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One basic problem in the analysis of DNA sequences is the recognition of protein-
coding genes. Computer algorithms to facilitate gene identi�cation have become
important as genome sequencing projects have turned from mapping to large-scale
sequencing, resulting in an exponentially growing number of sequenced nucleotides
that await their annotation. Many statistical patterns have been discovered that
are di�erent in coding and noncoding DNA, but most of them vary from species to
species, and hence require prior training on organism-speci�c data sets. Here, we
investigate if there exist species-independent statistical patterns that are di�erent
in coding and noncoding DNA.We introduce an information-theoretic quantity, the
average mutual information (AMI), and we �nd that the probability distribution
functions of the AMI are signi�cantly di�erent in coding and noncoding DNA,
while they are almost identical for di�erent species. This �nding suggests that the
AMI might be useful for the recognition of protein-coding regions in genomes for
which training sets do not exist.

1 Introduction

DNA carries the genetic information of many living organisms, and one goal of
genome projects is to extract that information. One basic problem in the analy-
sis of DNA sequences is the recognition of genes. Since experimental techniques
alone are not appropriate for recognizing all genes in every genome, computer
algorithms are useful for predicting the location of genes1;2;3;4;5. Gene-�nding
programs combine the search for biological signals with the analysis of sta-
tistical patterns that are di�erent in coding and noncoding DNA. Many such
patterns have been discovered6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21, but most of
them vary from species to species. This species dependence requires tradi-
tional gene identi�cation programs be trained on organism-speci�c data sets
before they can be applied to search for genes in un-annotated DNA sequences.
Here we investigate whether there exist species-independent statistical patterns
that are di�erent in coding and noncoding DNA.
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2 Mutual Information Function

In search for such patterns, we study for coding and noncoding DNA themutual
information function22;23;24;25

I(k) �

4X
i;j=1

Pij(k) � log2

�
Pij(k)

pi � pj

�
; (1)

where pi denotes the probability of �nding the nucleotide ni 2 fA;C;G; Tg,
and Pij(k) denotes the probability of �nding the pair of nucleotides ni and nj
separated by a gap of length k. I(k) quanti�es the amount of information (in
units of bits) that one obtains about nucleotide Y by learning the identity of
nucleotide X a distance k away.

The following two examples may serve to illustrate the intuitive meaning
of I(k). Consider a random, uncorrelated sequence, in which each nucleotide
occurs independently of any other nucleotide in the sequence. Intuitively it is
clear that we cannot obtain any information from any nucleotide X about any
nucleotide Y , so I(k) should be zero for all distances k. Indeed I(k) = 0 for
all k according to Eq. (1), since the statement that all nucleotides are statis-
tically independent can be mathematically formulated by the set of equalities:
Pij(k) = pj � pj for all i, j, and k. From these equalities it follows that all the
logarithms appearing in Eq. (1) are zero, and hence the sum in Eq. (1) is equal
to zero.

As a second example consider a sequence in which each nucleotide occur-
ring with equal probability pi = 1=4 is determined by the previous nucleotide.
In this case we will be able to determine the identity of nucleotide Y by learn-
ing the identity of X . Intuitively we say we obtain an information of 2 bits
about Y by learning the identity of X . Indeed I(k) = 2 by Eq. (1), so again
Eq. (1) agrees with our intuition. For quaternary sequences I(k) always ranges
from 0 to 2, and for most DNA sequences I(k) is close to 0, which states that
in a typical DNA sequence the information in nucleotide X about nucleotide
Y is small. If I(k) is monotonically decreasing with k, it means that the in-
formation in nucleotide X about nucleotide Y gets smaller as the distance k
between X and Y increases.

Fig. 1 shows I(k) for coding and noncoding DNA of animals extracted from
GenBank26 release 111. We �nd that for noncoding DNA I(k) decays to zero,
while for coding DNA I(k) oscillates between two values, the in-frame mutual
information, Iin, at distances k that are multiples of 3, and the out-of-frame
mutual information, Iout, at other k. The period-3 oscillations in coding DNA
originate from the presence of the genetic code, and from the nonuniformity of
the codon frequency distribution27;28;29.
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Figure 1: Mutual information function, I(k), of coding DNA (thin line) and noncoding DNA
(thick line) from the set of animal DNA in GenBank 111. We extract from �les gbpri1.seq,
gbpri2.seq, gbpri3.seq, gbrod.seq, gbmam.seq, gbvrt.seq, gbinv1.seq, and gbinv2.seq,
all protein-coding exons and all introns with a minimum length of 300 bp, and we cut
these sequences into non-overlapping fragments of length 300 bp, starting at the 5'-end. We
compute the mutual information function of each fragment, and display the average over all
mutual information functions (of exons and introns separately). While I(k) for noncoding
DNA decays monotonically to zero as k increases, I(k) of coding DNA shows persistent
period-3 oscillations.
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3 Average Mutual Information (AMI)

The decay of I(k) for noncoding DNA and the decay of the envelope of I(k) for
coding DNA indicate the existence of long-range correlations. However, even
when neglecting those correlations, the remaining statistical patterns are strong
enough to distinguish coding from noncoding DNA. Neglecting weak codon-
codon correlations, the joint probabilities Pij(k) can be computed in terms of

the 12 positional nucleotide probabilities, p
(m)

i , of �nding the nucleotide ni at
position m 2 f1; 2; 3g in an arbitrarily chosen reading frame as follows6;30:

Pij(k) =
1

3
�

8><
>:

p
(1)

i � p
(1)

j + p
(2)

i � p
(2)

j + p
(3)

i � p
(3)

j for k = 3; 6; 9; :::

p
(1)

i � p
(2)

j + p
(2)

i � p
(3)

j + p
(3)

i � p
(1)

j for k = 4; 7; 10; :::

p
(1)

i � p
(3)

j + p
(2)

i � p
(1)

j + p
(3)

i � p
(2)

j for k = 5; 8; 11; :::

: (2)

Since the second and the third line in Eq. (2) di�er only by a permutation of
subscripts i and j, I(k) assumes only two di�erent values, namely Iin and Iout.

We sample the p
(m)

i from each sequence, compute Pij(k) from p
(m)

i by using
Eq. (2), and then compute Iin � I(3) and Iout � I(4) = I(5) from Pij(k).
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We �nd that ln (Iin) and ln (Iout) are almost linearly dependent, and are
thus highly correlated (correlation coeÆcient C = 0:96 for both coding and
noncoding DNA). This simpli�es the question of how to combine Iin and Iout
into a single quantity, as almost any combination will yield approximately the
same accuracy. For the sake of easy interpretation, we choose a simple linear
combination and de�ne the average mutual information31

AMI � Iin � Pin + Iout � Pout ; (3)

where Pin � 1=3 and Pout � 2=3 denote the occurrence probabilities of Iin and
Iout. When choosing Pin and Pout in this way, the AMI quanti�es the average
amount of information (in units of bits) that one obtains about nucleotide Y
by learning both the identity of nucleotide X and if the distance k between X
and Y is a multiple of 3.

The practical implementation of the algorithm looks as follows:

1. Count the number of occurrences of nucleotide ni 2 fA;C;G; Tg in posi-
tion m 2 f1; 2; 3g of an arbitrarily chosen reading frame in a given DNA

sequence of lengtha N . Denote that number by N
(m)

i .

2. Divide N
(m)

i by N=3, the total number of nucleotides occurring in posi-

tion m, and de�ne the positional nucleotide frequency p
(m)

i � 3 �N
(m)

i =N .
Note that the positional nucleotide frequencies are normalized to 1, that

is
P

4

i=1
p
(m)

i = 1 for all m.

3. Compute Pij(3) and Pij(4) from p
(m)

i by using Eq. (2).

4. De�ne pi �
P

3

m=1
p
(m)

i =3, which is the overall, normalized frequency of
nucleotide ni.

5. Compute I(3) and I(4) from Pij(3), Pij(4), and pi by using Eq. (1).
De�ne Iin � I(3) and Iout � I(4) as well as Pin � 1=3 and Pout � 2=3.

6. Compute the average mutual information (AMI) by using Eq. (3).

The source code is available upon request from ivo@bu.edu.

4 Accuracy

Fig. 2 shows the AMI histograms for coding and noncoding human DNA se-
quences of length 108 bp from the data sets of Fickett and Tung1. Since the
AMI does not require prior training, we show the AMI histograms for both the
training and the test set. We �nd that for both data sets the AMI distributions
are signi�cantly di�erent for coding and noncoding DNA.

aFor the sake of simplicity, assume N be a multiple of 3.
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Figure 2: AMI distributions of data sets humg108a (solid lines) and humg108b (dashed lines)
of Fickett and Tung1 for coding DNA (thin lines) and noncoding DNA (thick lines). In both
data sets the AMI distribution of noncoding DNA is centered at signi�cantly smaller values
than the AMI distribution of coding DNA. The cumulative distribution functions of the AMI
presented in the inset show that the AMI allows a discrimination of coding and noncoding
DNA with an accuracy of approximately 76%.
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In order to compare the accuracy by which the AMI can distinguish coding
from noncoding DNA with the accuracy of traditional coding measures, we
use the standard benchmark test and data sets of Fickett and Tung1. Table 1
shows the accuracy of the top 8 phase-independent coding measures as ranked
in Fickett and Tung1 and the accuracy of the AMI computed on exactly the
same data sets. We �nd that the AMI is as accurate as many of the traditional
coding measures, which are trained on organism-speci�c data sets1, in contrast
to the AMI, which does not require prior training.

5 Species Independence

After having found that|without prior training|the AMI can distinguish
coding from noncoding DNA as accurately as traditional coding measures, the
question arises if the probability distribution functions of the AMI are species-
independent. Fig. 3 shows the histograms of the AMI for 8 taxonomic sets, ob-
tained from GenBank26 release 111. We �nd that for all studied organisms the
AMI distributions are signi�cantly di�erent for coding and noncoding DNA.
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Table 1: Accuracy of 8 coding measures and the AMI. We compare the accuracies of the
best 8 phase-independent coding measures as evaluated by Fickett an Tung1 to the accuracy
of the AMI for three sets of coding and noncoding human DNA sequences of lengths 54
bp, 108 bp, and 162 bp. We �nd that, on all three length scales, the accuracy of the AMI
(without prior training) is comparable to the accuracy of traditional coding measures (after
prior training).

Coding Measure 54 bp 108 bp 162 bp

1. Hexamer 70.5% 73.1% 74.2%
2. Position Asymmetry 70.2% 76.6% 80.6%
3. Dicodon Usage 70.2% 72.9% 73.9%
4. Fourier 69.9% 76.5% 80.8%
5. Hexamer-1 69.9% 72.6% 73.8%
6. Hexamer-2 69.9% 72.6% 73.8%
7. Run 66.6% 70.3% 71.3%
8. Codon Usage 65.2% 68.0% 69.5%

9. AMI 69.2% 76.1% 80.7%

We also �nd that for both coding and noncoding DNA the AMI distributions
are virtually the same for all studied organisms. This species-independence of
the AMI distributions is interesting because the AMI is a function of the codon
usage, which is known to be species dependent27;28;29;32;33;34;35.

Figure 3: AMI distributions of exons (thin line) and introns (thick line). We extract from the
GenBank 111 �les gbpri1.seq, gbpri2.seq, gbpri3.seq, gbrod.seq, gbmam.seq, gbvrt.seq,
gbinv1.seq, gbinv2.seq, gbpln1.seq, and gbpln2.seq all protein-coding exons and all in-
trons with a minimum length of 108 bp, and we cut these sequences into non-overlapping
fragments of length 108 bp, starting at the 5'-end. We use a binary tree to categorize all
eukaryotic DNA sequences into animals and plants, vertebrates and invertebrates, mammals
and non-mammalian vertebrates, as well as primates and non-primate mammals. Speci�-
cally, we de�ne primates � pri1 + pri2 +pri3, non-primate mammals � rod + mam, mam-
mals � primates + non-primate mammals, non-mammalian vertebrates � vrt, vertebrates
� mammals + non-mammalian vertebrates, invertebrates � inv1 + inv2, animals � ver-
tebrates + invertebrates, and plants � pln1 + pln2. We compute for 8 di�erent sets of
organisms the AMI of all DNA sequences of equal length 108 bp and show the histograms
of the corresponding AMI values in panels (a){(h), which are organized as follows: the top
row of the two panels compares (a) primates with (b) non-primate mammals; the second
row compares (c) mammals with (d) non-mammalian vertebrates; the third row compares
(e) vertebrates with (f) invertebrates; and the bottom row compares (g) animals with (f)
plants. For all taxonomic classes, the AMI distribution of noncoding DNA is centered at
signi�cantly smaller values than the AMI distribution of coding DNA. The absence of sig-
ni�cant di�erences between the histograms of di�erent taxonomic categories states that the
AMI distributions are species independent across the studied taxonomic classes for both
coding and noncoding DNA.
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6 Quanti�cation of Species Independence

In order to quantitatively compare the \species independence" of the AMI to
the \species independence" of the codon usage, we introduce a quantity that
we call the degree of species dependence (DSD). De�ne xi and yi (i = 1; : : : ;M)
to be the usage frequencies of theM = 64 codons for two non-overlapping sets
of 1024 DNA sequences of length 108 bp. Denote by

�2(X;Y ) �

MX
i=1

(xi � yi)
2

xi + yi
� (M + 1) (4)

the normalized \distance" between two histograms X � (x1; : : : ; xM ) and Y �

(y1; : : : ; yM ). Let Ac, An, Bc, and Bn denote the four possible histograms
for coding and noncoding DNA from the taxonomic groups A and B. We
de�ne the DSD to be the ratio of the average distance between species and the
average distance between coding and noncoding DNA,

DSD �

�2(Ac; Bc) + �2(An; Bn)

�2(Ac; An) + �2(Bc; Bn)
: (5)

We analyze the degree of species dependence of the codon usage on four
taxonomic levels by comparing primates with non-primate mammals, mam-
mals with non-mammalian vertebrates, vertebrates with invertebrates, and
animals with plants. We randomly partition the set of all GenBank-111 se-
quences into non-overlapping blocks of 1024 sequences, and compare all pos-
sible combinations of these blocks. Table 2 shows the average DSD over these
combinations.

Column 1 of Table 2 shows that the degree of species dependence of the
codon usage is quite small (0.01) when primates are compared to non-primate
mammals. This states that the codon usage is not identical in primates and
non-primate mammals, but it is so similar that the codon usage di�erences be-
tween primates and non-primate mammals is about 100 times smaller than the
di�erences between exons and introns. When we compare vertebrates to inver-
tebrates, the degree of species dependence increases to about 0.69, which states
that the di�erences between species are approximately 2/3 as large as the di�er-
ences between exons and introns. The data from column 1 are consistent with
the well-known fact that the codon usage is species dependent27;28;29;32;33;34;35.

Next, we analyze the degree of species dependence of the AMI by dis-
cretizing the continuous AMI distributions as follows: when comparing two
AMI distributions X and Y (see Fig. 3), we map the AMI values into M = 64
bins in such a way that each bin i 2 f1; : : : ;Mg contains the same number
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Table 2: The degree of species dependence of the codon usage and the AMI. Column 1
displays the DSD of the codon usage; the value of 0.01 in row 1 states that the codon
usage di�erences between primates and non-primate mammals are only 1% of the di�erences
between coding and noncoding DNA. When DNA is analyzed from species belonging to
di�erent taxonomic classes, phyla, or kingdoms (rows 2, 3, and 4), the DSD becomes larger,
which quanti�es the well-known fact that the codon usage is strongly species dependent.
Columns 2 displays the degree of species dependence of the AMI, which we compute in the
same way (and for the same sets of sequences) as for the codon usage. The degree of species
dependence of the AMI never exceeds 0.02, quantifying the �nding from Fig. 3 that the AMI
distributions are species independent.

class of organism codon usage AMI

primates { non-primate mammals 0.01 0.01
mammals { non-mammalian vertebrates 0.10 0.01

vertebrates { invertebrates 0.69 0.01
animals { plants 0.58 0.02

of data points xi + yi. We then compute the DSD of these discretized AMI
distributions X and Y for the same blocks of 1024 sequences of length 108 bp
as we used to calculate the DSD of the codon usage distributions.

We �nd (column 2 of Table 2) that the AMI di�erences between primates
and non-primate mammals are about 100 times smaller than the AMI di�er-
ences between exons and introns. It is surprising that the degree of species
dependence remains of the order of 0.01 when mammals are compared to non-
mammalian vertebrates, or when vertebrates are compared to invertebrates.
Even when DNA from animals is compared to DNA from plants, the AMI
yields a degree of species dependence of only 0.02. The data from column 2
are in agreement with the observation, based on Fig. 2 and Fig. 3, that the
AMI distributions are species independent.

This species independence, in connection with the �nding that the accu-
racy of the AMI is comparable to the accuracy of traditional coding measures,
suggests that the AMI might possibly be useful for the recognition of protein-
coding regions in genomes for which training sets do not exist.
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