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INFORMATION DYNAMICS OF IN VITRO
SELECTION-AMPLIFICATION SYSTEMS
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Selection-amplifications systems provide a means of engineering biomacromolecules
with new properties. The combination of stringent functional selection with the
ability to amplify single molecules confers great specificity on the evolving pop-
ulation. Yet such systems like many complicated chemical kinetic mechanisms
can show a range of unstable and metastable behavior. These instabilites can be
investigated using the Shannon entropy of the evolving population. It is shown
that the Shannon entropy provides a Lyapounov function for exploring dynamic
stability. A simple model of in vitro evolution is presented and stability conditions
are established. It is seen that fairly simple directed evolution models can exhibit
a range of dynamical behavior.

1 Introduction

The technology currently exists to mutate, screen and amplify nucleic acids.
These methods when used in combination can yield a number of different in
vitro techniques for optimizing a complicated biological process. In most ap-
plications, a population of RNA or DNA sequences is screened for a specific
interaction or function. This selected population can then be amplified us-
ing isothermal RNA amplification (3SR) and/or a polymerase chain reaction
(PCR). The resulting population can then be subjected to further selective
pressures and the attribute of interest can be continuously optimized. Re-
peated cycling of this procedure refines the population to be highly specific.
A representative scheme for such a protocol is shown in Figure 1. This gen-
eral approach has been used to select for optimal sequences for protein-DNA
interactions' 22 %5 for protein-RNA binding ¢ and for catalytic specificity of
ribozymes’ ®° and deoxyribozymes'© .

The general procedure illustrated in Figure 1 describes two distinctly dif-
ferent selection-amplification schemes. The first approach, described as “pure
selection”, creates a large initial library consisting of a population of many
different sequences that are equidistributed and uncorrelated. The selection
procedure is used to screen a subpopulation that is subsequently amplified.
This is done in the protein-DNA and protein-RNA binding optimization. Al-
ternatively, one can start with a single sequence and introduce a mutational
mechanism that allows the system to “evolve” and search out new sequences.
Such mutations can be random point mutations introduced by using modified
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Figure 1: Schematic representation of the experimental design of selection-amplification of
biological sequences (adapted from Sun et al., 1996).

nucleotides, block mutations incurred by artificial recombination'? '® or can
simply rely on intrinsic mutation rates in enzymatic steps such as the reverse
transcriptase used in the RNA studies 0 141516 The “evolution” procedure
differs from the “pure selection” procedure in that with evolution, the final
selected sequence may not have existed in the initial library.

These selection-amplification experiments have been analyzed with spe-
cific mathematical models to explore the optimization of experimental design
1718 Tn these models, the screening process is treated in terms
of the equilibrium thermodynamics of ligand-macromolecule binding. The
amplification step is handled with a simple, probabilistic model of stepwise
doubling of macromolecules. The combination of selection and amplification

parameters

results in difference equations that describe the evolution of the population
as the system is cycled. In the present work, the analysis of these selection-
amplification systems is extended to explore the stability of the system. Of
particular interest is the possibility of steady states away from the thermody-
namic branch of the system To this end, the Shannon entropy of the cycling
system is investigated. This proves to be a particularly useful quantity because
it is a Lyapounov function of the diflerence equations governing the system’s
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dynamics. This means that the Shannon entropy can be used to establish sta-
bility criterion. A simple, heuristic treatment of the evolution of information
in selection-amplification systems is described in Section 2. Section 3 estab-
lishes the connection between Shannon entropy and the Lyapounov function.
The conditions required for stability are established in this section. Applica-
tions to in vitro evolution models is considered in Section 4. These examples
build on a simple selection-amplification scheme without mutation that was
described previously ®.  This model is extended to consider a two-species
system that shows interchange as a result of mutations. Stability conditions
for these models are discussed. Implications of these results for experimental
protocols is discussed in the conclusion in Section 5.

2 Information Evolution in Selection- Amplification

If the number of each species or sequence in a population is known, the Shannon
entropy for the system can be defined. Since the composition of a population
changes for every selection-amplification cycle, the entropy may also changes.
The information content of the sequences in the selected population will evolve
in a very specific way that is dependent on the procedure used (see Figure 2).
The Shannon entropy, I, is defined as™®:

N
I==> pilogpi (1)
i=1

where IV is the number of sequences in the library and p; is the probability of
finding the ith sequence. In a randomly generated population, each sequence
is generated with equal probability and p; = 1/N. In this case, Eq. 1 becomes:

Irandom = 10g2 N (2)

This situation, equal probabilities for all sequences, maximizes Eq. 1 for a
given IN. Thus, any process, such as selection, that favors one set of sequences
over another will reduce the Shannon entropy of the population. It should also
be noted that the Shannon entropy is a property of the library. Because of this
library-dependent property, an identical sequence occurring in two different
libraries may make a different contribution to the Shannon entropy.

From general arguments, the qualitative behavior of the evolution of infor-
mation can be seen for the pure selection method. Because this design starts
with a randomly generated library, its information is at a maximum. Figure 2
shows a Venn diagram that represents the set of all possible sequences. As the
system cycles, selective pressures restrict the sequences to a narrower, more
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Figure 2: Evolution of information content as selection-amplification proceeds.

specific set (see Figure 2 top). When members in this set are not differen-
tially amplified Eq. 2 holds. The Shannon entropy of the set drops with cy-
cling merely because selection reduces the number of individual sequences, V.
When differential amplification occurs, the information will be further reduced
because of redundancy in the population, i.e., because not all probabilities are
identical in Eq. 1. As the selection cycles proceed, the system will converge to
the set of sequences that have the Shannon entropy of the “target” sequences.
This is an example of “inward” evolution where the Shannon entropy of the
library decreases as a result of the specific sequences required to optimize a
given biological function. An analysis of the evolution of the information con-
tent of protein sequences show that biological molecular evolution is inward
20

For the experimental design used in the evolution of Tetrahymena ri-
bozyme, one starts with a “wild-type” sequence and introduces point mutations
by adding modified nucleotides to the PCR. This produces a “Generation 0” in
which all possible one-error mutants are present in high frequency along with
increasingly smaller proportions of higher-error mutants. Because this library
has a high frequency distribution around a single sequence, it will have a much
lower total information than a randomly generated library. Selective pressures
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then drive the sequences to evolve toward a specific target (see bottom of Fig-
ure 2). Unlike the pure selection process, when mutation rates are enhanced,
this system can evolve and create new sequences. This evolutionary process
will have more complicated information dynamics than the pure selection pro-
cess. Initially, the mutagenesis will primarily result in a filling out of the wild
type library. However, as cycling proceeds the library could expand to seek
out the new set of target sequences. This process is also illustrated in Figure
2. Thus, there may be an “outward” evolution in the early stages of cycling.
However, there is no reason that a successful library of target sequences should
contain more information than Generation 0. Consequently, after the target
region is discovered by the combination of evolution and selection, there may
well be a decrease in Shannon entropy, just as in the pure selection process.
An analysis of the information content of an evolving ribozyme system suggests
that the evolution is “outward” 2.

3 Shannon Entropy and System Stability

The change in the Shannon entropy provides a means of assessing the stability
of the system. As will be seen, system cycling will result in a progression
in the population that can be described using discrete difference equations.
Ideally, one would hope that with repeated cycling, the system achieves a
constant population that is optimal for a specific biological function. However,
there is no assurance that repeated cycling will accomplish this goal. The
solutions to the difference equations governing selection-amplification can be
stable, marginally stable or unstable, depending on the initial conditions and
the equation parameters. The direct method of Lyapounov provides a powerful
means of assessing stability of non-linear differential®? and difference equations
23 To perform this analysis, a Lyapounov function must be identified and the
weakness of the method is that there is no a priori method for identifying such
a function. In the present case, we show that the Shannon entropy is a valid
Lyapounov function for selection-amplification systems. It can, therefore, be
used to investigate the stability of steady states of the evolving system.

To put these ideas into a concrete framework, the selection-amplification
model of Sun et al. '® is considered. They treated the case of a population of
many DNA molecules of different sequences binding to a single protein species.
The diflerent sequences were separated into groups according to the binding
affinity. 'The “initial library” contained N different groups. Each group
contains n; different molecules and each of these molecules has an association
constant for binding to the protein of K;. The subscript designating the group
runs from ¢ = 1 to V. Only the DNA molecules that are bound to protein



Pacific Symposium on Biocomputing 5:599-610 (2000)

will be selected in the screening process and these are the molecules that get
amplified. The fraction of selected molecules is given by:

fi= : K; [protein] 3)

+ K [protein]
where [protein] is the equilibrium concentration of free protein. The frequen-
cies, fi,f2,...,fn represents the probability distribution of molecules that
are selected to be amplified. These frequencies will be used to estimate the
Shannon entropy.

Amplification occurs as a result of PCR and the reaction cycle is considered
to have an efficiency of A\. A screened molecule will be doubled with probability,
A, and will remain a single copy with probability, 1 — A. The amplification is
assumed to be free of mutation and there will be [ cycles of PCR amplification
and m experimental cycles (combined selection-amplification cycles). It is
assumed that the | PCR cycles are held constant through each experimental
cycle. After m cycles, the number of molecules in the ith group is given by
the following recursion:

Nim = fi (1 + )\)l Nim—1 = [ (1+ )\)lm 1.0 (4)

where 711 ¢ is the number of molecules in the ith group of the initial, unscreened
population. For the present purposes, the probability of the ith group is
required. This is given by:

n
Pim = ———— (5)
Zj:l n.jvm

The probability of a molecule belonging to the ith group gives a more compli-
cated, non-linear recursion:

_ fipimr  [Tpio
==~ =N (6)
> =1 [iPim—1 i1 IR0

Piym

Interestingly, the PCR amplification term drops out of the expression for the
probability. This is because each selected species is equally amplified.

The resulting recursion relationship, Eq. 6, is a difference equation involv-
ing the cycle number, m, as a variable. The experimentalist would hope to
reach a situation were further cycling does not effect the population, i.e., a
stable population exists. To mathematically determine if stability is possible,
a Lyapounov function, H (p.,) is sought. This function must merely satisfy
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the condition that I/ > 0 and that the partial derivatives with respect to p; m
are continuous. Lyapounov theorem states that stability conditions are:

N .
= j=1Pjm 3gfm >0 stable
N OH '\ _ .
- Zj:l Pim | 3p, =0 marginally stable (7)
Gm
N .
= j=1Pjm 82% <0 unstable

where pj , is the discrete equivalent of the derivative with respect to m and is
given by pjm — Pjm-—1-

The Shannon entropy for the population of sequences obeying Eq. 6 is
a Lyapounov function. It is always positive and its partial differential with
respect to the probabilities is continuous. Thus, the Shannon entropy can
provide a useful tool in examining the dynamics of the selection-amplification
system. The Lyapounov function is then defined as:

N

H(pm) =In=—>_Pjmlogspjm (®)
j=1

The Shannon entropy also has the attractive quality of being an “extensive”
function. That is, the information content of two independent systems is
additive. The stability condition using the Shannon entropy as a Lyapounov
function takes a relatively simple form:

Zjvzl Pjm logo Pjm >0 stable
Z;V=1 Djm 10gs pj.m =0 marginally stable (9)
Z;V=1 Pj,m logy pjm <0 unstable

These stability conditions are analogous in form to those of non-equilibrium
thermodynamics 2* and are a consequence of defining the Lyapounov function
as an “entropy-like” function. Using the analogy with non-equilibrium ther-
modynamics, pjm is identified with a component of the thermodynamic flux
and logy pj m is the respective aflinity. As in the thermodynamic case, it
is possible to explore stability of steady states far from equilibrium using a
fluctuation analysis *. In such an analysis, the variation in the Lyapounov
function is considered using an expansion:

L = Iy ss + 61 + (1/2) 821, (10)

where I, s is the Shannon entropy at steady state values of p; », and 81, and
821, are first and second order variations about the steady state. When the
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steady state is an extremum, 61, = 0 and 6§21, is the Lyapounov function
used to establish the stability of the steady state. In the present case, a new
Lyapounov function is defined by:

N 621
2 m 2
j,m

i=1

To establish the extremum, recursion relationships such as Eq. 6 are
used. These give equations of the form: p; n, = F (P1.m—1,P2,m—1s--- PN,m—1)-
Steady state is achieved when p; n, = Pim—1, so the steady state condition is
established by solving the N equations:

Piss = r (p17557p2,s.37 .- ~pN,ss) (12)

For stability about the steady state, the following two conditions must be
fulfilled 24:

8L, = - —L2<0 (13)
= Pim
N .
d 0D m 6P m
o (821,,) = -2 M >0 (14)
= Pim

where the continuum limit is used in Eq. 14. The first condition, Eq. 13 will
always be satisfied because p; ., > 0. Consequently, the second condition, Eq.
14, represents the main computational tool for assessing stability. This will be
used in the next section to investigated a selection-amplification system that
can evolve as a result of mutations.

4 Stability Analysis of Directed Evolution Models

The selection-amplification scheme described above for optimizing DNA bind-
ing to a specific sequence can be analyzed using the Lyapounov approach.
This is a particularly simple system that basically converges to a single steady
state. As the number of cycles increases, the dominant species will be the
one with the greatest affinity (largest f;) for the protein. As m — oo, one
of the probabilities approaches unity and all other approach zero. Thus, this
simple selection-amplification scheme achieves the goal of finding the optimal
population with respect to DNA binding.

Slightly more complicated dynamics will occur when the system is allowed
to evolve as a result of mutations. A DNA-protein selection model is again
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considered for our evolving system. For simplicity, a two-component system
is considered. One component has a low-aflinity for the protein and the other
has a high-affinity. This is not such an unrealistic model, if the binding is
extremely sensitive to sequence and is close to being “all or nothing”. During
the amplification steps, the system is allowed to mutate. The probability
that no mutation occurs during amplification is . If a mutation occurs, it
converts one affinity state into the other. This occurs during amplification
with probability, 1 —~. In this model, the mutation rates between species are
both identical. The probability of a sequence doubling is: Ay. The probability
of the sequence being amplified into the other affinity state is: A(1—+) In
this case, the number of sequences in the initial state remains the same. The
probability of a sequence not being amplified is, as before, (1 — A).

The recursion relationships for this case are now much more complicated.
After significant algebra, the following recursion relationship is obtained;

L= [A+ B] fip1,m—1 + [A — B] fap2,m—1
. 2A (fip1,m—1 + foP2,m—1)

(15)

with
A=(1/2)(1+N)' (16)

and

B=(1/2) (1 = A+ 2\y)! (17)

A similar recursion holds for ps »,,. However, it is not needed because one can
use: Pim = 1- P2.m-

For a two state system, the stability condition, Eq. 14 takes a particularly
simple form. It amounts to establishing that ép; »,, < 0. This is determined
by first taking the variation of Eq. 15 and treating the derivative with respect
to m as:

8P1,m = 6Pp1m — 6P1,m—1 (18)

This vields expressions for 621, that equal (5p17m)2 times a function in py m.
The steady state values of py., are than substituted into this function to
evaluate the inequality.

Using Egs. 12 and 14, the stability conditions for this evolving system can
be established. For this case, Eq, 12 gives a quadratic equation. For physically
plausible situations, only one of these roots gives an acceptable steady state
probability, i.e., it must lie between 0 and 1. This root is asymptotically
stable.  As a sample calculation, we consider the case were B = (1/2) A
and fo/f1 = 0.1. At steady state, the high affinity species has pq ., = 0.73.
Interestingly, introducing mutation into the system means that the system will
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not converge on a single species, i.e. pim 7 1. There can be a significant
difference in binding affinities of the two populations and yet the lower aflinity
component never dies out. This shows that it is not possible for the system
to maintain an optimal population with respect to binding aflinity. Another
interesting condition is B = (1/2) A and fa2/fi = 1. This case has no selective
advantage of one species over the other and a single root giving a 50:50 mix
is obtained. However, this solution is only marginally stable and can support
oscillations.

Introducing more complicated features into the model admits more compli-
cated dynamics. For instance, if the mutation rates differ with the high affinity
(favored) species having a high mutation rate while the lower affinity species
does not favor mutation, two physically acceptable roots can be obtained and
the possibility of oscillatory behavior exists. Similarly if the selection step
involves multiple binding of DNA to protein then additional non-linearity is
introduced into the system. This creates situations that have the potential for
chaotic and self-organizing behavior. These more complicated systems remain
to be analyzed in more detail.

5 Conclusion

This work demonstrates the utility of using the Shannon entropy to investigate
the dynamics of in wvitro selection-amplification systems. It is shown that for
a range of simple selection-amplification systems, the Shannon entropy is a
Lyapounov function for the difference equations governing the temporal evo-
lution. As such, it can be used to establish conditions for dynamic stability.
Using this approach, a variety of model systems can be investigated and the
requirements for stability can be established. This provides the experimen-
talist with the necessary tools to model and design such system. Perhaps
the most important consequences of this analysis is that even simple models
show that the selective pressure alone does not drive the system to a single,
optimal chemical species. There will always be design constraints in muta-
tional systems that can prevent optimization of the system. It is also possible
to create simple experimental situations where oscillatory and self-organized
temporal behavior exist. Such situations can allow for the creation of robust
experimental systems that evolve to an attractor. This analysis can aid the
experimentalist in finding the conditions for such behavior.
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