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InVEST is an interactiveand visual tool for constructing evolutionary trees from an

ordered list of edges. In this paper it is shown that many methods for constructing

evolutionary trees reduce to the edge selection problem. Furthermore, through a

simulation study, it is shown that noninteractive methods for edge selection often

perform poorly and can conceal alternative solutions. InVEST allows the user to

interact with and explore an ordered list of edges facilitating the incorporation of

user domain knowledge into the evolutionary tree construction process.

1 Introduction

As sequence databases grow in size and diversity, evolutionary studies based
on large sequence data sets are becoming commonplace. For example, the Ri-
bosomal Database Projecta at Michigan State University now contains evolu-
tionary trees describing the evolutionary history of 6200 prokaryote sequences,
2000 eukaryote sequences and 1500 mitochodria sequences1 . As the scope and
magnitude of evolutionary studies increases so does the need to develop more
e�ective computational tools to assist in the evolutionary analysis of sequences.

Current computational tools for constructing evolutionary trees, such as PAUP2

and PHYLIP3, are noninteractive. The typical workow for these tools consists
of the following three stages (see Figure 1): First, the sequences are aligned
and model parameters are speci�ed. Second, an inference method is applied
that constructs an evolutionary tree. Third, the result is either accepted by the
user or the process is repeated with modi�cations to the alignment and model
parameters. In this workow, the user's domain knowledge has the greatest
e�ect in the �rst stage as it speci�es the input for and the scope of the con-
struction stage. The user's domain knowledge is also incorporated in the third
stage when the result is evaluated. However, this use of domain knowledge

aThe RDP's URL is http://www.cme.msu.edu/RDP/index.html
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Figure 1: Workow of Evolutionary Tree Construction

is not proactive in the sense that it is used to reject a hypothesis but not to
formulate a hypothesis. The noninvolvement of the user in the second stage is
undesirable for two reasons:

� During the construction of an evolutionary tree, inference methods gen-
erate information and explore alternatives that may be of interest to the
user. In particular, an awareness of alternatives and critical decisions
that occur in the construction process could lend insight to the user.

� Most inference methods including maximum parsimony 4 and maximum
likelihood5 are computationally intensive. User domain knowledge could
be used both to tailor the inference method to the analysis at hand and
also to guide the ow of computation in e�cient directions.

This paper explores the utility of interactive and visual tools for constructing
evolutionary trees. More speci�cally, this paper presents an interactive tool,
InVEST, that

� allows the user to visualize the details of the construction process;

� allows the user to incorporate domain knowledge at critical points in the
construction process and to visualize the consequences of this involve-
ment and

� allows the user to guide the construction process to an e�cient solution.

There are many evolutionary tree construction paradigms and methodologies6.
Our research focusses on the problem of constructing the topology of an evolu-
tionary tree which we de�ne formally in Section 2. We demonstrate through a
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simulation study that constructing evolutionary tree topology is di�cult to do
in a noninteractive manner. In Section 3 we overview the design of InVEST.
In particular, it is shown how logical steps in the construction of evolution-
ary tree topology can be visualized and how user domain knowledge can be
incorporated in an intuitive manner.

2 Tree Topology and Edge Selection

An evolutionary tree T for a set S of sequences is a rooted and edge weighted
tree where the leaves of T are labeled bijectively by S. The topology of T
(that is, T without edge weights) describes the speciation events resulting in
the evolution of sequences in S from the root. The edge weights of T are
proportional to the amount of evolution (sequence substitutions, insertions
and deletions) between speciation events.

It is well{known that the topology of an evolutionary tree can be speci�ed
by its set of edge-induced bipartitions 7. An evolutionary tree T labeled by
S contains the bipartition (X;Y ) of S if there is an edge e in T such that
T � feg consists of two trees where one is labeled by X and the other by
Y . This is denoted e = (X;Y ) and we use the terms `edge' and `bipartition'
interchangeably. Two bipartitions (A;B) and (C;D) are compatible if there
is a tree that contains both bipartitions. This is equivalent to one of A or B
being a subset of either C or D. A set of bipartitions is compatible if there is
a tree that contains these bipartitions.

A bipartition (X;Y ) of T is called trivial if jXj = 1 or jY j = 1. All evolution-
ary trees labeled by S share the same set of trivial bipartitions. Consequently,
when determining the topology of an evolutionary tree nontrivial bipartitions
are more informative. If jSj = n then T has n trivial bipartitions and n � 3
nontrivial bipartitions. Consequently, a set of compatible and nontrivial bipar-
titions of sequence set S can never be larger than n� 3. To illustrate, the evo-
lutionary tree in Figure 2 contains nontrivial bipartitions (f1; 2g; f3; 4; 5; 6g),
(f1; 2; 3g; f4;5;6g) and (f1; 2; 3; 4g;f5;6g).

To estimate the topology of T given the set S of sequences, we must determine
those bipartitions of S best supported by the sequences S. Let d be a support
function that measures how well the sequence data S supports a bipartition
(X;Y ). Let L be the bipartition list of all bipartitions of S ordered by d. L is
enormously large, and so, cannot be explicitly computed. However, depending
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Figure 2: Evolutionary Tree Topology and Bipartitions

on the accuracy of d, it is expected that the edges of T are clustered near
the beginning of L, and so, the problem of determining the topology of T is
formulated as follows:

Edge Selection: Given a support function d, select a set of n�3 compatible
and nontrivial bipartitions from a pre�x of the bipartition
list ordered by d.

Several diverse methods for constructing evolutionary tree topology reduce
to the Edge Selection problem including character compatibility8;9, boot-
strapping 10 and ordinal methods 11;12;13. Here we discuss Edge Selection

in the context of the quartet method described below.

2.1 Quartet Methods

The quartet method 14;15;13;16;17 constructs the topology of an evolutionary
tree T by �rst estimating the topology for quartets of sequences and then
recombining these pieces of T into an estimate of T 's topology. More formally,
given a quartet of sequences fa; b; c; dg and an evolutionary tree T , the quartet
topology induced in T by fa; b; c; dg is the path structure connecting a, b, c and
d in T . Given a quartet fa; b; c; dg, if the path in T connecting labels a and b is
disjoint from the path in T connecting c and d, the quartet is said to be resolved
and is denoted abjcd. Otherwise, the quartet is said to be unresolved and is
denoted (abcd). The four possible quartet topologies induced by a quartet are
depicted in Figure 3.

There are many methods for estimating quartet topology including maximum
likelihood5, maximumparsimony4, neighbor joining18 and the ordinal quartet

Pacific Symposium on Biocomputing 5:239-250 (2000) 



a a

b b

c c

d d

a b

c d

a b

cd

ab|cd ac|bd ad|bc (abcd)

Figure 3: The four quartet topologies for quartet fa; b; c; dg.

method13 (please see the last reference for a comparison of these methods). Al-
though many of these methods cannot be feasibly applied to the entire dataset
S to infer the topology of T directly, they can be applied feasibly to infer evo-
lutionary tree topologies of size four. Let Q be the set of these (n4 ) inferred
quartet topologies. The second step of the quartet method is to recombine the
quartet topologies into an evolutionary tree topology T 0 that is an estimate of
T . There are many noninteractive methods for recombining quartet topolo-
gies including the Q� method 15, quartet puzzling 17, global edge cleaning 16

and methods based on semi{de�nite programming 14 and smooth polynomial
integer programming19.

In order to develop an interactive quartet method we de�ne a support measure
d and a method for generating pre�xes of the bipartition list ordered by d.
De�ne QT to be the set of quartet topologies induced in T by sequence quartets
from S whereas Q is the set of quartet topologies estimated from S. Under the
assumption that Q approximates QT , Q can be used to assess the likelihood
that a bipartition (X;Y ) is an edge of T as follows. Let Q(X;Y ) be the set of
quartet topologies of the form xx0jyy0 where x; x0 2 X and y; y0 2 Y . De�ne
the support function

d(Q; (X;Y )) =
4jQ(X;Y ) �Qj

jXj(jXj � 1)jY j(jY j � 1)
:

d(Q; (X;Y )) is the percentage of quartet topologies in Q(X;Y ) that di�er from
Q. Note that the number of quartet topologies inQ(X;Y ) is jXj(jXj�1)jY j(jY j�
1)=4. When (X;Y ) is trivial (jXj = 1 or jY j = 1), d(Q; (X;Y )) is de�ned to
be 0.

Pre�xes of the bipartition list ordered by d are de�ned, for parameter m, as
follows:

Best(Q;m) = f(X;Y ) j d(Q; (X;Y )) �
2m

jXjjY j
g:

Larger values of m produce larger pre�xes of the bipartition list.

When m = 0 the pre�x Best(Q;m) corresponds to those bipartitions that have
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0 quartet di�erences with Q. This set of edges is often called the Buneman tree
20 and an e�cient algorithm, called the Q� method, exists for recovering the
Buneman tree from Q15. Best(Q; 0) is a conservative estimate of T 's topology
that can be improved upon:

Lemma 1 Let Q be a set of quartet topologies. Then Best(Q; 1) is a set of

compatible bipartitions.

As m is increased Best(Q;m) will eventually contain all edges of T . This
value of m is typically a small constant but is almost always greater than 1
(con�rmed by the simulation study below). It is known that for some instances
of Q and T the bound 2=(jXjjY j) implicit in Lemma 1 is tight 16, and so,
although Best(Q;m) contains all edges of T when m > 1, it may also contain
bipartitions that are not edges of T . This poses two algorithmic problems:

� Computing Best(Q;m) e�ciently. To solve this problem we developed
the �rst e�cient algorithm, called hypercleaning, for computingBest(Q;m).
This algorithm is utilized in the simulation study presented below. Hy-
percleaning improves upon previous algorithms for this problem19;16;15;14;17.

� Selecting from Best(Q;m) the edges of T . We present a noninterac-
tive greedy algorithm, called Compatible, for selecting edges of T from
Best(Q;m) and assess the performance of Compatible in the simulation
study below. In Section 3 we present InVEST which is an interactive
tool for the selection of edges from Best(Q;m).

2.2 The Inherent Di�culty of Edge Selection: Theory and Practice

Let P be a pre�x of the bipartition list L ordered by support function d.
Compatibility relations between bipartitions in P can be represented by a
weighted graph GP where the vertices of GP are the bipartitions in P and
two bipartitions are adjacent in GP if and only if they are compatible. Each
vertex is assigned the weight d(S; (X;Y )) where d is the support function. GP

is called the compatibility graph for P and the complement of GP is called the
incompatibility graph of P .

Edge Selection is equivalentb to solving the well{studiedMaximumWeighted

Clique problem with input GP . The goal of Maximum Weighted Clique

is to �nd a complete subgraph of GP with maximum weight. The problem

bThis is easy to prove but is omitted here for brevity.
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is known to be NP{complete 21 and hard to approximate 22. Hence, Edge
Selection is a computationally challenging problem. As a result, Edge Se-
lection is typically solved using a greedy algorithmwhich we call Compatible:
Select the bipartition (X;Y ) with the maximum support. Delete (X;Y ) and
all bipartitions incompatible with (X;Y ). Repeat until P is empty.

We conducted a simulation study to evaluate the e�ectiveness of noninterac-
tive methods for Edge Selection using Compatible as an example of such a
method. The details of the simulation study follow. DNA sequences were arti-
�cially evolved using the Kimura 2 parameter model of evolution6 with transi-
tion/transversion ratio of 5 : 1 on an evolutionary tree T sampled from the Ri-
bosomal Database Project prokaryotic tree1. T represents the evolutionary his-
tory of the Methanosarcina and relatives subgroup and contains 21 sequences
(see Figure 4). Site{to{site rate variance was simulated using the gamma func-
tion with parameter 1. Best(Q;m), for 0 � m � 5, was obtained by applying
the hypercleaning algorithm to a set Q of quartet topologies obtained from
the arti�cial sequences using the ordinal quartet method13. Compatible was
applied to Best(Q;m) to obtain a set Compatible(Q;m) of compatible biparti-
tions. To better explore the parameter space, sequence length and edge length
were varied. More speci�cally, the sequence length was varied over values 100,
200 and 300 and T was scaled by factors 0:5, 1:0 and 2:0 so that trees with
recently diverged sequences and trees with distantly diverged sequences were
examined.

The results appear in Table 1 for scaling factor 2:0. Each cell contains four
values. The �rst value is the percentage of nontrivial edges of T in Best(Q;m).
The second value is the number of bipartitions in Best(Q;m) as a percentage
of the number of nontrivial edges in T (which is 18). The third value is the
percentage of nontrivial edges of T in Compatible(Q;m). Note that this value
is bounded by the �rst value. The fourth value is the number of nontrivial
bipartitions in Compatible(Q;m) as a percentage of the number of nontrivial
edges in T . All values are computed as an average of 10 trialsc.

As sequence length andm increase most edges of T are included in Best(Q;m).
The particular tree used in this simulation is challenging due to several very
short nontrivial edges. Focussing on sequence length 300, Best(Q; 5) contains
17 of T 's 18 (i.e. 92%) nontrivial edges and a total of 64 bipartitions, on
average. From these 64 bipartitions,Compatible selects, on average, a maximal
set of 18 compatible bipartitions 15 of which are correct (i.e. from T ) and 3 of
which are erroneous. Similar results hold for the other sequence lengths. Even

cThese simulations took several days of CPU time.
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Figure 4: The Methanosarcina and relatives model tree used in the simulation study.

when all edges of T are available in Best(Q;m), the noninteractive Compatible

does not succeed in selecting these edges.

3 The Visual and Logical Design of InVEST

Designing a visual and interactive tool for the Edge Selection problem
poses several logistical and conceptual challenges. Speci�cally, the tool should
present relevant information intuitively and allow the user to implement deci-
sions and view their consequences. In response to these challenges we present
InVEST, a tool that allows the user to interactively solve the Edge Selection
problem.

InVEST enables the user to interact with several bipartition lists simultane-
ously. For each bipartition list there is a bipartition window and a tree

window (see Figure 5). The primary function of InVEST is to facilitate visual
selection of bipartitions for inclusion in an evolutionary tree. The bipartition
list is displayed in the bipartition window from which the user manually se-
lects bipartitions. The user can make selections based upon domain knowledge
or make selections to explore an hypothesis. An evolutionary tree containing
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Sequence Length
m 100 200 300
0 17 (17) 17 (17) 14 (14) 14 (14) 19 (19) 19 (19)
1 27 (33) 27 (33) 41 (45) 41 (45) 51 (53) 51 (53)
2 40 (53) 39 (50) 58 (72) 57 (69) 69 (84) 68 (76)
3 54 (98) 51 (67) 70 (131) 65 (83) 83 (153) 77 (92)
4 60 (146) 54 (78) 72 (201) 65 (88) 87 (236) 81 (97)
5 65 (221) 56 (86) 81 (306) 68 (92) 92 (353) 82 (99)

Table 1: Performance of the noninteractive greedy algorithm for Edge Selection

the current selection of bipartitions is displayed in the tree window. The
score of the current selection is computed using the score for each bipartition
selected. Selections can be reversed. Alternatives can be explored by opening
several bipartition/tree windows. The user has the option, at any point, to
employ an automated method to complete the current selection of bipartitions.
Both the greedy algorithm Compatible and an exact method are provided for
this purpose.

InVEST displays bipartition compatibility/incompatibility information as arcs
joining pairs of bipartitions in the bipartition window. Compatibility rela-
tions are highly informative and can reveal errors in the ordering of bipartitions
by support. For example, in Figure 5 incompatibility arcs are displayed in the
top bipartition window. Notice that the degree of incompatibility does not
increase uniformly from left to right as one might expect. In particular, the
14th bipartition (support value 1.69) is compatible with all bipartitions in the
bipartition list whereas most higher ranking bipartitions are not. This indi-
cates that the 14th bipartition should be included in the evolutionary tree; this
decision would not be clear using the support information alone. InVEST can
also hide those bipartitions incompatible with the selected bipartitions. This
has the e�ect of reducing the density of compatibility information presented
to the user as bipartitions are selected.

InVEST incorporates the concept of local alternatives. Let C be a set of
compatible bipartitions that the user has selected from the bipartition list. Let
TC denote the evolutionary tree containing the bipartitions in C. A bipartition
(X;Y ) expands a vertex v of TC if TC[f(X;Y )g is TC except with v expanded to
the edge (X;Y ). Each bipartition can expand at most one vertex of TC . For
each vertex v of TC let the local alternatives for v be the sublist of bipartitions
that expand v.

Pacific Symposium on Biocomputing 5:239-250 (2000) 



Figure 5: Selecting edges of the Methanosarcina and relatives tree using InVEST.

Every bipartition (X;Y ) in the bipartition list is either (1) an edge of TC ; (2)
incompatible with an edge of TC ; or (3) expands a vertex v of TC . In the �rst
case, (X;Y ) can be deleted from the bipartition list since it has already been
selected for inclusion in TC . In the second case, (X;Y ) can also be deleted
from the bipartition list since it cannot be selected for inclusion in the tree.
In the third case, (X;Y ) is assigned to the sublist of local alternatives for
vertex v. The identi�cation of local alternatives has two advantages. First,
it allows the user to view only those bipartitions relevant to the expansion of
a vertex and to compare these alternatives. Second, the selection of a local
alternative at one vertex is independent of the selection of a local alternative
at another vertex. This translates into a computational advantage since these
vertices can be expanded independently of each other. In Figure 5, the lower
right bipartition window contains the sublist of bipartitions that expand the
vertex selected in the tree window on the left.
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The main advantage of InVEST over noninteractive methods for edge selection
is that it allows the user to explore and interact with the data, and so, the user
becomes intimately aware of strengths and weaknesses in the data. Noninter-
active algorithms returns an evolutionary tree topology without indication of
alternative topologies that might also be signi�cant. This is especially mis-
leading when alternative topologies have similar scores. InVEST presents to
the user local alternatives that can be compared and explored.

InVEST was developed using Java's Swing classes, and so, can be used on
several platforms.
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