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Large-scale expression data, such as that generated by hybridization to microar-

rays, is potentially a rich source of information on gene function and regulation. By
clustering genes according to their expression pro�les, groups of genes involved in

the same pathways or sharing common regulatory mechanisms may be identi�ed.
Publicly-available EST collections are a largely unexplored source of expression
data. We previously used a sample of rice ESTs to generate 'digital expression

pro�les' by counting the frequency of tags for di�erent genes sequenced from dif-
ferent cDNA libraries. A simple statistical test was used to associate genes or

cDNA libraries having similar expression pro�les. Here we further validate this
approach using larger samples of ESTs from the UniGene projects (clustered hu-

man, mouse and rat ESTs). Our results show that genes clustered on the basis of
expression pro�le may represent genes implicated in similar pathways or coding for
di�erent subunits of multi-component enzyme complexes. In addition we suggest

that comparison of clusters from di�erent species, may be useful for con�rmation
or prediction of orthologs.

1 Introduction

Techniques for monitoring in parallel the expression of 1000s of genes, such as
microarray hybridization, EST generation and SAGE, are providing biologists
with huge amounts of expression information. A notion in common to many
studies is that genes that function in the same pathways are likely to be co-
expressed and possibly co-regulated. We subscribe to this 'guilt-by-association'
1 viewpoint and believe that associating genes based upon their expression
patterns is a powerful means of annotating 'anonymous' genes, and assigning
genes to pathways or cellular roles.

Several approaches have been presented for the analysis of large-gene ex-
pression datasets (recently reviewed by Claverie 2). The expression of a set of
112 genes was assayed using RT-PCR in developing rat spinal cord 3. Both
Euclidean distance and information theoretic approaches were used to assign
genes to one of 6 basic 'waves' of expression 3 4. Eisen et al 5 developed a
method in which linear correlation coe�cients are calculated for each pair of
expression pro�les followed by hierarchical clustering and display of the pri-
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mary expression data as a colormap. This technique was used to analyse both
human and yeast gene expression data 5 6. In many cases, genes implicated
in the same processes or encoding subunits of macro-molecular complexes (e.g
proteasome, ribosome and histone components) were found to have correlated
expression pro�les.

Tag-sampling approaches, such as SAGE7 and ESTs8 have also been used
for large-scale gene expression analyses 2. Instances of di�erential expression
of genes in di�erent tissues may be identi�ed by counting tags occurring in
di�erent cDNA libraries 9. Alternatively, genes may be grouped according
to the similarity of their expression pro�les. We recently used a publicly-
available rice EST dataset to derive digital expression pro�les of genes and
cDNA libraries 10. Correlations between pro�les were identi�ed and genes or
libraries organised into clusters. Our results showed that despite the small
sample size used (707 genes represented in 10 cDNA libraries), interesting and
biologically-relevant correlations between libraries or genes were revealed.

Here we present an exploratory study of human, mouse and rat gene ex-
pression using EST datasets as the primary source of data. By using EST
frequencies from di�erent cDNA libraries as a rough gene expression measure-
ment, and associating genes with similar expression pro�les, we show that
genes that would be expected to be co-expressed, based upon known function,
and groups of genes encoding subunits from multi-subunit complexes cluster
together. We also show how cDNA library expression pro�les may be derived
from EST data and used to compare the overall patterns of gene expression in
di�erent tissues or organs. In addition, by integrating sequence-based informa-
tion with gene expression data and comparing results between species (human,
mouse and rat), we show that 'conserved correlations' may be identi�ed. These
observations may be useful for identi�cation or con�rmation of gene orthologs
between species.

We argue that EST databases are a valid and reliable, but as yet rela-
tively unexplored source of gene expression data. We focus on the biological
implications of clustering expression data and illustrate our results with several
examples.

2 Results

2.1 Preparation of initial data

The starting point for our analysis is the classi�cation generated by the hu-
man, mouse and rat UniGene projects, in which ESTs, full-length mRNA
sequences and extracted genomic coding regions are organised into 'gene-
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oriented' clusters (http://www.ncbi.nlm.nih.gov/UniGene/index.html). The
cDNA libraries used for generating the ESTs are themselves derived from a
multitude of di�erent organs/tissues/cell-types and developmental stages. This
information is exploited in our study by analysing the representation of cDNA
libraries in unigenes�, and thereby deriving rough expression pro�les for each
gene in UniGene.

Data from large-scale gene expression experiments is best summarized as
as a gene by condition (g X c) data matrix, whereby each cell in the matrix
contains the expression measurement of gene, g, in condition c. In our study,
genes (rows) are represented by unigenes, and conditions (columns) by cDNA
libraries. Each cell, gicj, is populated by counting the number of ESTs in
unigene, gi, derived from cDNA library, cj . Matrix rows are therefore gene
expression pro�les and columns cDNA library expression pro�les.

To generate expression data matrices of manageable size (the total human
UniGene dataset consists of approximately 1 000 000 ESTs in 65 000 clusters),
an initial �ltration step was performed. This consisted of rejecting clusters
with fewer than 10 constituent sequences (not including non-EST entries such
as full-length mRNAs) and rejecting cDNA libraries for which fewer than 1000
ESTs have been sampled. For the human set, we also reduced the dataset by
excluding 'anonymous' unigenes - those without signi�cant database matches.
The resulting expression data matrices are detailed in Table 1.

Table 1: Summary of initial data and complete-link clustering

HUMAN MOUSE RAT

(a) Expression data matrices

Initial ESTs 425451 216517 22767
unigenes 5624 3889 1295
cDNA Libraries 129 48 22

(b) Complete-link clustering of unigenes

Complete-link clusters 746 602 341
unigenes in clusters 2394 2206 956
Cluster size range (largest:smallest) 109:2 88:2 27:2

2.2 Methods overview

The heart of our analysis is measurement of the correlation between each pair
of gene or library expression pro�les. In common with other studies 5 11, we

�To avoid confusion, the UniGene project will hereafter be referred to as 'UniGene', and
the UniGene clusters as 'unigenes'.
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found that the Pearson correlation coe�cient is both a simple and appropriate
measure of expression pro�le similarity. Pearson correlation coe�cients are
calculated and stored as c X c library or g X g gene similarity matrices, which
are then the basis for clustering of genes or libraries.

The data was clustered in two di�erent ways; discrete, 'complete-link' clus-
tering and hierarchical clustering. Complete-link clusters, in which clusters
are joined only if all members of both clusters match, were generated using
a threshold Pearson correlation value (r>=0.75) (see Table 1). Hierarchical
'phylogenetic-type' clustering was performed by �rst calculating Euclidean dis-
tances and then using the UPGMA algorithm (average-linkage cluster analysis
12), implemented in the Phylip package 13, to generate a dendrogram repre-
senting all objects. Note that we calculate the Euclidean distance between two
objects, X and Y, from the respective correlation coe�cients with all other
objects (x1, x2, ... , xN ) and (y1, y2, ... , yN ), rather than calculating the
distance solely from the correlation value for X and Y.

Since the starting point for both the complete-link clustering and hierar-
chical clustering are the same gene or library similarity matrices, the associa-
tions found in the data are generally very similar (e.g genes found in the same
complete-link clusters will be in close proximity on the appropriate dendro-
gram). We found, however, that the relatively small number of cDNA libraries
(129 for human) were best represented as a dendrogram, whereas the much
larger number of genes (5624 for human) were more easily manipulated as
discrete, complete-link clusters. Results from both approaches are therefore
presented in the following sections.

In common with other reports 14 5 3 we �nd that colormaps are a good vi-
sual way of representing expression data. In all colormaps presented here, the
data has been reordered such that objects along both axes are grouped accord-
ing to similarity (reordered according to the order present in the appropriate
dendrogram).

2.3 cDNA Library Analysis

To characterise the overall similarities between transcriptomes of di�erent tis-
sues/organs, cDNA libraries were clustered using the methods described in the
preceding section.

An unrooted dendrogram of the human cDNA libraries is shown in Fig-
ure 1. The 129 libraries have been classi�ed into one of 30 di�erent tis-
sue/organ classi�cations, based upon the existing UniGene classi�cation (see
http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html). In addition, the 34
normalized libraries are marked 'n', and brain libraries further classi�ed ac-
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cording to the key.

Several conclusions can be drawn from the tree. First, libraries from the
same tissues do not consistently cluster together (notable exceptions are brain,
muscle and prostate clades - marked with arrows). Both biological and method-
ological factors likely contribute to this observation. It may be that expression
pro�les of some tissues are composed mainly of ubiquitously expressed genes
('housekeeping genes') - libraries derived from these tissues would be expected
to have overlapping expression pro�les. The 'tissue-speci�c clades' - brain,
muscle and prostate for example, imply that expression pro�les from these
tissues are su�ciently distinct to form outlying groups - perhaps an indica-
tion that there are signi�cant numbers of genes speci�cally expressed in brain,
muscle or prostate tissues.

Second, there are methodological issues. Much variation between libraries
derived from the same tissues may be attributed to cDNA library preparation
- for example how the tissue was initially dissected. The 7 prostate libraries
in Figure 1 are distributed between a prostate-speci�c clade and other tissue-
non-speci�c clades. It could be that those prostate libraries clustering with
other tissue types were prepared from prostate contaminated with surrounding
tissues. This type of analysis may be useful for selection of cDNA libraries for
further sequencing. For example, it may be more productive to search for
prostate-speci�c genes in the 'clean' prostate libraries (those in the prostate-
speci�c clade), than in those prostate libraries which cluster with libraries from
other tissues.

Normalization of cDNA libraries is possibly the most important method-
ological factor - normalized cDNA libraries are marked 'n' in Figure 1 and
there is evidently some segregation of normalized and non-normalized libraries,
regardless of tissue-type. Since normalization of cDNA libraries reduces the
quantitative di�erences between abundant and rare cDNAs, it may be that a
signi�cant portion of the variablility between tissue expression pro�les is due
to quantitative (levels of expression) rather than qualitative (the expression of
distinct genes) di�erences in gene expression. It could also be argued that nor-
malized cDNA libraries should not be used for tag-based expression pro�ling
since tag counts are no longer a true reection of transcript abundances (see
concluding remarks section for further discussion of this).

Third, it should be borne in mind that the library classi�cations in Figure
1 are relatively broad. The 'brain' category, for example, contains libraries
derived from many di�erent brain tissues and developmental stages. Finer
subclassi�cation of tissue types reveals some clustering of 'infant' brain for
example - perhaps indicating the presence of gene expression patterns speci�c
to this period of development.
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2.4 Clustering of gene expression pro�les

Many interesting correlations of genes with related functions were observed in
the clustered data.

In several cases, clusters contained unigenes encoding multiple subunits of
multi-protein enzyme complexes. An example , drawn from the mouse data,
is shown in Figure 2(A). Cytochrome c oxidase is the terminal oxidase in mi-
tochondrial electron transport chain and in eukaryotes is comprised of 7-11
subunits; the largest three are encoded on the mitochondrial genome and the
remainder in the nuclear genome. Figure 2(A), shows all complete-link clusters
found to contain at least one cytochrome c oxidase subunit. Ten of the total
of 15 unigenes encoding cytochrome c oxidase components are represented in
5 clusters. The 5 clusters shown are also rich in other nuclear-encoded mito-
chondrial proteins; 4 subunits of NADH-ubiquinone oxidoreductase (another
electron transport chain component) show correlated expression pro�les.

Figure 2(B) shows a discrete cluster of 8 human unigenes, all encoding
commonly found muscle-related proteins. Several genes are involved in energy
transduction (ATPase, AMP deaminase, creatine kinase and beta-enolase),
whereas others (troponin, myosin) are structural components of muscle �bres.

We also sought to integrate our �ndings with data from other large-scale
gene expression experiments. As a preliminary investigation, we compared our
results to results obtained in a study in which the responses of 8600 genes were
analysed following treatment of human �broblasts with serum 6. Comparisons
between the studies were facilitated by the fact that Iyer et al 6 used the
UniGene database to select cDNA clones for inclusion on microarrays, making
it easy to cross-reference genes between studies.

We identi�ed genes that were correlated both during the serum-stimulation
time-course 6, and across the 129 human cDNA libraries. The best example
of our �ndings, and one that is supported by existing literature, is shown in
Figure 2(C). During the serum stimulation time course the kinetics of induction
of Early growth response 1 (EGR1) and P55-c-fos proto-oncogene (C-FOS)
are very similar, and the genes are clustered together 6. Similarly, in our
own study, hierarchical clustering of gene expression pro�les places the two
genes on adjacent positions on the tree, suggesting that for these two genes,
correlated expression extends beyond the speci�c cell-type (�broblast) and
condition (serum-stimulation) to many di�erent cell-types, tissues and organs.
This conclusion is supported by other reports, in which the expression kinetics
of EGR1 and C-FOS have been shown to be remarkably similar, suggesting
that the genes are co-regulated1516. Note that the absolute numbers of ESTs in
the EGR1 and C-FOS expression pro�les are relatively low (65 C-FOS ESTs in
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the aorta library is the maximum, all other counts are 15 or below), suggesting
that tag-based expression pro�les may be accurate for even relatively weakly-
expressed transcripts.

2.5 Conservation of correlations between species

The examples cited above indicate that biologically-relevant correlations be-
tween expression pro�les of genes or libraries can be identi�ed from EST data.
We wished to extend these results and explore other ways of using the data.

One interesting possibility is the identi�cation of 'conserved correlations'
in data from di�erent species. If correlations between gene expression pro�les
are indeed functionally relevant, it should be possible to identify genes which
show the same associations or correlations in di�erent species. Observing 'con-
served correlations' between di�erent organisms would �rstly add con�dence
to correlations observed in a single species, and secondly may be a powerful
method of con�rming or identifying orthologous relationships between genes.

By taking the dendrograms derived from the hierarchical clustering of hu-
man and mouse genes, and cross-referencing objects on those dendrograms
(known human/mouse orthologs, de�ned in a previous study of human/rodent
orthologous genes17 or human and mouse genes with signi�cant sequence align-
ment scores (gapped-TBLASTx 18, default scoring matrix, score > 380)), we
were able to identify associations between genes that are conserved between
human and mouse.

An example is shown in Figure 3. A fragment of the human gene den-
drogram is shown opposite two fragments from the mouse gene dendrogram.
Sequence-based relationships between human and mouse genes (con�rmed or-
thologs or signi�cant sequence alignments) are overlaid on the gene expression
dendrograms; solid boxes/lines represent human/mouse ortholog pairs, hashed
boxes/dotted lines represent signi�cant sequence alignments.

Interestingly, several of the genes featured in Figure 3 (Thrombospondins,
B94 , LDL-related receptor and tissue inhibitors of metalloproteinases) are
involved in vascularisation/angiogenesis 19 20 21. Furthermore, it is known
that the LDL-receptor related protein mediates the cellular-internalisation of
thrombospondin and its subsequent degradation 22 23. The associations identi-
�ed in Figure 3 therefore concur with existing data and suggest that the mouse
and human orthologs have maintained their functions since the divergence of
the two species.
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3 Concluding remarks

We have derived digital expression pro�les from publicly-available EST data
and shown how correlations between gene or library expression pro�les may
be identi�ed. The principal aim of our study is to argue that existing EST
databases are a valuable source of expression data, which can be integrated
with expression data from other sources and used to identify many interesting
biological relationships. Our approach di�ers from other large-scale studies of
gene expression 3 5 24 in that we are not examining gene expression within a
speci�c developmental window or speci�c cell-types. Rather, we are identifying
overall correlations - for example genes whose expression is correlated across
many di�erent conditions (e.g 129 human cDNA libraries). Our results show
(and we predict) that genes with correlated pro�les are frequently genes whose
products either physically interact (as in a multi-subunit complex) or function
in the same pathway.

Potential drawbacks of expression analysis based upon EST counts are as
follows. First, EST data is derived from cDNA libraries prepared using di�er-
ent techniques. The classi�cation of cDNA libraries (see Figure 1) suggests that
normalization of cDNA libraries has a signi�cant e�ect on the resulting expres-
sion pro�le. Finer '�ltration' of the initial data - e.g exclusion of normalized
libraries may allow better correlation of libraries based upon tissue-type. Al-
ternatively, we have explored the possibility of transforming 'continuous' EST
count data into a discrete binary representation (presence and absence of ESTs
in a given library represented by 1 and 0 respectively) (results not shown). Ex-
pression pro�les are thereby represented as strings of 1s and 0s, and amenable
to analysis using information theoretic approaches, as explored by Michaels et
al 4 in this context. Although quantitative information is lost from the expres-
sion pro�les, this approach may be more appropriate for comparisons between
normalized and non-normalized cDNA libraries, since quantitative information
in normalized libraries (i.e the absolute numbers of EST counts) is not truly
representative of actual transcript abundances.

Second, sequence-based clustering of ESTs is not an unambiguous process,
and the results vary according to the clustering stategy and parameters. A re-
cent comparison of three publicly-accessible 'gene-indexing' projects showed
how the relatively non-stringent parameters used in the UniGene project af-
fect the resulting clusters 25. Results from the other gene-indexing projects
examined, HGI (http://www.tigr.org/tdb/tdb.html) and STACK
(http://www.sanbi.ac.za/), are relatively redundant, but allow alternative tran-
script forms, such as alternatively spliced transcripts, to be represented by
di�erent clusters. Clearly, in the context of digital expression pro�ling, the
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clustering parameters are of importance.

We envisage that observations of correlated gene expression will be most
useful when combined with other molecular data (especially sequence data). As
illustrated here (Figure 3), this may take the form of identi�cation of conserved
correlations between di�erent species. Genes with correlated expression may be
co-regulated - screening regulatory regions of genes with correlated expression
may lead to identi�cation of regulatory elements. This approach has already
been applied in yeast, whereby putative 5' regulatory elements were identi�ed
in yeast genes with correlated pro�les 26.

Finally, integration of physical mapping data may lead to discovery of cor-
relations between chromosomal position and gene expression. This approach
was taken with yeast SAGE data27, and was also briey discussed by Michaels
et al 4, who noted that three genes with correlated expression pro�les also
mapped to the same cytogenetic band. In the context of EST data, the Uni-
Gene project is already integrated with mapping data (e.g see Bortoluzzi et al
28), which will provide a convenient means of linking expression and physical
mapping data.
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Figure1. Hierarchical clustering of human cDNA libraries
Unrooted dendrogram of 129 human cDNA libraries clustered on the basis of
expression profiles derived from 5624 genes. Libraries have been classified
according to tissue/organ of origin (see upper part of key) and additional
subclassification (lower part of key).
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Figure 2. Clustered gene expression profiles.
(A) Five discrete, complete−link clusters (correlation coefficient, r >= 0.75) from the mouse UniGene dataset (3889 unigenes x 48 cDNAlibraries). A short description of 
the gene product is given with each unigene. The colormap has been scaled in order to represent the expression data as clearly as possible; white represents 50 or more 
ESTs, black represents 0 ESTs and shades of grey, intermediate values. Highlighted unigenes encode cytochrome c oxidase components (dark grey) or 
NADH−ubiquinone oxidase components (light grey). Libraries contributing significantly to the expression profiles are identified.
(B) Discrete, complete−link cluster (r >= 0.75) of 8 unigenes from the human dataset (5624 unigenes x 129 cDNA libraries). Colormap scale: white >= 65 ESTs, black = 
0 ESTs, 0 < greys < 65.
(C) Expression profiles of two human unigenes, taken from hierarchical clustering (nearest neighbors on a dendrogram of 5624 human
unigenes). Colormap scale: white >= 65 ESTs, black = 0 ESTs, 0 < greys < 65.
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Figure 3. Conservation of correlations in hierarchical clustering of human and mouse unigenes.
Fragment from human dendrogram (5624 genes) (A)and two fragments from mouse dendrogram (3889 genes) (B) showing conservation of correlations. For each 
unigene, the UniGene number is shown along with a brief description of the predicted gene product. Orthologous relationships between human and mouse genes are 
shown in solid colours with solid lines. Hashed boxes and dotted lines represent significant alignment scores (gapped−TBLASTx score > 380) between the human and 
mouse genes.
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