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We present a new statistical approach for eukaryotic polymerase II promoter recog-

nition. We apply stochastic segment models in which each state represents a func-
tional part of the promoter. The segments are trained in an unsupervised way.

We compare segment models with three and �ve states with our previous system

which modeled the promoters as a whole, i. e. as a single state. Results on the

classi�cation of a representative collection of human and D. melanogaster promoter

and non-promoter sequences show great improvements. The practical importance

is demonstrated on the mining of large contiguous sequences.

1 Introduction

As the large sequencing projects, e. g. those of man and Drosophila, enter the
�nal stage, we are in urgent need of computer methods to analyze and anno-
tate the large amounts of contiguous genomic sequences. A particularly hard
problem is the reliable recognition of transcription start sites (TSS) and/or
the promoter regions of genes within genomic DNA. Nothing has essentially
changed since Fickett and Hatzigeorgiou stated that this problem is far from
being solved 1.

Recently, we presented a content-based system for promoter identi�cation2

which used no background knowledge about the structural properties of pro-
moter regions (reviewed for example by Kornberg 3 or Nikolov and Burley 4).
We only assumed a window size of 300 bases (250 before and 50 after the TSS)
which is the region known to contain most of the transcription factor binding
sites involved. This is opposed to the signal-based approaches which look for
speci�c occurrences of transcription elements 5.

We have designed a new hybrid approach which is based on the observation
that a eukaryotic promoter can generally be divided into segments: the region
upstream from the transcription start site, the core promoter where the main
initiation complex binds, and a region downstream from the start site. The
core promoter can be further split into the TATA box and the initiator region
(Inr), separated by a spacer of approximately 15 bp. We use this broad seg-
mentation of a PolII promoter region to pursue a new approach for promoter
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recognition based on a stochastic modeling of promoter segments. Our aim is to
incorporate as much general structural knowledge as possible without getting
as speci�c as signal-based methods. Previous hybrid approaches 6;7 combined
N -mer statistics of several regions upstream of the TSS with a weight matrix
for the TATA box, or performed a quadratic discriminant analysis based on
feature variables calculated within several windows around the TSS.

In the following, we describe stochastic segment models of D. melanogaster

and human promoter regions. The model type that we use is similar to stochas-
tic gene parsing systems such as GenScan 8. We give a formal de�nition of the
model and describe how standard algorithms for evaluation and training can
be adopted. Then we provide a brief overview of interpolated Markov chains
which are used as the output distributions. Finally, we present the results of
the SSMs both on the classi�cation of a representative sequence set and on the
scanning of large genomic sequences.

2 Methods

2.1 Stochastic segment models

Stochastic segment models (SSMs, see the paper of Ostendorf et al. 9 for an
introduction and a comparison of di�erent model types) have been proposed
as a generalization of the widely used hidden Markov models (HMMs). Like
HMMs, they consist of a set Q of connected states which can be characterized
by an initial state distribution � and state transition distribution A with
entries aij . Each state qj contains an output distribution for the production of
symbols which can be observed from the outside. While the output distribution
of an HMM state can only emit a single symbol per state, each SSM state
incorporates a joint distribution bj which generates a sequence of symbols (a
whole segment). The length of the generated segment underlies a duration
distribution dj associated with the state. Thus, the probability Pj(wi) that a
state produces a partial sequence wi of length �i is given by

Pj(wi) = dj(�i) � bj(wij�i): (1)

With a given valid segmentation (s; � ) = ((qs1 ; �1) : : : (qsm ; �m)) of se-
quence w into segments wj , (

P
j �j = jwj), the probability of the sequence

can be expressed as

P (w; s; � ) = �s1

m�1Y
i=1

Psi (wi)asisi+1 � Psm(wm) (2)
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The output distribution bj can itself be arbitrarily complex and take into
account dependencies between the symbols within the segment. Depending
on the �eld of application, di�erent distributions such as Markov chains or
HMMs may be suitable. Because the output distribution is conditioned on
the duration, we have to provide either an individual distribution for each
possible segment length or a mapping function from various segment lengths
to a limited number, or the distributions have to be able to generate sequences
of all valid lengths.

The idea of segment models is not new to the �eld of DNA sequence
analysis { most gene �nding systems which make use of stochastic models
�t into the framework of SSMs. The GenScan system 8, in particular, uses
a model structure similar to that proposed here (as a so-called hidden semi-

Markov model). The di�erence is that we cannot expect the training material
to be annotated in advance, which would allow for a supervised and individual
learning of each output and duration distribution. For promoter regions we
neither know how many segments we shall use for a successful recognition,
nor have any means to separate all the segments from each other, because no
promoter signal is guaranteed to occur in all sequences. This is opposed to the
gene �nding systems, where splice sites, for example, can be expected at the
borders of exons and introns. A suitable algorithm for this task is described
in the following section. A more elaborate description of our segment model
formalism and implementation issues can be found elsewhere 10.

2.2 Algorithms for evaluation and training

The probability of generating sequence w with a segment model is equal to
the sum of all possible segmentations over which the sequence can be uttered.
Thus, using equation 2, we have

P (w) =
X
s

X
�

P (w; s; � ) (3)

For HMMs, the corresponding probability can be computed e�ciently by
the forward algorithm. This algorithm calculates the forward variables �t;j
which contain the probability that the model is in state qj at time t and has so
far produced the symbol chain w1 : : : wt. In HMMs, there is a state transition
after each symbol, so the computation of �t+1;j involves only the variables
at time t. But for SSMs, the state duration is variable, so we have to sum
up over all preceding variables where a state transition might have occurred.
Therefore, we have to sum up over all possible segmentations � . The resulting
algorithm is depicted in �gure 1.
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F := 0
FOR t := 1 TO �

FOR j := 1 TO n

FOR t0 = 0 TO t� 1

IF t0 = 0

THEN sum := �j

ELSE FOR i := 1 TO n

sum := sum+ Ft0;i � aij
Ft;j := Ft;j + sum � Pj(wt0+1; ::; wt)

P (w) :=
Pn

j=1 F�;j

Figure 1: Forward algorithm for segment models. The input is w = w1; ::; w� . The

matrix F contains the forward variables, n is the number of states. t is the actual time, j

the actual state, and t0 is the time where the state transition from state qi to qj takes place.

The evaluation of the forward algorithm involves many computations of
the output distributions bj , and has the consequence that we can make use of
only those distributions that can be computed e�ciently. One way to reduce
the number of calculations drastically is to provide minimum and maximum
durations �min and �max for the states, which is obviously application depen-
dent. We will exploit this idea for the promoter model.

The most likely segmentation can be computed using a similarly adapted
Viterbi algorithm, in which the sum over all possible segmentations is replaced
by its maximum. Here, we use the Viterbi algorithm mainly inside a two-step
training algorithm: First, we determine the most likely state sequence for each
training sequence, then we treat this segmentation as the correct annotation.
The resulting training material for each state is used to estimate the output and
duration distribution. Of course, the probabilities of the state transitions and
initial states are modi�ed as well. The algorithm maximizes the Viterbi score
of the model, i. e., the score obtained on the best segmentation is guaranteed
to increase after each iteration. This so-called Viterbi training (see �gure 2)
usually results in a fast convergence.

2.3 Output and duration distributions

We already obtained promising results on the promoter recognition problem
by the application of interpolated Markov chains 2, so we also used them as
state output distributions. Here, we briey revise the basic idea.

Given a sequence w, the total joint probability can be computed with the
chain rule:
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Initialize model �
WHILE not converged or FOR a prede�ned number of cycles

ŝ; �̂ := argmaxs;� P�(s; � jw) (Viterbi algorithm)
8i : ��i := #(ŝ1 = i)
8i; j : �aij := #(ŝt = i ^ ŝt+1 = j)
8i : �̂i :=

��iP
i
��i

8i; j : âij :=
�aijP
j
�aij

8i : Estimation of Pi including di and bi

� := (�̂; Â; P̂ )

Figure 2: Viterbi training for segment models. A denotes the state transition matrix

with entries aij , � is the vector containing the start state probabilities. Pj is the segment

density function for state j which incorporates the output and duration distribution. # is a

function which counts the occurrence of its argument.

P (w) =

jwjY
i=1

P (wijw1 : : : wi�1| {z }
context

): (4)

Because we cannot handle conditional probabilities with arbitrarily large
context, we limit the size to N � 1:

P (w) �

jwjY
i=1

P (wijwi�N+1 : : : wi�1) (5)

The resulting model is called a Markov chain (MC) of order N � 1. The
parameters of this model are the conditional probabilities on the right-hand
side of equation 5. After a Maximum Likelihood parameter estimation, we
obtain values for ~P (vjv̂) for each symbol v from the vocabulary V and each
context v̂. To achieve more stable parameters, we compute the interpolation of
all context lengths from 0 up to N � 1 and use these as new parameter values.
This can easily be done in a linear fashion:

P̂ (vjv̂) := �0
1

V
+ �1 ~P (v) + : : :+ �N ~P (vjv̂) (6)

We used a more sophisticated approach which weights the individual pa-
rameters with their number of occurrence: Parameters which occur more fre-
quent in the training material lead to a better statistics, and in this case we do
not have to fall back to a shorter context as much as if the parameter seldom
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occurs. Optimal interpolation coe�cients �i are calculated on a disjoint part
of the training set using a gradient descent method 2.

Apart from the promising results, Markov chains are well suited out of a
second reason. As we mentioned above, the evaluation of the output distri-
butions must be calculated e�ciently because of the large number of possible
segmentations. With an MC, the total probability of a sequence can be broken
down to single conditional probabilities per base, so we simply calculate these
values along the whole sequence for each model state in advance and store
them in a table. Thus, the calculation of a segment probability can be reduced
to two table accesses and a subtraction, if we store the cumulative sum of the
log probabilities.

As duration distributions, we simply use discrete distributions, represented
as histograms of the relative frequencies. Because the Viterbi training only
considers the most probable length, the values are smoothed with their left
and right neighbours.

2.4 The promoter recognition system

The system for promoter detection in contiguous sequences contains a segment
model for promoters and a model for non-promoters. The latter consists of two
interpolatedMarkov chains, one trained on coding and one on intron sequences.
They are treated as a mixture distribution with uniform weights.

For the application on contiguous sequences, we run a window of 300
bases over the sequence. Every 10 bases, we evaluate the window content with
the promoter and the non-promoter model, and store the di�erence between
the non-promoter and promoter scores. We obtain a curve describing the
regulatory potential at each position. After a smoothing operation on the
curve, a TSS is predicted at each minimum below a given threshold. The
threshold is used to adjust the number of total predictions.

3 Data sets

We established representative sequence sets for the training and compari-
son of promoter recognition algorithms 2. Currently, two sets of human and
D. melanogaster sequences are available. These sets contain positive (promot-
ers) as well as negative (introns and coding sequences) samples and are split
in a number of subsets suited for cross-validation. The sets comprise a total
number of 565 (265) promoters, 4345 (240) non-coding, and 890 (711) coding
sequences (the numbers in parentheses are for the Drosophila set). The promot-
ers contain 250 bases upstream and 50 bases downstream; the non-promoter
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Figure 3: Determination of initial model structure. On the vertical axis, the starting
position of the window on which a model was trained is given. The horizontal axis depicts

how well the model trained on a certain window position performed in all windows. See the

text for further explanation.

sequences are also 300 bases long. Further information and the sequences
themselves can be retrieved via the Internet a. These sets will be referred to
as "classi�cation sets".

For the evaluation on contiguous sequences, we applied our human pro-
moter model on the benchmark set of Fickett and Hatzigeorgiou 1. It includes
18 vertebrate sequences with a total of 33,120 bp and contains 24 promot-
ers. We are currently building a new reference set to pursue the evaluation
in real-scale genomic regions, based on a contiguous 2.9 Mb sequence of D.
melanogaster recently used for a community-wide genome annotation experi-
ment b.

4 Experiments and Results

4.1 Establishing a suitable model structure

To determine an initial promoter model structure, we performed the follow-
ing experiment. We shifted a window of 12 bases along four-�fths of the human
promoter sequences in the classi�cation set. At each position, a fourth-order
Markov chain was trained with the window content of all sequences. Markov

ahttp://www.fruity.org/seq tools/human-datasets.html
bhttp://www.fruity.org/GASP1
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Table 1: Structure of the three-

state promoter model. Shown are

the minimum and maximum length for

each length distribution. The Markov

chains used as output distributions are

all of �fth order.

state �min �max

upstream 190 220
TATA 20 40
Inr/downstream 50 80

Table 2: Structure of the �ve-state promoter

model. Shown are the minimum and maximum

length for each length and the Markov order of

each output distribution.

state �min �max order
upstream 205 230 5
TATA 10 20 3
spacer 10 20 2
Inr 5 15 3
downstream 35 50 4

chains will be used as output distributions in our SSM, and the fourth order
resembles the typical motif size of transcription elements. This model was then
evaluated at every position of the remaining sequences, again within a window
size of 12 bases. All the scores were summed up for each window, normalized
and plotted against the position on which the window was trained (�gure 3).
High scoring windows appear in a dark color, and if dark regions appear on
the diagonal, this indicates a position speci�c signal within a promoter region
which can be detected by the model.

The only clearly visible position-speci�c signal is the TATA box region.
Even at the TSS itself, there is no clear sign that the models trained on this
region perform better than models trained on a di�erent part of the promoter.
This is somewhat surprising, but in accordance with the results of Zhang 7,
who found that TATAAA is the only clear position speci�c six-tuple within
promoters c. Obviously, the window size of 12 bases is too small to detect
region-speci�c signals, such as transcription factor binding sites which occur
more frequently in speci�c parts of the upstream region. We repeated the
experiment with a window size of 50 bases, but this delivered no signi�cantly
di�erent results. We thus decided to start our experiments with a three-state
linearly connected model for upstream, TATA, and Inr/downstream region.

4.2 Performance on the classi�cation data set

After a model structure was chosen, we performed a �ve-fold cross-valida-
tion experiment on the human classi�cation set: We trained the models on four-
�fths of the sequences with four cycles of Viterbi training which led to a good
convergence. Then we evaluated them on the remaining part and averaged

cNB: A fourth-order Markov chain might be still too large to �nd a short TSS signal.
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Figure 4: Results on the human promoter classi�cation set. The receiver operating

characteristics of a �ve-state, a three-state and a single-state promoter is depicted.

the results. We set upper and lower bounds �min and �max for the length
distributions and initialized them with uniform values; as output distributions,
we used �fth-order interpolatedMarkov chains. The model structure is given in
table 1. The segment sizes are heuristic, but based on the experiment described
above. The results were calculated with the forward algorithm instead of
the Viterbi algorithm. This makes the probabilities comparable to the non-
promoter model on a theoretically sound basis d.

Figure 4 shows the resulting receiver operating characteristics (ROC), i. e.
the recognition or true positive rate at di�erent rates of false positives. The
false positive rate can be adjusted by choosing di�erent thresholds on the
posterior probabilities of the concurring models. One can see immediately that
the new promoter model with three segmental states performed much better
than our previous system (one single state). This encouraged us to use three
states for the core promoter: one for the TATA box, one for the initiator region
around the transcription start site, and one for the spacer sequence between
TATA box and initiator. Because these segments are smaller than the ones
in the old model, we had less training material available for each state, so we
chose smaller Markov orders for the output distributions to reduce the number
of parameters. This should also lead to a better modeling of short signals such

dWe also experimented with the Viterbi algorithm, but �rst runs on contiguous sequences

showed that the output score (the di�erence between promoter and non-promoter model)

was quite noisy, which lead to a large number of false predictions. Replacing the Viterbi

score with the full probability calculated by the forward algorithm reduced this e�ect.
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Figure 5: Duration distributions for TATA and Inr state. The distributions were

initialised with uniform values and estimated with four cycles of the Viterbi training.

as the Inr. The new �ve-state model (table 2) is slightly better than the three-
state, as can be seen in �gure 4. The best averaged cross-correlation value
(CC) is 0.66, at a false positive rate of 2% and a true positive rate of 62.3%.
Compared with the single-state model, we were able to reduce the number of
false predictions at the same recognition rate by more than two thirds. In
�gure 5, the learned duration distributions of the TATA and initiator state of
one cross-validation experiment are depicted.

The same tests were also performed on the D. melanogaster sequence set.
Figure 6 shows the results obtained with a �ve-state model with the same
structure as the human one. The best CC is 0.68 at a rate of 7% false positives
and 75.4% true positives.

4.3 Application on long genomic sequences

To see if we could obtain results for contiguous sequences as good as those
for the classi�cation set, we applied one model trained in the cross-validation
experiments to search for the promoters in the genomic sequences from the
survey of Fickett and Hatzigeorgiou 1. We set the threshold at 2% of false
positives, where we obtained the best CC value.

We could detect 12 out of 24 promoters with a false positive rate of 1/895
bp. This is a slight improvement with respect to our previous system, where
we detected the same number of promoters, but at a false positive rate of
1/849 bp. The system by Solovyev and Salamov 6, which was one of the best
performing system in the survey, identi�ed 10 promoters with a false positive
every 789 bp.

We expected a better performance with the results from the previous sec-
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Figure 6: Results on the D.melanogaster classi�cation set. The ROC curve of a �ve-

state and a single-state promoter model are given.

tion in mind. Fickett and Hatzigeorgiou mention that the sequence set is not
really representative, as the number of promoters is quite small. Furthermore,
the test set was collected from articles which concentrated on transcriptional
regulation, so the sequences might be biased towards special regulatory cir-
cumstances. Another explanation might be that the available training samples
are not really representative. To clarify this, we aim at the evaluation of our
models on a large and typical eukaryotic genomic sequence: the 2.9 Mb Adh
region of D. melanogaster (mentioned in section 3) which contains approxi-
mately 230 genes. On a large data set, we can also study in detail the e�ect
that the smoothing of the scores (see sec. 2.4) has on the overall performance.

5 Conclusions and Final Remarks

In this paper, we present a new approach for the stochastic modeling of eu-
karyotic polymerase II promoters, based on the general segmental structure of
promoter regions. We could show a clear improvement of a �ve-state segment
model on the classi�cation of �xed-length sequences with respect to our previ-
ous approach, which modeled the promoter region as a whole. The results on
genomic sequences are also improved, but not yet as much as we expected.

Currently, we have the following intention: to break up the linear structure
of the model and introduce new states which run in parallel to others. Coupled
with our Viterbi training algorithm, we aim to identify broad promoter clusters,
depending on the optimal path chosen. Apart from better recognition, we
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can obtain new insights by examining the parameters of the states. Such a
model can also serve as a pre-classi�cation step which enables data mining
algorithms 11 to speci�cally search for signi�cant transcription factor binding
sites within the identi�ed clusters.

The system can be accessed via the URL http://www5.informatik.uni-
erlangen.de/HTML/English/Research/Promoter.
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