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Abstract

In this paper, we report development of a generalized simulation sys-
tem based on ordinary differential equations for multi-cellular organisms,
and results of the analysis on a Smad signal transduction cascade. The
simulator implements intra-cellular and extra-cellular molecular process-
es, such as protein diffusion, ligand-receptor reaction, biochemical reac-
tion, and gene expression. It simulates the spatio-temporal patterning in
various biological phenomena for the single and multi-cellular organisms.
In order to demonstrate the usefulness of the simulator, we constructed a
model of Drosophila’s Smad signal transduction, which includes protein
diffusion, biochemical reaction and gene expression. The results suggest
that the presence of negative feedback mechanism in the Smad path-
way functions to improve the frequency response of the cascade against
changes in the signaling.

1 Introduction

Recent progresses of molecular biology enable us to obtain massive data on
various aspects of living systems. Although there are numbers of problems
in the data generated within the current experimental methods, it is matter
of time that accuracy and scopes of measurable quantities of experimental
method to reach state that they can be used for biological system level study.

In order to study biological systems at the system-level, it is essential
that we can use dedicated simulator that can model the essential features of
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the system. To be specific, we need a generalized simulator for multi-cellular
organisms which enable us to study following processes on a single system:

1. gene expression (transcription and translation)

2. biochemical kinetics (metabolism and signal transduction)

3. detailed intra-cellular model and cell-cell interaction, such as diffusion
and ligand-receptor interactions

Nevertheless, we have not seen a simulator with such capability readily avail-
able to the community. There has been several previous efforts to design
simulators for kinetics such as GEPASI 1, E-CELL 2and Virtual Cell 3. These
simulators allow quantitative simulations of biochemical reactions based on
ordinary differential equation. However, in order to understand higher devel-
opmental processes such as morphogenesis, it is indispensable to develop a
simulator for multi-cellular organisms.

Several simulations in the Virtual Drosophila Project 4 including, eye for-
mation 5,6, leg formation 7, wing formation 8 handle multi-cellular organisms
in Drosophila’s developmental stages. However, they do not consider the bio-
chemical kinetics in each cell, since they are based on Reaction-Diffusion model.
The additional problem is that each simulator has been developed individu-
ally, and has been used for a specific phenomenon. There is no generalized
simulator for satisfying the needs of serious biological research.This shortcom-
ing motivated us to develop BioDrive. Table1 compares BioDrive features
against other well known simulators.

The goal of our work reported in this paper is to develop a new framework
for a simulator named BioDrive, which can describe biochemical reactions,
gene expression, protein diffusion and cell-cell interactions. Consequently, it

Table 1: Features of the previous simulators and BioDrive. A circle symbol means that
the simulator implements the property. A triangle means that the property is planned to be
implemented to the simulator.

Simulator Kinetics Genetics Cell-cell Int. Diffusion
Single GEPASI ©
Cellular E-CELL © ©

V-CELL © ©
Multi VDP © 4 ©
Cellular BioDrive © © © ©
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is possible to simulate the biological phenomena, which include protein diffu-
sion, ligand-receptor interactions, kinetic reactions, transcription/translation
process at the process level, and the modified protein (e.g. phosphorylations,
methylations), localization of proteins at the substance level of single/multi-
cellular organisms. In order to verify this simulation system, we constructed a
model of Drosophila’s Smad signal transduction cascade, which includes pro-
tein diffusion, biochemical reactions, and gene expressions. We believe that the
Smad pathway is a good target to demonstrate the usefulness of BioDrive,
because it has a feedback loop involving competition of complex formation
which is typical in many cascades. The biological question is to find out the
functional role of the feedback loop in this cascade.

2 System Architecture

The BioDrive consists of a simulation kernel and a graphical user inter-
face(GUI). The kernel of the BioDrive solves the simultaneous ordinary d-
ifferential equations(ODEs) at each time step using numerical methods, and
computes the spatio-temporal patterns of the multi-cellular organisms and/or
temporal patterns of the single cell.

2.1 Simulation Kernel

The simulation kernel of BioDrive consists of a parser and a solver. The pars-
er reads a rule file, in which definitions of the substances and reactions of the
target biological system and the simulation environment are described. Here,
the term ‘substance’ refers to biological molecules such as proteins, mRNAs,
complex of proteins, and modified proteins. The term ‘reaction’ represents the
reaction rule between different substances. The parser also reads a initialize
file, in which definitions of the distribution of the initial substance concentra-
tion are described. The texts of a rule file and initialize file are translated
into the form which can be interpreted by the solver. The solver computes the
biochemical reactions and gene expressions.

Parser

In order to make the solver compute protein diffusion, cell-cell interactions,
biochemical reactions, and gene expressions, the parser creates lists of cells,
substances, reactions, and factors. These lists are stored in the cell, substance,
reaction, and factor memory, respectively. With accessing data on these mem-
ories, the solver can compute the change of substance concentration according
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Figure 1: Architecture of the solver: The diffusion engine and the interaction engine access
data on the cell memory and the substance memory. The reaction engine access data on the
cell, substance, reaction, and factor memory.

to the equations of reactions. The kernel reads once the rule file into the pars-
er, the cells which have the same concentration of substances are generated.
We can change the initial concentration of the substance in each cell with the
initialize file.

Solver

For simulations of multi-cellular organisms, we have built three engines: the
diffusion engine, the interaction engine and the reaction engine. The diffusion
engine and the interaction engine are designed for simulating protein diffusion
and cell-cell interactions, respectively. These engines access data on the cell
and substance memory. In the case of diffusion, the solver computes the con-
centration level of the diffused substance. In the case of cell-cell interaction,
the solver accesses data on the receptor concentration and the ligand concen-
tration in the adjacent cell. The reaction engine is designed for simulating
biochemical reactions and gene expressions in a single cell, and also allows us
to model the signaling pathways and transcription/translation processes in a
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single cell. This engine access data on the cell, substance, reaction, and factor
memory.

The solver is implemented as the stack machine, because the parser trans-
forms the equations of reactions into the reverse polish notation form. The
BioDrive allows us to choose the numerical methods of integration, (e.g.,
Euler method, fourth-order Runge-Kutta method). Figure 1 shows the solver
architecture of the BioDrive.

2.2 Interface

The BioDrive GUI consists of a Tracer Window and a Substance Window
implemented in C++ with X11 and XForms library. The Tracer Window shows
the concentration of substances along time axis and/or the concentration of
substances along spatial axis. The Substance Window defines the substances
shown in the Tracer Window.

3 Modeling

3.1 Biochemical Reaction

In the BioDrive system, proteins, mRNAs, complex of proteins, and phos-
phorylated proteins are defined as substances. For example, an interaction
that A makes complex with B is described as below:

A+B
k1⇀↽
k2

A ·B (1)

where A ·B means a complex of a protein A and a protein B. Protein A reacts
with protein B to make a complex A · B with rate constant of k1 (forward
reaction), whereas a complex A · B is broken into protein A and protein B
with rate constant of k2 (reverse reaction). The velocity of producing complex
A ·B in the equation (1) is described as follows:

d[A ·B]
dt

= k1[A][B]− k2[A ·B] (2)

3.2 Gene Expression

Here, the gene expression means transcription and translational regulation.
Since transcriptional regulation is well known, but translational regulation is
not, we simplify the transcription and translation process into one black-box,
which means that the amount of transcribed mRNA is the same as the amount
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of resultant protein. The gene expression is represented as hill equation in this
simulation. The product of gene X is described as follows:

d[X]
dt

=
Vmax · [S]n

K + [S]n
(3)

where n is the Hill coefficient, [S] is the concentration of the activator, and
where K is a constant comprising the interaction factors.

3.3 Diffusion

The secreted protein diffuses into a given concentration gradient. This long-
range signaling molecule acts as a morphogen, specifying cell fate through
membrane receptors and cellular transduction mechanisms. The diffusion e-
quation is defined by:

∂UA
∂t

= DA

(
∂2

∂x2
+

∂2

∂y2

)
UA (4)

where UA is the concentration of secreted protein A at cell-position (x, y). DA

is a constant value which is individually determined for each protein.

3.4 Ligand-receptor Interaction

The cytoplasmic protein in a cell receives signal from ligand-receptor complexes
activated by ligand, and the strength of this signal depends on the concentra-
tions of the ligand and receptor. In this simulation system, we determine the
production velocity of the ligand-receptor complex for the cell,

d[L ·R]
dt

=
N∑
i

(
k1

[R]
N

[L]i
N
− k2

[L ·R]
N

)
(5)

where [L] is the ligand concentration in the adjacent cell and [R] is the receptor
concentration. N is the number surrounding cells, and where k1, k2 are reaction
rate constants.

4 Smad Signal Transduction

Transforming growth factor-beta (TGF-β) is an evolutionarily conserved fam-
ily of secreted factors that control cell fate by regulating cell proliferation,
differentiation, matrix production, motility, adhesion, and apoptosis.
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Figure 2: Smad signal transduction pathway: The signal of Dpp, which is a member of
TGF-β super family, is mediated into a cell by Smad signal transduction. Smads consist of
three classes of proteins; (a) receptor-regulated Smads (R-Smads), (b) the common mediator
Smads (co-Smads) and (c) antagonizing Smads (anti-Smads). This signal pathway contains
following biological properties: protein diffusion, Ligand-Receptor reaction, transcriptional
regulation, phosphorylation, and negative feedback control.

Decapentaplegic (Dpp), a Drosophila member of the TGF-β family of se-
creted molecules, forms long-range morphogen gradients in anterior-posterior
of adult appendages9. Dpp acts by binding to the transmembrane protein with
intrinsic serin/threonine kinase activity, consisting of type II receptor Punt and
to the type I receptors Thickvein (Tkv) and Saxophone (Sax)10. Dpp mediates
signals via the Smad proteins Mother against dpp (Mad) and Medea (Med)11.
The role of Smad proteins is to relaying signals in signal transduction by TGF-
β and related factors from transmembrane receptors to the nucleus. Mad forms
a heteromeric complex with Med upon phosphorylation by Tkv 11 (in this pa-
per, the phosphorylated protein is indicated with asterisk such as Mad∗, and
the complex is connected with a hyphen such as Mad∗-Med). Daughter against
dpp (Dad) stably associates with Tkv and thereby inhibits Tkv-induced Mad
phosphorylation 12.

The most interesting point of this Smad cascade is the presence of the neg-
ative feedback control (shown in Figure 2). Mad which is a co-Smad mediates
extracellular signal of Dpp into the nucleus, while Dad which is an anti-Smad,
competes with Mad to control the Dpp signal delicately 12. The question is,
why such a negative feedback circuit is needed. It has been suggested that
the function of Dad is to stabilize the gradient of positional information em-
anating from Dpp-expressing cells 12. Since the existence of such a negative
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feedback circuit is a key to make clear the long-range morphogen mechanism,
it is a major topic not only in the Drosophila development studies but in the
vertebrate development studies in general.

In order to demonstrate the usefulness of BioDrive, we have implemented
the Smad signal transduction pathway with BioDrive.

5 Results and Discussions

To simulate the Smad signal transduction of the Drosophila wing disc, we
implemented the gene regulatory and biochemical networks shown in Figure 2.

5.1 Spatial and Temporal Patterning of Drosophila Wing Disc

The simulation successfully reconstructed the spatial localization patterns of
proteins, the complex of these proteins, and gene products (Figure 3 (a)).

In this simulation, we made dpp express in the anterior-posterior bound-
ary of the wing disc as the initial condition, and Dpp diffuses to the anterior
and posterior compartments. Since Dpp signaling mediated by the complex of
phosphorylated Mad and Med (Mad∗-Med) controls the expression of target
genes (in this paper, the phosphorylated protein is indicated with asterisk such
as Mad∗, and the complex is connected with a hyphen such as Mad∗-Med),
the concentration of Mad∗-Med is considered as the indicator of Dpp signal
strength. In order to make cells have the positional information, Mad∗-Med
must be formed also in the anterior edge where Dpp signaling is weak. Figure
3 (a) shows that Mad∗-Med is produced according to the Dpp signaling. The
expression of dad which is one of the target genes of Dpp signaling, depends
on the concentration of Mad∗-Med, whereas it has to be highly sensitive for
the concentration of Mad∗-Med to form the actual Dad localization pattern.
The expressions of other Dpp signaling target genes such as sal, omb should be
also controled by transcriptional switching mechanism, because their expres-
sions show all-or-none switching pattern despite the gradient of Map∗-Med
concentration along anterior-posterior axis is small.

We can observe not only spatio-temporal gene expression patterning but
also the behavior of the single cell using BioDrive. Figure 3 (b) shows the
dynamics in the single cell whose position is 40 in Figure 3 (a).

5.2 Negative Feedback Mechanism of Smad Signal Transduction

The most interesting part of this signal cascade is the presence of negative
feedback mechanism. The effect of the negative feedback loop in the cascade
is the inhibition of its own transcription/translation. It is generally said that
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Figure 3: (a) Spatial patterning along the anterior-posterior axis of Drosophila wing disc.
Patterning along this axis is controlled by a Dpp morphogen gradient. The left side is the
anterior side and the right side is the anterior-posterior boundary. (b) Temporal patterning
in the single cell.

the negative feedback mechanism of Smad cascade negatively modulate the
amplitude or duration of signaling 13. Specifically, two factors contribute to
the feedback strength: (i) a time constant and (ii) inhibitor expression level.
However, the systematic analysis of this feedback mechanism is difficult to
verify by biological experiments. In this paper, we analyzed the Smad cascade
based on the variation of the time constants using control dynamics.

The rapid binding of Dad to Dpp-Tkv causes small time constants of the
feedback system to emerge. Under this condition an initial oscillation of the
Mad∗-Med concentration can be observed which subsequently converges to the
steady state (Figure 4 (a)). The following sequential reactions occur: (1) the
accumulation of Dad represses Mad binding to Dpp-Tkv, (2) the expression
level of dad which is the target gene of Mad∗-Med becomes low, (3) the strength
of negative feedback becomes weak, (4) Mad can bind to Dpp-Tkv, (5) the
concentration of Mad∗-Med increases, (6) Dad expresses and increases feedback
level.

Conversely, the slow binding of Dad to Dpp-Tkv causes the large time
constant of the feedback loop. In this situation, Mad∗-Med tends to converge
to the steady state without oscillatory period (Figure 4 (b)). Since the binding
rates of Mad and Dad to Dpp-Tkv are well balanced, Mad and Dad do not
compete to bind to Dpp-Tkv.

Figure 4 (c) shows the steady state levels for different time constants.
Small time constants cause significantly lower Mad∗-Med concentrations than
large time constants. Additionally, in the system with small time constants,
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Figure 4: (a) The responses of the several substances with the small time constant. (b)
The responses of the several substances with the small time constant. (c) The respons-
es of Mad∗-Med corresponding to the different time constants. The upper line is the re-
sponse when the time constant is large. As the time constant becomes smaller, the line goes
down.

the 80% threshold of the steady state of Mad∗-Med is reached much faster than
in a system with large time constants. Hence, the speed of complex formation
of Dpp-Tkv-Dad determines the frequency response of the system which is
responsible for monitoring of positional information created by Dpp.

5.3 Future Perspectives

The current version of BioDrive is able to describe all the reactions which can
be represented by the ordinary differential equations. However, this requires
that the number of molecules is large. BioDrive describes the gene expressions
with small numbers of participating molecules by the Hill equation. Although
approximate products of gene expressions can be modeled, a more detailed
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mathematical analysis is desirable. The stochastic kinetic model which can
consider the kinetic reactions with small number of participating molecule
is shown to be more reasonable than conventional deterministic kinetics 14.
Therefore, the stochastic kinetic model is also planned to be implemented in
future releases of the simulator.

Currently we hand-optimize all parameters because of the small quantity
of detailed biological data. Because hand-optimization is inefficient and inac-
curate, we are going to integrate an optimization algorithm to determine ideal
parameter sets.

Due to space limitation, we are only able to show the frequency response
which is determined by Dpp-Tkv-Dad in the Smad cascade. The expressions
of inhibitors also determine the negative feedback effect, which we would like
to explore in our future publications.

6 Conclusion

In this paper, we introduced the new simulation system for multi-cellular or-
ganisms, which satisfies the needs of serious biological investigations. We can
model the intra-cellular and extra-cellular processes, such as protein diffusion,
ligand-receptor interactions, biochemical reactions, and gene expressions. We
believe that this simulation system has a capability to described all of the bio-
logical phenomena which can be modeled as the ordinary differential equations.

In order to verify this simulation system, we have implemented the Drosophi-
la Smad signal transduction pathway, and reconstructed the spatio-temporal
patterning of gene products, proteins, and their complexes. The results sug-
gest that the negative feedback mechanism functions to improve the frequency
response, which contributes to quickly response against Dpp morphogen posi-
tional information.
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