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Recent assessments of structure prediction have demonstrated that (i) although
fold recognition methods can often identify remote similarities when standard se-
quence search methods fail, the score of the top-ranking fold is not always signi�-
cant enough to allow a con�dent prediction; (ii) the use of structural information
such as secondary structure increases recognition accuracy; (iii) modern sequence-
based methods incorporating evolutionary information from neighboring sequences
can often identify very remote similarities; (iv) there is no one single method that
is superior to other methods when evaluated over a wide range of targets, and
(v) extensive human-expert intervention is usually required for the most di�cult
prediction targets. Here, I describe a new, hybrid fold recognition method that
incorporates structural and evolutionary information into a single fully automated
method. This work is a �rst attempt towards the automation of some of the pro-
cesses that are often applied by human predictors. The method is tested with two
fold-recognition benchmarks demonstrating a superior performance. The higher
sensitivity and selectivity enable the applicability of this method at genomic scales.

1 Introduction

Protein fold recognition aims to assign each new amino acid sequence to the

known three-dimensional fold which it most closely resembles. The assignment

is carried out by searching a library of known structures for a compatible fold.

Fold-recognition methods have demonstrated their capabilities in computer-

aided assessment experiments such as CASP1 as well as in fully automated

assessment experiments such as CAFASP-12. In the former, fold-recognition

programs coupled with human intervention were able to correctly predict the

folds of proteins of (then) unknown structure. In the latter, the performance of

the methods was not as good, but still it was superior to sequence-comparison

methods such as PSI-BLAST3. CAFASP-1 demonstrated that no single ap-

proach was markedly superior to the others evaluated when considered across

the entire range of targets. In some cases, exploiting evolutionary informa-

tion from neighboring sequences resulted in the correct fold identi�cation (e.g.
4;5); in other cases, the use of structural information such as predicted versus

observed secondary structure (e.g. 6;7) allowed recognition of the correct fold.
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Since the appearance of PSI-BLAST, several fold-assignment methods ex-

ploiting the evolutionary information in the sequence databases have been

developed. These include approaches using neighbors of the target sequence,

neighbors of the folds in the fold library and both. The evolutionary infor-

mation is usually compiled in the form of a pro�le or a HMM5. The results

of the application of these new methods to complete genomes also demon-

strated that some of the predictions from fold-assignment methods are not

detectable by sequence-based methods1;8, and conversely, that sequence-based

methods sometimes identify distant relationships that fold-assignment meth-

ods do not detect9;10. Current sequence-based methods succeed in these cases

because of their incorporation of evolutionary information from neighboring

sequences, whereas traditional fold-assignment methods do not exploit this in-

formation to the same extent. It is thus clear that a new generation of hybrid,

fold-assignment methods, like the one presented in this work, which combine

structural and evolutionary information should result in even more sensitive

methods.

Another clear conclusion of recent fold-recognition assessment experiments

was that, in many cases, although the correct fold was identi�ed at rank-1, its

score was not signi�cant; in such cases, human intervention was required to

discriminate true from false positives. This aspect is of particular interest for

structural genomics. Automated approaches for fold recognition are essential

if the wealth of data in genomes is to be exploited (e.g.11;12;9 and 8 for a

recent review). For genomic fold assignment to work it is necessary that folds

be assigned with a high degree of con�dence. That is, a method needs to

discriminate correct match scores from incorrect ones. A major conclusion

from CAFASP-1 was that improvements in this aspect are required to allow a

much wider applicability of automated fold-recognition methods at a genomic

scale. The new method presented here is a �rst attempt to automate some of

the procedures a human predictor often applies when trying to discriminate

true from false positives.

In this work I describe a new, hybrid fold-recognition method that com-

bines evolutionary information from neighboring sequences with structural in-

formation. This new method is based on principles similar to those of the previ-

ously developed fold-recognition method SDP6 and is aimed to overcome some

of the limitations described above. The new method is fully automated and is

available for the academic community at: http://www.cs.bgu.ac.il/~bioinbgu.

The sensitivity and selectivity of the method was tested using two standard

benchmarks, and the results show that signi�cant improvements have been

achieved.
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2 Methods

The new, hybrid fold-recognition method is a consensus method that is com-

posed of �ve components. These components are based on an extension of the

fold-recognition method SDP6 which computes sequence-structure compatibil-

ity using sequence-derived predictions and the so-called "global-local" dynamic

programming algorithm for alignment6;13. The sequence-structure compatibil-

ity in SDP is computed as:

g(i; j) = f(i; j) + wj � h(i; j) (1),

where g relates the information at position i of the target sequence with

position j of the fold and is composed of two parts, f and h. f corresponds

to one of the �ve sequence-structure compatibility functions described below.

f reects the similarity of a position in the target sequence with a position of

the assigned fold, using either a standard 20 x 20 sequence comparison matrix,

a multiple alignment of homologous sequences, a sequence pro�le built from

the multiple alignment or other sequence-structure compatibility functions14.

h is a function that scores the compatibility of the sequence-derived properties

of position i of the target, with the observed structure of position j of the

fold. The only sequence-derived property used here is the predicted secondary

structure15;16. wj is a position dependent empirical weight. h depends not only

on the compatibility of observed versus predicted secondary structure, but also

on the per-position reliability given in the secondary structure prediction.

I chose compatibility functions of the form of g because it has been demon-

strated that the use of predicted secondary structure in fold recognition in-

creases its sensitivity and selectivity6. In previous works the predicted sec-

ondary structure was computed by PHD15 using homologous sequences to

the target, compiled using a single BLAST17 iteration on the SWISSPROT

database. The �rst source of improvement of the current method is due to

the increase in the predicted secondary structure accuracy obtained by com-

piling the homologous sequences from the larger "nr" database, and using the

newer PSI-BLAST program3. Further improvements in the secondary struc-

ture prediction are likely to contribute to additional improvements in fold-

recognition performance6 (e.g. by replacing PHD by the reportedly more sen-

sitive PsiPred18 program). This option is currently being evaluated.

2.1 The �ve components

Each of the �ve components of the new method use a di�erent f function

(see Table I), each exploiting the sequence and evolutionary information dif-

ferently. The �rst component is termed GONP and considers only the amino
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acid sequence of the target. The compatibility is measured using the sequence

comparison matrix of Gonnet et al.19. That is:

fGONP (i; j) = Gonnet(target[i]; fold[j]) (2) ,

where target[i] denotes the i-th amino acid of the target sequence, and

fold[j] denotes the amino acid at position j of the fold.

TABLE I. The f compatibility

functions used in each of the components.

Symbol Information used Comments

for the target for the fold

GONP a.a. sequence a.a. sequence Gonnet matrix.
GONPM multiple alignment a.a. sequence Gonnet matrix.
PRFSEQ PSI-BLAST pro�le a.a. sequence.
SEQPPRF a.a. sequence PSI-BLAST pro�les.
SEQPMPRF multiple alignment PSI-BLAST pro�les.

The compatibility between predicted and observed secondary structures
is measured via the h function in Eq. (1), and thus it is not speci�ed here.

The second component is termed GONPM and uses a multiple alignment

of sequences homologous to the target. The compatibility is measured by:

fGONPM (i; j) =
P

20

k=1mai[k]� fGONP (k; j) (3) ,

where ma denotes the frequencies of each amino acid at position i of the

multiple alignment. GONP and GONPM are essentially the same methods as

those previously described6. The di�erence is that the multiple alignment used

in GONPM (and in the other components below) is now compiled using PSI-

BLAST and the "nr" database. This more information-rich multiple alignment

is the second source of improvement in the current method over the previously

described methods.

The third component termed PRFSEQ replaces the multiple alignment

(ma) of GONPM with a pro�le (Ptarget) computed by PSI-BLAST:

fPRFSEQ(i; j) = Ptarget[i; fold[j]] (4),

where Ptarget[i; fold[j]] represents the value of the pro�le of the target

sequence at row i, column fold[j].

The last two components of the new method, SEQPPRF and SEQPMPRF

use PSI-BLAST generated pro�les (Pfold) for the folds in the fold-library.

SEQPPRF compares the single target sequence with each pro�le in the fold-

library:

fSEQPPRF (i; j) = Pfold[j; target[i]] (5) .

SEQPMPRF compares a multiple alignment of sequences homologous to

the target (as in GONPM) with each pro�le in the fold-library:
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fSEQPMPRF (i; j) =
P

20

k=1mai[k]� Pfold[j; k] (6) .

Other alternatives considered the use of multiple alignments for each fold

in the library. Because of the non-homogeneity in the number of homologous

sequences for the di�erent folds in the library, these alternatives proved not

to be sensitive enough. Yet another alternative, which has been investigated

by Godzik's group4, but not considered here, is to match multiple alignments

from both the target and the folds.

With these �ve f functions, we have �ve di�erent g compatibility functions.

Each of these g functions are used in separate fold recognition runs: the target

sequence information and the predicted secondary structure are compared to

each of the folds in the library, and the result of each run is a ranking of the

folds based on their sequence-structure compatibility scores. That is, for run

i (for i equal to GONP, GONPM, PRFSEQ, SEQPPRF and SEQPMPRF),

each fold j in the library receives two numbers: ri;j and si;j , where ri;j denotes

the rank that fold j achieved in run i, and si;j is its corresponding score.

The individual si;j scores are computed as follows. Each sequence-structure

alignment produces a "raw" score which represents the sequence-structure com-

patibility. For each run, the distribution of the raw scores of the folds in the

library were used to compute z-scores. The z-score measures the number of

standard deviations that the raw score lies above the mean score.

2.2 The consensus method

The consensus method takes all the ri;j and si;j and computes for each fold j

in the library a consensus score, cj as, cj =
P

5

i=1 si;j=ri;j . To produce the �nal

ranking, the cj 's are sorted from best scores to worst. Notice that cj could

be computed di�erently, possibly with di�erent weights for each component

tuned using for example a neural network. This possibility is currently being

considered. The rationale behind the consensus method is to allow for rela-

tively weak predictions that are consistent among the various components to

receive a more con�dent score. The fact that di�erent methods using various

types of information rank the same fold at the top can be an indication of the

validity of the prediction. In addition, as will be shown below, in some cases,

only one of the components is able to score its rank-1 prediction highly; the

consensus method will in most such cases also place this high score prediction

at rank-1 with a signi�cant score (see below).

2.3 The Benchmarks.

Each of the �ve components and the consensus methods were evaluated here

using two benchmark tests. In these benchmarks, the 3D structures of the
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probe sequences are actually known, but are ignored during the test.

One of the benchmarks used13 consists of a library of 301 known target

structures and a set of 68 probe sequences which cover a wide range of struc-

tural classes and folds. This benchmark was originally published in the pages

of these proceedings in 1996, and since then it has been extensively used to

evaluate the performance of various fold-recognition methods (e.g.6;20;4). I refer

to this benchmark as the 68-Benchmark.

The second benchmark is based on the targets used in the CAFASP1

evaluation2, and is referred here as the CAFASP1-benchmark. The fold library

used with this benchmark contains about 2000 di�erent folds, representing a

minimally redundant set of structures and domains taken from the Protein

Data Bank (PDB21) available by mid 1998. The CAFASP-1 benchmark con-

sists of 21 targets selected from the CASP322 competition, none showing any se-

quence similarity to the available proteins of known structure by mid 1998; only

for one of the targets could PSI-BLAST identify a similar structure. The lists of

targets and of folds considered to be the correct hits for each target are included

in the CAFASP-1 web page at http://www.cs.bgu.ac.il/~d�scher/cafasp1/cafasp1.html.

For each of the target sequences in each benchmark, the evaluated methods

scan the library of known folds and produce a ranked list of compatibilities.

Both benchmarks register the rank at which a correct fold of each target se-

quence is assigned by the method. The number of correct folds identi�ed at

rank 1 are registered and the overall performance score of a method is com-

puted as S� =

P
1=ri

n
, where the sum is taken over all targets, ri denotes the

rank of the correct fold achieved by probe i and n is the number of targets

in the benchmark. This scoring system is similar to the one used in previous

benchmarks 13;2, and its rationale is as follows: suppose a program always has

the correct answer within the top i ranks; if only a single answer is desired,

then, on average, the correct fold will be predicted with probability 1=i. S�

equals 1.0 for perfect fold assignment (and < 0:01 for random assignment).

In addition to the sensitivity of the methods (i.e. the number of correct

predictions), I have analyzed their selectivities, again following the same ap-

proach used in CAFASP-1. For a given threshold score s, selectivity is de�ned

as the number of true positives at rank-1 with scores better than s. To this end,

for each component I compiled its rank-1 predictions, and set three threshold

scores, Th1 , Th2 and Th3 (di�erent for each component), corresponding to

the scores of the �rst, second and third rank-1 wrong predictions (i.e. false

positives), respectively. Finally, I counted the number of rank-1 true positives

with scores above Th1, Th2 and Th3. Con�dence thresholds help the user of

an automated method to determine the reliability of a prediction.
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3 Results

Table II is a summary of the evaluation using our �rst benchmark, for each of

the �ve components and for the consensus method.

TABLE II. 68-BENCHMARK EVALUATION

COMPONENT SENSITIVITY SELECTIVITY

= 1 S* trues/Th1 trues/Th2 trues/Th3

GONP 48 0.77 27/4.7 36/3.7 39/3.4
GONPM 52 0.80 35/3.7 39/3.7 43/3.4
PRFSEQ 52 0.82 31/5.1 41/3.2 41/3.1
SEQPPRF 52 0.83 39/4.0 43/3.5 46/3.3
SEQPMPRF 57 0.87 46/3.8 47/3.5 50/3.4

consensus 58 0.89 48/12.0 51/11.6 55/10.6

The �rst column gives the symbol of the compatibility function used as described in
Table I. The �rst �ve rows correspond to the individual components, and the last row
corresponds to the consensus method. The second column indicates the number of targets
that identi�ed their correct fold at rank 1. The third column shows the overall score S� (see
text). A perfect sensitivity would be 68, with an S

� score of 1.00. The selectivity columns
indicate the number of targets identi�ed (\trues") with scores above Th1, Th2 and Th3,
respectively. For example, the highest scoring rank-1 false positive of the consensus method
had a score of 12.0, and 48 rank-1 true positives had scores > 12:0. The GONP and GONPM
results shown here correspond to those previously published.

Table II shows that the most sensitive and selective component in this

benchmark was SEQPMPRF. However, although it identi�ed the largest num-

ber of correct folds at rank-1, the other components succeeded to identify the

correct fold in rank-1 for a number of targets for which SEQPMPRF failed.

Consequently, it is possible for the consensus method to improve over the indi-

vidual performances of its components. Besides the improvement in sensitivity

(correct rank-1 identi�cation), probably the most dramatic improvement of the

consensus method is in its selectivity; it scored over 80% (48/58) of its rank-1

predictions with a score > 12:0.

Table III shows the results for each of the 21 targets in the CAFASP1-

benchmark. For each target and component are shown the score and fold

identi�ed at rank-1, followed by the rank and fold of the �rst correct fold. If

a correct prediction was obtained at rank 1, then the fold identi�ed at rank-1

is the same as the one listed as the "1st true" (for some targets more than

one \correct" fold exist). The table shows that for 8 targets (T0043, T0054,

T0059, T0063, T0071.1, T0071.2, T0071 and T0080) no component was close

to identify the correct fold. These 8 targets include some of the most di�cult

targets in CASP3 and CAFASP-1. However, for the other targets in Table
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III, the correct fold was identi�ed by at least one component either at rank-

1 or at the top 5 ranks; for seven targets (T0044, T0046, T0074, T0079.1,

T0079, T0081 and T0083.1) almost all components identi�ed the correct fold

at rank-1.

TABLE III. THE INDIVIDUAL RESULTS ON THE TARGETS OF THE CAFASP-1 BENCHMARK.

T0043 T0044 T0046
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 4.3 1lvl 15 8atc 4.6 2pol 2 1eps 3.9 1cid 1 1cid
SEQPM 5.5 2fx2 12 1pil 6.6 1eps 1 1eps 3.8 1cid 1 1cid
PRFSEQ 4.2 1opc 21 1aw0 4.8 1eps 1 1eps 5.5 1cid 1 1cid
SEQPPRF 4.4 1cgm 6 8atc 5.2 1eps 1 1eps 4.8 1cid 1 1cid
SEQPMPRF 4.0 1fcd 6 1afi 7.1 1eps 1 1eps 5.0 1cid 1 1cid
consensus 5.8 2fx2 >20 20.5 1eps 1 1eps 21.0 1cid 1 1cid

T0053 T0054 T0059
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 4.1 1ak1 1 1ak1 4.0 1pox >25 4.2 1hng >25
SEQPM 4.0 1ak1 1 1ak1 4.0 1scu >25 3.0 1auu 12 1vie
PRFSEQ 4.0 1aoa 4 1ak1 4.5 1pox >25 5.4 1bib 1 1bib
SEQPPRF 6.5 1aq6 3 1ak1 4.3 1lz1 >25 3.8 1kdu >25
SEQPMPRF N.A. N.A. 4.2 1rhd 18 1lbu 2.9 1hng 6 1bib
consensus 13.2 1ak1 1 1ak1 9.9 1pox >20 10.4 1hng 2 1bib

T0063.1 T0063.2 T0063
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 4.3 1pkn 12 8shf 4.8 1amy 4 1ah9 4.0 1lcl 9 1eip
SEQPM 2.9 1csq 2 1ckb 4.0 1csp 1 1csp 3.6 1gof 9 1umu
PRFSEQ 3.0 1ckb 1 1ckb 3.8 1iyv 4 1csp 4.1 2bpk 3 1lts
SEQPPRF 4.1 1tit 17 1bib 3.8 1tuc 4 1ah9 4.1 1pbk 5 1eip
SEQPMPRF 3.0 1bib 1 1bib 4.1 1sro 1 1sro 3.6 2bpk 24 1sro
consensus 5.9 1csq 4 1ckb 8.8 1amy 3 1sro 9.9 2bpk 12 1lts

T0067 T0071.1 T0071.2
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 3.6 1an3 3 1lla 4.8 1lfo 7 1cid 3.9 1ecm >25
SEQPM 4.3 1mfn 1 1mfn 3.9 1opa 2 1tit 4.0 1ecm >25
PRFSEQ 5.0 1piv 3 1ttg 4.5 1ifc 4 1jrh 4.5 5paa 10 2prf
SEQPPRF 4.4 1an3 3 1cid 3.8 1eal 2 1bgl 4.3 1lfb 8 3pmg
SEQPMPRF 3.1 1an3 2 1cid 4.0 1gof 1 1gof 3.5 1ayy >25
consensus 12.7 1an3 3 1mfn 9.4 1eal 5 1gof 8.0 1ecm >20

T0071 T0074 T0079.1
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 4.7 1grl 17 3hla 4.1 4icb 1 4icb 3.7 1apl 1 1apl
SEQPM 5.3 1grl 5 1frt 4.6 4icb 1 4icb 3.2 1apl 1 1apl
PRFSEQ 4.1 1bak 6 2prf 8.6 1trf 1 1trf 3.9 1fjl 1 1fjl
SEQPPRF 4.0 1ppr 2 3pmg 5.5 1a4p 1 1a4p 3.1 1r69 1 1r69
SEQPMPRF 4.1 1yas 10 2prf 4.7 1a4p 1 1a4p 3.3 1lcc 1 1lcc
consensus 12.1 1grl 7 3pmg 11.5 1trf 1 1trf 8.2 1apl 1 1apl
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T0079 T0080 T0081
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 4.5 2pna 2 1tns 4.6 1tml 7 1fmt 4.7 1etu 2 1jdb
SEQPM 3.1 1neq 1 1neq 5.6 1ndk >25 5.8 1jdb 1 1jdb
PRFSEQ 3.5 1lea 1 1lea 5.2 1ndk >25 5.8 1jdb 1 1jdb
SEQPPRF 4.3 1hcr 1 1hcr 4.7 2stv >25 14.4 1jdb 1 1jdb
SEQPMPRF 3.8 1aoy 1 1aoy 4.2 2mnr >25 20.0 1jdb 1 1jdb
consensus 7.1 1aoy 1 1aoy 12.8 1ndk >20 48.0 1jdb 1 1jdb

T0083.1 T0083 T0085
rank 1 1st true rank 1 1st true rank 1 1st true

SEQP 4.5 1lmb 1 1lmb 2.9 1fha 9 1lmb 5.5 1fgj 1 1fgj
SEQPM 4.3 1lmb 1 1lmb 3.1 1lmb 1 1lmb 4.4 1fcd 5 1fgj
PRFSEQ 5.1 1lmb 1 1lmb 4.6 1lmb 1 1lmb 5.0 2mta 7 1fgj
SEQPPRF 3.7 1r69 1 1r69 3.8 1a0b 7 1r69 4.7 2cy3 14 1fgj
SEQPMPRF 4.2 1r69 1 1r69 4.1 1a0b 3 1r69 N.A. N.A.
consensus 15.9 1lmb 1 1lmb 8.2 1lmb 1 1lmb 10.2 1fcd 3 1fgj

The utility of the consensus method is illustrated in several targets. One

example is T0046, in which all �ve components identi�ed the same fold at

rank-1, albeit with low scores. The consistency of the predictions is reected

in the very high score of the consensus method. Similar results are observed for

T0044, T0083.1 and T0083. Another example of the utility of the consensus

method is given by target T0081. Only when using the fold-library pro�les,

the score of the rank-1 fold is very high (in SEQPPRF and SEQPMPRF).

On the other hand, the fold-library pro�les actually harm the correct predic-

tion for target T0053, where the SEQPPRF and SEQPMPRF methods place

the correct fold at rank 3. Nevertheless, the consensus method exploits the

information from the �ve components and assigns the correct fold at rank-1.

Another way to compute a consensus score is to base it on the fold type

of the hits, rather than the individual pdb entries. This can be useful when

di�erent pdb entries of the (correct) fold type are found by a method, but

none is hit with a high score. This type of consensus scoring would increase

the score for targets T0074, T0079 and T0083.

Table IV is a summary of the results shown in Table III. Tables III and IV

show that the CAFASP-1 benchmark is a much more demanding test for fold

recognition than the 68-benchmark. Consequently, the scores (S�) achieved

in this benchmark are considerably lower. Interestingly, in this benchmark

the sensitivities of PRFSEQ and SEQPMPRF are very similar (the di�erences

are not likely to be signi�cant given the relatively small size of the bench-

mark). The performance of SEQPPRF and SEQPMPRF components is not

as high probably due to the presence of a number of targets for which their

"correct" folds had no or few sequence neighbors. The GONP and SEQPPRF

components were the worse, indicating that the contribution of the multiple

alignment used in GONPM and SEQPMPRF is signi�cant. In addition, the
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S� score of the consensus method did not improve over the scores of the com-

ponents. However, Table IV shows that there exists a signi�cant improvement

in the selectivity of the consensus method. While most of the individual com-

ponents identi�ed only one or two correct folds with scores above the �rst

false positive (Th1), the consensus method identi�ed �ve. This is a signi�cant

achievement that has important implications for automatic fold prediction.

TABLE IV. CAFASP1-BENCHMARK EVALUATION

COMPONENT SENSITIVITY SELECTIVITY

= 1 S* trues/Th1 trues/Th2 trues/Th3

GONP 6 0.42 1/4.8 1/4.8 1/4.7
GONPM 11 0.61 2/5.6 2/5.5 2/5.3
PRFSEQ 10 0.57 4/5.2 5/5.0 5/5.0
SEQPPRF 7 0.46 1/6.5 4/4.7 4/4.7
SEQPMPRF 10 0.56 2/6.5 3/4.7 4/4.2

consensus 10 0.53 5/12.8 5/12.7 5/12.1

See footnotes to Table II. The total number of probes in this benchmark is 21, and thus,
a perfect sensitivity is 21, with S

� = 1:00. For comparison, the scores for the rank-1 of the
two CASP3 folds which corresponded to new folds received scores below Th3.

4 Discussion

The fold-recognition methods evaluated here incorporate evolutionary and

structural information. The evolutionary information corresponds to homolo-

gous sequences compiled by PSI-BLAST3, and the structural information cor-

responds to the matching of predicted and observed secondary structures. The

inclusion of evolutionary information results in improved sensitivities and se-

lectivities. The evolutionary information is exploited by (i) PHD and the

GONPM and GONPMPRF components, which use a multiple alignment of

sequences homologous to the target; by (ii) the PRFSEQ component, which

uses a sequence pro�le for the target sequence, and by (iii) the SEQPPRF and

SEQPMPRF components, which use pro�les for the folds in the library.

The consensus methods combines �ve di�erent components, each using

the evolutionary information in a di�erent way. The signi�cant increase in the

selectivity of the consensus method is a step towards the wider applicability

of fold recognition in an automatic fashion. The consensus method exploits

the strengths of each component, and is an attempt to automate some of the

procedures a human would apply when using fold-recognition programs. For

some targets the use of sequences homologous to the target may be bene�cial
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because the latter "bridge" the distance of the target to its compatible fold.

However, for other cases, the homologous sequences may increase that distance.

Similarly, while for some targets, the use of sequences homologous to the com-

patible fold may be bene�cial, for others, it can be detrimental. However, in

most of the cases, the use of neighboring sequences for both the target and the

fold (as in SEQPMPRF) appears to contribute to a better performance.

The new consensus method and its �ve components were evaluated here

using two benchmark tests. In both tests signi�cant improvements were ob-

served over previously evaluated methods. The method presented here is a �rst

attempt to combine valuable evolutionary information (obtained by the PSI-

BLAST program) with structural information in a fold-recognition method.

Various directions of improvements are possible, and some of these are being

currently investigated. Further research is necessary to establish better es-

timates of con�dence thresholds as well as to further automate some of the

processes used by human experts when interpreting the output of the various

fold-recognition approaches.

The improvements shown here allow to better recognize distantly related

proteins. As more sequences and structures are deposited in the databases,

more genome proteins will �nd distant relatives of known structure. However,

there is a non-negligible percentage of genomic orphan ORFs, or ORFans,

which have no sequence neighbors23. For these, the inclusion of evolutionary

information can not help, because ORFans, by de�nition, have no sequence

neighbors. Thus, to be able to assign folds for these ORFans, improvements in

the classical sequence-structure compatibility functions that fold-recognition

methods use are required.

One limitation of the present work is that none of the benchmarks used here

evaluates alignment accuracy. Thus, some of the correct rank-1 predictions can

produce poor models which should not be credited points. Extension of the

CAFASP-1 benchmark to evaluate alignments is work in progress24. Finally,

a further test of the new method will be to assign folds to complete genomes,

and to use it in future CASP and CAFASP assessments.
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