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A series of microarray experiments produces observations of differential expression for
thousands of genes across multiple conditions.  It is often not clear whether a set of
experiments are measuring fundamentally different gene expression states or are measuring
similar states created through different mechanisms.  It is useful, therefore, to define a core set
of independent features for the expression states that allow them to be compared directly.
Principal components analysis (PCA) is a statistical technique for determining the key
variables in a multidimensional data set that explain the differences in the observations, and
can be used to simplify the analysis and visualization of multidimensional data sets.  We show
that application of PCA to expression data (where the experimental conditions are the
variables, and the gene expression measurements are the observations) allows us to
summarize the ways in which gene responses vary under different conditions. Examination of
the components also provides insight into the underlying factors that are measured in the
experiments. We applied PCA to the publicly released yeast sporulation data set (Chu et al.
1998). In that work, 7 different measurements of gene expression were made over time. PCA
on the time-points suggests that much of the observed variability in the experiment can be
summarized in just 2 components—i.e. 2 variables capture most of the information. These
components appear to represent (1) overall induction level and (2) change in induction level
over time.  We also examined the clusters proposed in the original paper, and show how they
are manifested in principal component space. Our results are available on the internet at
http://www.smi.stanford.edu/projects/helix/PCArray.

 
 1 Introduction
 

The study of gene expression has been greatly facilitated by DNA microarray
technology (Schena et al. 1995). DNA microarrays measure the expression of
thousands of genes simultaneously, and have been described elsewhere (Chee et al.
1996, Chen et al. 1998, Duggan et al. 1999, Schena et al. 1995). The anticipated
flood of biological information produced by these experiments will open new doors
into genetic analysis (Lander 1999). Expression patterns have already been used for
a variety of inference tasks. For example, microarray data has been used to identify
gene clusters based on co-expression (Eisen et al. 1998, Michaels et al. 1998),
define metrics that measure a gene’s involvement in a particular cellular event or
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process (Spellman et al. 1998), predict regulatory elements (Brazma et al. 1998),
and reverse engineer transcription networks (D’Haeseleer et al. 1999, Liang et al.
1998). The success of these efforts relies on the integrity of the expression data.
Both experimental noise and hidden dependencies among a set of experimental
conditions may confound the inferential process. It is non-trivial to eliminate either
of these complicating factors.  One particular problem is that different experiments
that seem different because of their biological context (heat shock, starvation, or
oxygen deprivation, for example) may actually be identical or very similar in terms
of the gene expression state that results.  In such cases, a naïve analysis might
associate some genes too tightly because multiple redundant measurements.  Thus,
it may be beneficial to pre-process the data before analysis in order to identify the
independent information content of different experimental conditions.

Principal Components Analysis (PCA) is an exploratory multivariate statistical
technique for simplifying complex data sets (Basilevsky 1994, Everitt & Dunn
1992, Pearson 1901). Given m observations on n variables, the goal of PCA is to
reduce the dimensionality of the data matrix by finding r new variables, where r is
less than n.  Termed principal components, these r new variables together account
for as much of the variance in the original n variables as possible while remaining
mutually uncorrelated and orthogonal.  Each principal component is a linear
combination of the original variables, and so it is often possible to ascribe meaning
to what the components represent.  Principal components analysis has been used in
a wide range of biomedical problems, including the analysis of microarray data in
search of outlier genes (Hilsenbeck et al. 1999) as well as the analysis of other types
of expression data  (Vohradsky et al. 1997, Craig et al. 1997).

DNA microarray data sets are now appearing in the published literature, and
most initial analyses have focused on characterizing the waveform of gene
epxression over time, and in clustering benes based on this waveform or other
features.  When clustering genes based on expression information, it can be
important to determine if the experiments have independent information or are
highly correlated.  Chu et al (1998) measured gene expression at seven time points
during sporulation in yeast, and in two mutant yeast strains.  They identified 7
clusters of key genes grouped based on the approximate times during which
members are up-regulated.

A PCA analysis of DNA microarray data can consider the genes as variables or
the experiments as variables or both.  When genes are variables, the analysis creates
a set of  “principal gene components” that indicate the features of genes that best
explain the experimental responses they produce.  When experiments are the
variables, the analysis creates a set of “principal experiment components”  that
indicate the features of the experimental conditions that best explain the gene
behaviors they elicit.  When both experiments and genes are analyzed together,
there is a combination of these affects, the utility of which remains to be explored.
This report focuses on consideration of the experiments as variables.  We first create
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a covariance matrix to measure how each experiment contributes information to the
data set.  We then summarize the information compactly with the principal
experimental components.  Finally, we show that this analysis clarifies the
relationship between previously reported clusters and is a starting point for
examining the detailed relationships and differences between genes.

2 Methods

We start with a matrix of expression data, A, where each row corresponds to a
different gene and each column corresponds to one of several different conditions to
which the cells were exposed.  The ait entry of the matrix contains the ith gene’s
relative expression ratio with respect to a control population under condition t.  To
moderate the influence of gene expression ratios above and below one, we applied
the natural log transform to all ratios (Eisen et al. 1998).  Up-regulated genes thus
have a positive log expression ratio, while down-regulated genes have a negative
log expression ratio. We did not normalize the conditions to norm 0, variance 1 as
sometimes recommended when attempting PCA on measurements that are not on a
comparable scale (Everitt & Dunn 1992).  The log ratios included in the analysis are
comparable, no further preprocessing was necessary.

To compute the principal components, the n eigenvalues and their
corresponding eigenvectors are calculated from the nxn covariance matrix of
conditions.  Each eigenvector defines a principal component.  A component can be
viewed as a weighted sum of the conditions, where the coefficients of the
eigenvectors are the weights.  The projection of gene i along the axis defined by the
jth principal component is:

∑
=

=
n

t
tjitij vaa

1

’

Where vtj is the tth coefficient for the jth principal component; ait is the expression
measurement for gene i under the tth condition. A’ is the data in terms of principal
components.  Since V is an orthonormal matrix, A’ is a rotation of the data from the
original space of observations to a new space with principal component axes.

The variance accounted for by each of the components is its associated
eigenvalue; it is the variance of a component over all genes.  Consequently, the
eigenvectors with large eigenvalues are the ones that contain most of the
information; eigenvectors with small eigenvalues are uninformative.

Determining r, the true dimensionality of the data, and eliminating noisy
components is often ad hoc and many heuristics exist. Eliminating low variance
components, while reducing noise, also discards information.  We chose to use one
criterion that discards all components accounting for less than (70/n)% of the
overall variability (Everitt & Dunn 1992). The MatlabTM software package (The
MathWorks, Inc., Natick, MA) was used to conduct most of our calculations.
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 3 Results

The data for this analysis was obtained from a publicly accessible web site1.  The
data contains expression ratios for 6118 known or predicted genes from
Saccharomyces cerevisiae.  The data was collected for each gene at 7 different time
points (0hrs, 0.5hr, 2hrs, 5hrs, 7hrs, 9hrs, 11.5hrs) during sporulation.  Thus, the
matrix to be analyzed has 6118 rows of genes and 7 columns of conditions
corresponding to each of the measured time points.  Table 1 reports the mean,
median, and variance of each time point from the sporulation data over all genes.
The means and medians are slightly negative but quite close to zero.  Also note the
relatively low variance of the t=0 time point; this is reassuring since the initial
population should be similar to the background population.

Table 1. Summary of the experimental data collected by Chu and his colleagues (1998).  The table
contains average relative expression ratios after application of a natural log transform.

Time
point

T=0 T=.5 T=2 T=5 T=7 T=9 T=11

Median -0.122 -0.182 -0.104 -0.166 -0.095 -0.104 -0.131

Mean -0.119 -0.214 -0.096 -0.119 -0.007 -0.032 -0.025

Variance 0.029 0.369 0.269 0.428 0.737 0.552 0.596

Table 2. Results of PCA on the sporulation time series data.  The values in the columns are coefficients
of the principal components that are related to each of the experimental time points.  The eigenvalues
express the variance of a principal component over all genes.  Principal component 1 and 2 contain over
90% of the total variance in the data.

Projection Principal Components
On
condition

1 2 3 4 5 6 7

T = 0 -0.0072 -0.0116 -0.0631 -0.2166 0.0764 -0.7433 0.625

T = .5 0.2076 -0.7524 -0.5373 0.2606 0.1545 -0.0683 -0.0756

T = 2 0.2358 -0.4925 0.3296 -0.5935 -0.453 0.1713 0.0803

T = 5 0.3975 -0.1156 0.5612 -0.002 0.5919 -0.2532 -0.3151

T = 7 0.554 0.0862 0.1869 0.4959 -0.1112 0.2889 0.5559

T = 9 0.4671 0.2517 -0.153 0.1169 -0.5413 -0.4488 -0.4324

T = 11 0.4671 0.3273 -0.4748 -0.5229 0.3307 0.254 0.044

Eigenvalue 2.2928 0.401 0.1322 0.0594 0.0406 0.0288 0.025

% variance 76.9 % 13.5 % 4.4 % 2.0 % 1.4 % 1.0 % 0.8 %

                                                
1 http://cmgm.stanford.edu/pbrown/sporulation/index.html
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Our analysis indicates that we can summarize the data with just two variables.
Table 2 contains all 7 principal components and their corresponding eigenvalues.
Figure 1 is a plot of the eigenvalues of the components.  Two eigenvalues lie above
the 10% (70/7) cutoff, suggesting two dimensions for the sporulation data.  The first
two principal components account for over 90% of the total variability; including
the third component accounts for almost 95%. The meaning of these components
can be distilled from their respective coefficients.

Figure 1.  Plot of eigenvalues of the principal components.  Most of the variance in the sporulation data
set is contained in the first two principal components.

The first component represents a weighted average and distinguishes genes by
their average overall expression.  Ignoring the t=0 coefficient (it has negligible
magnitude), it can be seen in Figure 2A that the remaining coefficients are positive
(see also Table 2). The coefficients are proportional to the variance of the time
points they are associated with (correlation = 0.97).  The first component is an
average expression weighted by the information content (i.e. variance) of a
particular experiment.  Genes with highly positive values along this component are
up-regulated during sporulation, whereas genes with highly negative values are
down-regulated.
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Figure 2.  Plots of the coefficients of the first three principal components.  Each coefficient indicates the
weight of a particular experiment in the principal component.  The first principal component has all
positive coefficients, indicating a weighted average. The second principal component has negative values
for the early time points and positive values for the latter time points, indicating a measure of change in
expression.  The third coefficient captures information about the concavity in the expression pattern over
time.

The second component represents change in expression over time; it
distinguishes genes by their first derivatives.  In Figure 2B the coefficients linearly
increase with time from negative to positive values.  Again, the exception to the rule
is the low variance t=0 observation which has a negligible coefficient. Consider a
gene i that is repressed (negative log expression ratio) in the early time points and
highly induced (positive log expression ratio) in the final time points. The
coefficient multiplied by the log expression score will be positive for each time
point.  Gene i’s value along the second component, a’i2, is large and positive since
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every product in the sum is positive. Alternatively the second component for a gene
that is induced early and repressed later will be large and negative.  The expression
scores are multiplied with coefficients of the opposite sign, yielding a large negative
score.  This component is positive for genes whose relative expression increases
through time, and negative for those whose relative expression decreases; it
measures positive trend in expression.

The third component measures concavity—notice the parabolic nature of the
coefficients in Figure 2C (again ignore the negligible t=0 coefficient).  Consider a
gene i that is expressed at background level in the early and middle time points, but
induced in the final time points—it has an expression profile that is concave up.
Since the only non-zero expression levels occur at the final time points, only the
later negative coefficients contribute to the sum, a’i3.  Consequently this gene will
have a negative third component.  Alternatively consider a gene with a similar
profile, but that is expressed in the middle time points also (concave down); in this
case the middle time points with positive coefficients increase the score along this
component.  The score of the second gene will be less negative.

The first two components account for over 90% of the variance allowing most
of the information to be visualized in two dimensions. Thus, even though there were
seven experiments in the time series, there were only two or three independent
features for each gene. All yeast genes are plotted in Figure 3 against the first two
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principal components; an ellipse enclosing 95% of the genes is drawn to distinguish
between high and low variance genes.  The genes appear to be distributed in a
unimodal distribution.  The data has been made available as a VMRL source at
http://www.smi.stanford.edu/projects/helix/PCArray; the user can quickly navigate
through two or three dimensional component space.  Each data point is linked to its
corresponding entry in the Saccharomyces Genome Database (Cherry et al. 1998).

The transcription factor NDT80 is key to the induction of many genes
expressed in the middle of the sporulation process (Xu et al. 1995).  The original
dataset also includes measurements of gene expression for a NDT80 knockout
microarray experiment and an ectopic NDT80 over-expression experiment.
Including these extra experiments in the analysis offers an opportunity to test the
robustness of our analysis.  The coefficients for the first two components are
consistent with our understanding of the phenotype of these cells. In particular, the
NDT80 knockout experiment traps cells in an early stage of sporulation;
correspondingly, the coefficients in the first two components are most similar to the
t=2 hour coefficients from the sporulation time series.  Similarly, the NDT80 over-
expression data yields coefficients most similar to the t=11 hour coefficients.  Since
NDT80 is a sporulation promoting factor, the effects of over-expression may cause
a phenotype that mimics a late time point.

4 Discussion

Our results with the sporulation data confirm that PCA can find a reduced set of
variables that are useful for understanding the experiments.  The application of PCA
to time series is somewhat controversial because of the problems with uneven time
intervals and the dependencies between data points.  In this case, PCA identifies
basic temporal patterns, such as magnitude, change, and the concavity of overall
expression as the important features that characterize genes.  Application of PCA
(unpublished result) to the publicly available cell division cycle data2 also reveals
that PCA can also identify periodic patterns in time series data (Spellman et al.
1998).  For example, the cell cycle data reveals a 110 min period for the cdc15
synchronized experiment, consistent with the cell cycle duration.

Reduction of dimensionality in the sporulation data aids in data visualization;
we can immediately see the unimodal quality of the sporulation data (Figure 3).
The unimodal distribution of expression in the most informative two dimensions
suggests the genes do not fall into well-defined clusters.

                                                
2 http://genome-www.stanford.edu/cellcycle
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In the initial presentation of the data the investigators used clustering
techniques to identify several gene classes relevant to sporulation: “metabolic”,
“early I”, “early II”, “middle early”, “middle”, “middle late”, and “late” (Chu et al.
1998). For each class a canonical expression profile was calculated from a set of
sample genes.  These classes are plotted in Figure 4A; each ellipse in the plot
represents a class.  The location and dimensions of each ellipse was calculated from
the average and standard deviation of the sample genes of the class.  They are drawn
so that approximately 68% (+/- 1SD in both dimensions) of the genes in the class
are enclosed; in Figure 4B they are drawn to enclose 95% (+/- 1.96SD) of the genes
in the class.

An approximate understanding of a class’s expression dynamic can be obtained
quickly by looking at its location in space.  For example, genes occupying the lower
right quadrant (high PCA1, low PCA2) are up-regulated early but return to
background later in sporulation. These genes have expression levels that decrease
over time but maintain a high overall expression level relative to the control.
Examples of these genes are ZIP1 (synaptonemal complex formation), IME2
(meiosis regulator), and HOP1 (homologous chromosome pairing), classified as
“early I” or ”metabolic” genes.

Exploring other quadrants can rapidly identify genes of potential interest.
Genes with low overall expression levels that decrease over the course of
sporulation can be found in the lower left quadrant.  Many genes involved in
metabolic or catabolic processes such as ERG6 (ergosterol synthesis), FBP1
(gluconeogenesis), and SAM2 (methionine biosynthesis) are found in this quadrant.
Genes in the upper left are initially repressed and return to normal.  Many of these
genes are involved in protein synthesis.  Examples include ISF1 (RNA splicing),
BAP3 (valine transporter), and DBP3 (RNA helicase).  The early repression may
correspond with the cells’ initial cessation of protein synthesis and growth; the
renewed expression may function to pack the maturing spores with translation
machinery (Chu et al. 1998).

Principal components analysis is often used as a preprocessing step to
clustering (Everitt 1993).  However, our work suggests that clustering genes with
certain expression data sets may not be appropriate.  In Figure 4A, the genes are not
located in clusters - rather they are spread throughout this space. Focusing on the
upper right quadrant in Figure 4B, it can be seen that the clusters presented in the
original publication have a considerable amount of overlap.  For unimodal or other
smoothly varying distributions, distinctions drawn by clustering methodologies
maybe more confusing than helpful.  In particular, these clusters highlight the
potential biases used in analyzing clusters using traditional cognitive categories.
This observation corroborates the original investigators’ finding that the clusters are
somewhat arbitrary; many genes were found to have high correlation with multiple
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cluster representatives (Chu et al. 1998).  Perhaps it is more useful to determine the
closest neighbors of a gene, rather than to seek well defined clusters.

When we choose the largest principal components, we lose information about
experiments  that explains the remaining variance in the data (5% of the sporulation
variability is not explained by the first three components).  However, our analysis
identifies the variables that should be used for overall classification of genes, and
thereby allows investigators to focus on the other, more subtle, variables whose
values may be helpful in understanding the differences in gene expression under
different conditions.
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