% andASn4=42.6%. The FNT method had on average alignment
accuracy with ASns = 27.6% and ASn4 = 52.1%. The RFNT method had on
average alignment accuracy with ASns = 22.9% and ASn4 = 52.9%. RFNT
gives worse results than FNT because RFNT eliminates the \wrong" amino
acid pairs, but it does better than UNT because it is eliminating amino acid
pairs between the same neighbors as FNT, resulting in a net reduction of
noise. Comparison of both ASns and ASn4 shows that on average the FNT
method gives almost twice as accurate sequence-to-structure alignments as
the usual un�ltered neighbors threading. Similar results are obtained using
as the alignment accuracy measure alignment speci�city (ASpc) 25 (data not
shown). There is no correlation between the degree of sequence identity and
the accuracy of the alignment. This result suggests that the FNT method may
have captured the residue-residue interaction preferences relevant for structure
recognition.

7 Conclusions

The construction of threading fold models and, consequently, threading poten-
tials, requires careful assignments of neighbor pair preferences. In addition to
the faithful geometric description of the 3D surroundings of the C� atom posi-
tion, one must include information about physical contacts made between the
amino acids' side chains. The natural way is to include the rotamer preferences
for the amino acid side chain and other geometrically described preferences
that will allow the elimination of the implausible physical contacts between
the residue positions.

We have proposed a method of eliminating the superuous residue-residue
neighbor contributions from the scoring function by identifying the stereo-
chemical restrictions imposed on the neighbor pairs that are physical contacts.
This elimination procedure is implemented automatically in the threading al-
gorithm and does not imprint the fold model with the native sequence or the
native physical contacts. Our results show that the explicit elimination of
noncontacting neighbor pairs, which introduce noise to the scoring function,
substantially improves the sequence-to-structure alignment accuracy.
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FOLD Threading method

un�ltered randomly �ltered �ltered

structure sequence % sequence ASns ASn4 ASns ASn4 ASns ASn4

pdb code pdb code identity

1alc 153l 11 0.0 0.0 0.0 0.0 0.0 0.0

2lzm 153l 12 0.0 19.6 0.0 19.6 0.0 19.6

1bgc 1alu 16 73.1 100.0 73.1 100.0 50.5 100.0

2baa 1am7A 14 0.0 37.7 0.0 37.7 22.6 22.6

9rnt 1aqzA 26 0.0 8.3 0.0 0.0 0.0 0.0

1rec 1auiB 26 14.9 45.9 0.0 41.9 33.8 43.2

2sns 1bcpD 2 0.0 24.1 13.8 41.4 13.8 37.9

2cyp 1bgp 21 0.0 0.0 35.7 49.1 22.3 35.7

1lis 1br0 6 0.0 0.0 0.0 0.0 0.0 0.0

2had 1brt 17 41.5 71.7 40.6 77.4 30.2 58.5

351c 1c52 18 0.0 0.0 17.6 32.4 17.6 17.6

5cpv 1cll 35 62.0 88.0 22.0 72.0 62.0 88.0

1rcb 1cnt3 12 74.3 100.0 33.8 33.8 51.4 74.3

1dhr 1cydA 19 19.5 50.4 19.5 71.7 25.7 64.6

5cytR 1cyj 19 71.4 71.4 71.4 71.4 71.4 71.4

1pkpy 1dar 15 TIME-OUT 0.0 94.7 31.6 94.7

4tgl 1din 14 0.0 32.8 19.7 68.9 23.0 42.6

1aba 1erv 14 0.0 68.4 7.9 50.0 7.9 50.0

5tmnEy 1ezm 31 0.0 3.9 3.9 5.5 3.9 33.1

1cde 1fmtA 16 14.3 38.8 11.2 59.2 20.4 38.8

3adk 1gky 16 33.8 62.0 43.7 85.9 52.1 70.4

1f3g 1hcz 18 TIME-OUT 0.0 0.0 0.0 0.0

1mbd 1ithA 15 13.5 30.3 13.5 30.3 13.5 30.3

2ca2 1kopA 34 0.0 36.8 50.0 76.5 64.7 76.5

1byh 1led 11 0.0 16.1 3.4 16.1 0.0 12.6

1ifc 1eal 21 17.8 89.0 61.6 100.0 56.2 100.0

1ubq 1lxdA 11 32.3 80.6 19.4 100.0 32.3 80.6

1cewI 1molA 20 0.0 25.6 0.0 17.9 33.3 33.3

1apa 1mrj 28 11.6 41.9 31.8 67.4 40.3 65.1

2end 1mtyG 4 0.0 23.1 0.0 23.1 0.0 23.1

2mhr 1nfn 8 0.0 0.0 0.0 0.0 0.0 0.0

7rsa 1onc 27 0.0 40.7 79.6 100.0 0.0 85.2

1atu 1ovaA 30 31.8 47.0 27.3 62.1 42.4 42.4

2hpr 1pfh 35 70.8 100.0 72.9 91.7 50.0 100.0

1bp2 1poc 27 0.0 0.0 0.0 0.0 0.0 0.0

5nll 1rcf 23 0.0 23.4 45.3 95.3 70.3 95.3

1yat 1rot 27 31.9 83.0 31.9 91.5 61.7 100.0

3chy 1srrA 26 13.7 100.0 69.9 100.0 47.9 100.0

3est 1svpA 12 0.0 31.1 0.0 57.8 0.0 31.1

2act 1theA 28 0.0 8.7 27.5 48.7 36.2 57.5

2mcm 1tvdB 9 9.7 22.6 0.0 41.9 0.0 41.9

8dfr 1vdrA 24 29.9 68.7 29.9 44.8 40.3 61.2

1hoe 1wkt 6 8.3 41.7 0.0 16.7 0.0 83.3

5fd1 1xer 31 0.0 0.0 0.0 0.0 0.0 0.0

1lec 2ayh 11 0.0 38.2 0.0 47.2 13.5 39.3

256bA 2ccyA 17 28.6 77.9 0.0 19.5 28.6 58.4

1tie 2i1b 11 0.0 10.0 0.0 24.0 0.0 28.0

4fgf 2i1b 14 0.0 21.7 0.0 45.7 0.0 8.7

2cpl 2nul 30 0.0 20.0 35.0 35.0 35.0 35.0

1s01 2pkc 38 TIME-OUT 16.2 86.5 51.4 91.0

2aak 2uce 33 0.0 43.7 0.0 43.7 0.0 20.8

1plc 7paz 25 0.0 26.7 0.0 0.0 0.0 0.0

Average 15.8 42.6 22.9 52.9 27.6 52.1

Table 1: Comparison of three threading methods: the UNT, the RFNT and the FNTmethod.

\TIME-OUT" indicates threadings that did not converge within the time limit. The y

indicates structures de�ned as multidomain by SCOP.
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