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Target motifs are motifs that are \close" to one or more substrings in each sequence

in one given set of sequences but are far from every substring in another given set

of sequences. Target motifs have pharmaceutical applications; unfortunately, the

problem of identifying target motifs isNP -hard and is thus unlikely to have eÆcient

optimal solution algorithms. In this paper, we propose a set of simple modi�cations

to the Gibbs Sampling heuristic for �nding motifs which allows this heuristic to

detect target motifs. We also present the results of several experiments relative

to both simulated and real datasets which suggest that this modi�ed heuristic is

good at detecting target motifs under a variety of conditions.

1 Introduction

An important problem in computational biology is that of �nding a motif for

a given set of strings, e.g., �nding a string that is \close" (relative to some

distance measure d on pairs of strings) to one or more substrings in each

of the sequences in the given set. Some applications require motifs that are

close to one or more substrings in each sequence in one given set of sequences

(target sequences) but are far from every substring in another given set of

sequences (avoidance sequences). Such target motifs can be used in the design

of group-speci�c diagnostics, e.g., diagnostics for the presence of pathogenic

strains of E. coli in an environment known to contain multiple strains of E. coli,

or as candidate sequence targets in the design of broad spectrum drugs, e.g.,

antibiotics that disrupt particular genes or gene products in pathogenic strains

of E. coli while leaving the corresponding genes and gene products in human

beings and normal human-internal microbial 
ora intact. These applications

and others are discussed in more detail in Lanctot et al. 5

As the problem of identifying target motifs is NP -hard in the restricted

case when motifs are encoded as strings and the distance function is Hamming

distance,5 target motif identi�cation is probablyNP -hard in general, and hence
does not have polynomial-time optimal-solution algorithms unless P = NP .
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Research should therefore focus on polynomial-time approximation algorithms

and heuristics. Though a number of heuristics are known for identifying mo-

tifs, no heuristics have been proposed for target motif identi�cation. One can

trivially derive such heuristics by embedding a motif-�nding algorithm that

operates on the given target sequences in a postprocessing loop which termi-

nates only when the produced motif is far from every substring of the the given

avoidance sequences. However, such naive algorithms are problematic aesthet-

ically, because they do not integrate the avoidance sequence information into

the search for target motifs, and operationally, because they may be misled into

returning a strongly-conserved non-target motif instead of a weakly-conserved

target motif.

In this paper, we suggest some simple modi�cations to the Gibbs Sampling

motif-�nding heuristic6;7;11;14 that use avoidance sequence information to help

detect target motifs. This modi�ed heuristic runs in low-order polynomial

time and is the only known algorithm that can detect gapped target motifs.

We also present the results of several experiments on simulated and real datasets

which suggest that this modi�ed heuristic is good at detecting target motifs

under a variety of conditions.

� Terminology A motif is essentially a pattern that occurs in one or more

given sequences. A motif can be encoded as a string, an alignment of strings, or

a pro�le, i.e., a table giving the probabilities of occurrence of all symbols in the

sequence-alphabet at each position in the motif (see Gus�eld 2 and references).

A motif matches a string if the distance between the motif and the string

is below a speci�ed threshold value. When motifs are encoded as strings,

two popular matching functions are Hamming distance (which is the number

of positions at which symbols di�er in two strings of equal length) and edit

distance (which is essentially the minimum number of symbol substitutions,

insertions, and deletions that must be applied to transform one of the given

strings into the other). A motif that matches one or more substrings of a given

sequence is said to appear in that sequence.

A motif can allow gaps, which correspond to positions at which insertions

or deletions can occur in the matching of that motif to a given string. These

gaps can be explicit in the motif itself (either as special symbols in a string

or pro�le or as the gaps in an alignment of strings) or implicit in that motif's

associated matching function, e.g., edit distance. If a motif incorporates gaps,

it is a gapped motif; else, it is an ungapped motif.

Finally, in the target motif identi�cation problem, a motif that appears in

both the target and avoidance sequences is a non-target motif and a motif that

appears only in the target sequences is a target motif.

� Previous Results Ito et al 4 gave a low-order polynomial-time algorithm
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for the target motif identi�cation problem when the motif is a string, the

matching function is edit distance, and the target motif is required to be a

substring of each of the target sequences. Lanctot et al 5 considered the case

in which the motif is a string, the matching function is Hamming distance,

and all target sequences are of the same length as the motif. They showed

that this problem (which they called Distinguishing string selection) is

NP -hard and gave a high-order polynomial-time approximation algorithm that

is guaranteed to produce a motif whose distance to the target sequences is

within a factor of 2 of optimal.

2 Gibbs Sampling Algorithms for Motif Identi�cation

Gibbs Sampling is essentially a general stochastic strategy for determining the

parameters of a statistical model relative to a given data set.6;7 This strategy

starts with some setting of parameter-values and iteratively changes the value

of one parameter at a time by assuming that the remaining parameters are

correct and invoking Bayes Theorem until all parameters converge to stable

(if not optimal) values. With reference to the motif identi�cation problem, the

model is a motif encoded as an alignment of strings, the parameters are the po-

sitions of the motif within each sequence in a given set S (the motif-instances),

and the stochastic heuristic modi�es these motif-instances one sequence at a

time, one sequence per iteration, until the alignment of these motif-instances

denotes a stable (if not optimal) motif (see Table 1).

Several Gibbs-based algorithms for identifying ungapped 6;7;11 and

gapped 6;14 motifs have been described in the literature. These algorithms

follow the outline given in Table 1, and di�er only in their conception of what

a motif model is and how such models are used to weight motif-instances

in Step 7. Lack of space precludes giving algorithm details here; interested

readers should consult the original papers. Though each iteration of the

main while loop in each of these algorithms runs in low-order polynomial

time and space, no upper bounds on the number of iterations is known, and

hence no worst-case time complexity can be given for these algorithms. All of

these algorithms use relative entropya based measures to evaluate candidate

motif-instances. Intuitively, these measures assess the distinctness of the col-

lective symbol-occurrence probabilities of the derived motif from background

sequence symbol-occurrence probabilities, and allow the algorithms to detect

the strongest motif signals.

aGiven two probability distributions Q and P over a domain X, the relative entropy

of Q to P (also known as the Kullback-Leibler distance between Q and P ) is H(QjjP ) =P
x2X

Q(x) logQ(x)=P (x).
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Table 1: Generic Gibbs Sampling Algorithm for Motif Identi�cation.

Input: A set S of sequences over some alphabet.

Output: A candidate motif for S.
begin

1. Stochastically select initial motif-instances in the sequences of S.
2. Create initial motif-model from motif-instances.

4. while not �nished do

5. Select sequence s from S.
6. Construct motif-model from motif-instances in S � fsg.
7. Weight all possible motif-instances in s relative to the motif-model

derived above.

8. Stochastically select a new motif-instance x for s relative to
these weights.

9. Update motif-instance information for s relative to x.
10. Check if motif-model has converged and process is �nished.

11. Output motif-instances for S.
end

3 Gibbs Sampling Algorithms for Target Motif Identi�cation

Two obvious points in the algorithm given in Table 1 at which avoidance se-

quence information can be used to in
uence target motif search are Steps 1

and 7. To implement this in
uence, we need an easily-computable measure

of how much a candidate motif-instance is like the substrings of the avoid-

ance sequences (and hence how fervently this motif-instance must be avoided).

The most obvious measure is the score of the best alignment of the motif-

instance against the avoidance sequences under an appropriate distance func-

tion. Although this approach is rigorous and appropriately values approximate

matches, it can be computationally prohibitive. An alternative approach is to

describe substrings of avoidance sequences in terms of the parameters of a

statistical model. This results in a loss of information but a corresponding

increase in computational eÆciency.

In this paper, we use the �rst-order correlation model �A, which encodes

the probabilities P (ajb) of symbol a occurring in the avoidance sequences,

given that symbol b occurred immediately before symbol a; in practice, P (ajb)
is approximated by the frequency of occurrence of substring ba in the avoidance
sequences. For a string x = x1 : : : xn, the weight of an instance of an ungapped
motif relative to �A is P (xj�A) =

Qn�1
i=1 P (xi+1jxi). To evaluate such a model
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against an instance of a gapped motif, treat each insertion as matching all

symbols, ignore all deletions, and multiply the appropriate probabilities as

before. In the case of Step 1, each of the potential motif-instances is weighted

relative to �A and motif instances can be selected stochastically relative to these

weights. In the case of Step 7, the weight wx associated with a possible motif-

instance x is weighted by the odds that this motif instance doesn't appear in

the avoidance sequences, i.e., wx �
1�P (xj�A)
P (xj�A)

(this assumes that the events of the

motif model being close to the target sequences but distant from the avoidance

sequences are independent, which seems to be a reasonable assumption).

A �nal modi�cation is necessary, as distance-thresholds are not explicitly

evaluated in the algorithms considered here and it is more important that a

produced motif be the required distance from all substrings of the avoidance

sequences. To ensure this, the algorithm as modi�ed above is embedded in a

postprocessing loop that terminates only when either the number of iterations

of the postprocessing loop exceeds a user-de�ned bound BR or the consen-

sus string associated with the produced motif has distance greater than some

threshold TP to every substring in the avoidance sequences, where this distance

is Hamming distance for ungapped motifs and edit distance for gapped motifs.

In all experiments described in remainder of this paper, BR was set to 10 and

TP was set such that no produced motif had more than 60% similarity to any

substring in the avoidance sequences.

4 Results

4.1 Preliminaries

Both the Rocke and Tompa 14 algorithm and the version of this algorithm

modi�ed as described in Section 3 above were implemented in a set of C/C++

programs. The naive approach to �nding target motifs described in the intro-

duction was also implemented by embedding the Rocke and Tompa algorithm

in the postprocessing loop described in Section 3.

Each dataset used in the experiments consists of a set of target sequences,

a set of avoidance sequences, a set of non-target motifs, and a set of target

motifs. In the simulated datasets, each motif has an associated randomly

generated \seed string" and copies of that motif are created by performing a

speci�ed number of operations at random on that motif's seed string, where

this number is the product of a speci�ed motif dispersion rate and the length of

the motif. In the case of ungapped motifs, all such operations are substitutions;

in the case of gapped motifs, 60% of the operations are substitutions, 20% are

single-symbol insertions, and 20% are single-symbol deletions. Note that the
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symbol insertion and substitution probabilities are equal.

Given datasets constructed as described above, we know the locations of all

possible motifs and can hence unambiguously determine when motif detection

does and does not occur. Given a set of sequences S, the start and stop

positions of a motif m in each sequence in S, and the start and stop positions

of a candidate target motifmc in each sequence in S, de�ne the average overlap
of mc relative to m in S as the average of the overlaps of m and mc in each

sequence in S. We will say that mc detects m in S if the average overlap of mc

relative to m in S exceeds a threshold TD. In all experiments reported in this

section, TD was set to 50% of the motif length.

Finally, let each execution of an algorithm on a dataset be a run, and each

set of runs relative to a particular dataset be a trial.

4.2 Simulation Study #1

� Motivation The motif-�nding algorithms underlying the naive method

for target motif identi�cation described in the Introduction should consistently

prefer the best-conserved motif in the target sequences, even if that motif is

a non-target motif. How often does this happen and under what conditions

does it start causing serious problems for the naive method (and hence validate

methods like the one proposed in this paper)?

� Methods Each dataset consisted of two motifs (one target) of length

20 which were embedded in 20 target sequences and 2 avoidance sequences of

base length 60 (which had post-embedding lengths of 100 and 80, respectively).

The non-target motif is always perfectly conserved and the target motif has

a speci�ed dispersion rate. Each trial consisted of 10 runs on a particular

dataset, and the number of runs the target motif is detected in each trial was

recorded. The naive and modi�ed Gibbs algorithms were run for 100 trials

apiece on protein and DNA sequence datasets with ungapped and gapped

motifs generated relative to motif dispersion rates 0%, 10%, and 20%.

� Results and Discussion The results given in Table 2 show that both

of the algorithms perform well at low motif dispersion rates, and performance

falls o� as the motif dispersion rate increases (particularly in the case of gapped

motifs). The modi�ed Gibbs algorithm always performs better than the naive

Gibbs algorithm in the case of ungapped motifs and gapped protein motifs;

however, in the case of gapped DNA motifs, the naive Gibbs algorithm per-

forms better at non-zero motif dispersion rates. This suggests that the mod-

i�ed Gibbs algorithm is sensitive to the size of the sequence-alphabet in the

case of gapped motifs. This may be a product of our modi�cations or it

may be inherent in the Rocke and Tompa algorithm (as that algorithm was
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Table 2: Simulation Study #1 Results.

Average # Runs

% Target Motif Detected

Motif DNA Protein

Dispersion Naive Mod. Naive Mod.

Ungap 0 9.53 9.23 8.80 9.19

10 9.39 9.30 8.17 8.86

20 7.03 8.50 6.99 7.98

Gap 0 8.05 8.29 9.45 9.63

10 6.90 5.86 7.58 8.90

20 3.42 3.18 4.41 7.15

never tested on its ability to detect known protein (let alone known DNA)

motifs 14). In any case, these results suggest that methods that integrate

avoidance-sequence information into target-motif search may be useful for

detecting weakly-conserved target motifs in the presence of strongly-conserved

non-target motifs.

4.3 Simulation Study #2

� Motivation Given that algorithms like that described in this paper are

preferable to naive algorithms, how many runs of our modi�ed Gibbs algorithm

are required to detect signi�cant numbers of target motifs in datasets that

contain multiple target motifs? This is worth knowing, as it will often be the

case that we won't know how many motifs are present and will need guidelines

on how many times we must run our algorithm in order to �nd a signi�cant

number of these motifs.

� Methods Each dataset consisted of ten motifs (�ve target) of length 20

which were embedded in 20 target sequences and 2 avoidance sequences of base

length 300 (which had post-embedding lengths of 500 and 400 respectively).

All motifs have a common speci�ed dispersion rate. Each trial consisted of

25 runs on a particular dataset. The modi�ed Gibbs algorithm was run for

100 trials on protein and DNA sequence datasets with ungapped and gapped

motifs generated relative to motif dispersion rates 0%, 10%, and 20%.

� Results and Discussion The results given in Table 3 show that, on

average, the modi�ed Gibbs algorithm recovers more than half of the target

motifs after only 10 runs and almost all of the target motifs after 25 runs under

all motif dispersion rates in the case of ungapped DNA and ungapped and
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Table 3: Simulation Study #2 Results.

Average #

Target Motifs Detected

% DNA Protein

Motif # Runs # Runs

Dispersion 5 10 25 5 10 25

Ungap 0 3.34 4.13 4.71 3.49 4.43 4.93

10 3.19 3.94 4.56 3.38 4.32 4.90

20 3.03 3.61 3.98 2.96 3.95 4.81

Gap 0 2.56 3.02 3.47 3.69 4.44 4.96

10 1.48 1.95 2.61 3.28 4.23 4.81

20 0.28 0.37 0.48 1.86 2.80 4.21

gapped protein motifs. The previously noted sensitivity of the algorithm when

confronted with gapped DNA motifs seems to be dramatically exacerbated by

having multiple motifs present.

4.4 Experiments on Real Data

� Motivation The previous results in this section suggest that the modi�ed

Gibbs algorithm is good at identifying target motifs in simulated datasets under

a variety of conditions. However, the dataset simulator is admittedly simplistic

and the produced datasets probably do not exhibit crucial characteristics of real

sequences and motifs. How well does our modi�ed Gibbs algorithm perform on

real datasets? Moreover, what characteristics of these datasets are correlated

with (and thus may be useful in explaining) this performance?

� Methods We were unable to �nd natural examples of target

motif sequence datasets; b hence, we constructed target motif datasets from

published protein sequence alignments for the acetyltransferases,10 cyclins,12

protein kinases,3;9 lipocalins,6 and cytosine methyltransferases.13 Each align-

ment contained multiple highly-conserved ungapped regions and a subset of

these regions were designated as ungapped motifs. Each of these datasets

was transformed into a set of two or more target motif datasets like that in

simulation study #1 by selecting one of the motifs, selecting a subset of the

given sequences to be avoidance sequences and then randomly permuting the

bThough a dataset being used in pharmaceutical research was made available to us, the

associated target motifs could not be revealed due to con�dentiality agreements.
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Table 4: Real Data Results: Motif Detection. The annotation (jT j; LT ; jAj;LA) gives the
number of and average length of the target and avoidance sequences in each dataset.

Dataset Motif Motif Average # Runs

Code Length Motif Detected

Acetyl. A 23 0.08

(6,173;3,184) B 18 0.00

I 35 8.96

Cyclin II 16 6.44

(8,200;2,193) III 26 8.00

IV 21 0.00

I 10 0.16

Kinase IV 20 8.06

(10,274;2,276) VI 10 1.20

VII 10 3.70

Lipocalin A 16 5.54

(4,185;1,180) B 16 2.82

I 20 0.42

Methyl. IV 24 8.26

(4,379;1,477) VI 20 3.78

VIII 20 5.26

amino acids comprising all occurrences of the selected motif in all of the avoid-

ance sequences; this e�ectively \erased" occurrences of the selected motif in

the avoidance sequences and rendered it a target motif. These constructed

datasets were run against the modi�ed Gibbs algorithm as in simulation study

#1, with each dataset being run for 50 trials.

Each motif in the datasets constructed above was characterized in terms

of its length and the following additional quantities:

1. Degree of Motif Conservation: The relative entropy measure was used to

compute the conservation of the overall symbol-distribution in the motif

relative to the background sequence symbol-distribution (Ovr) and the

average conservation (over all motif-positions) of the symbol-distribution

for each position of the motif relative to the background sequence symbol-

distribution (Avg).

2. Degree of Target-Sequence Interference: Unlike the simulated datasets

examined in previous sections, real datasets may have multiple partially-

conserved copies of a particular motif in each sequence. Call these
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partially-conserved copies ghosts. Given that our criterion of motif-

detection measures overlap of a candidate target-motif with only one of

these copies in each target sequence and the stochastic nature of our al-

gorithm makes it possible that our algorithm may accidentally lock onto

suÆciently-conserved ghosts in various target sequences, the presence of

suÆciently-conserved ghosts in a suÆcient number of target sequences

may force the detection criterion to reject what is otherwise (purely

in terms of sequence-pattern) the correct target motif. We computed

two measures of the similarity of ghosts in the avoidance sequences to

known motifs, DTMGL(m) = (
PN

i=1W � maxs2s(Ti);s6=mi
d(mi; s))=N

and DTMGG(m) = (
PN

i=1 d(c;mi) �maxs2s(Ti);s6=mi
d(c; s))=N , where

m is the motif, c is the consensus string associated with m, mi is the

occurrence of m in the ith target sequence, d(x; y) is the Hamming sim-
ilarity of strings x and y, W is the length of m, and s(Ti) is the set

of all substrings of length W in the ith target sequence. Intuitively, the

former measures the average similarity of ghosts to known occurrences of

motifs within individual sequences, while the latter measures the average

di�erence between both known occurrences of motifs and ghosts within

a selected sequence and a motif-model based on the remaining sequences

(and hence assesses, in a sense, how likely it is that a number of ghosts

may be accidentally chosen as motif-instances by our algorithm).

3. Degree of Avoidance-Sequence Interference: Ghosts may also occur in

avoidance sequences, and the presence of a single suÆciently-conserved

ghost in any avoidance sequence may cause the postprocessing loop to

reject what is otherwise the correct target motif. We computed a measure

of the similarity of ghosts in the avoidance sequences to known motifs,

DAMG(m) = (
PN

i=1 d(c;mi)�maxs2s(Ai) d(c; s))=N , where s(Ai) is the
set of all substrings of length W in the ith avoidance sequence.

The values of these quantities for each motif were subsequently correlated with

the detectability of each motif using Pearson correlation coeÆcients,8 whose

values range from �1 (strong negative correlation) to 0 (no correlation) to 1

(strong positive correlation).

� Results and Discussion The raw detectability results in Table 4 show

that the modi�ed Gibbs algorithm detects two-thirds of the target motifs some

of the time and half of the motifs most of the time. This performance is ade-

quate but not as good as that reported for the simulation studies in previous

sections. The results in Table 5 (Column \All") suggest that the most im-

portant factors in explaining this discrepancy are motif length and the close-

ness of target sequence ghosts. As the interference caused by target ghosts
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Table 5: Real Data Results: Motif Detection / Characteristic Correlations. The probabil-

ity � that each correlation coeÆcient is not signi�cantly di�erent from a hypothesis of no

correlation was calculated using the t-test described on pages 250 and 251 of May et al. 8

These probabilities are represented by starred annotation as follows: **** ! � = 0:05, ***
! � = 0:1, ** ! � = 0:2, and * ! � = 0:5. See main text for explanation of terms.

Motif Correlation With Motif Detectability

Characteristic All Partial

Motif Length 0.5061 **** 0.4166 *

Motif Ovr -0.4231 ** -0.5047 **

Conservation Avg 0.4581 *** 0.1366

Target DTMGL 0.5301 **** 0.6307 ****

Ghosts DTMGG 0.6642 ****** 0.4646 **

Avoidance Ghosts -0.3128 * 0.0873

may be masking the e�ects of other factors, we removed the data for the �ve

motifs with the closest target ghosts and recomputed the correlation coeÆcients

(Table 5, Column \Partial"). This caused a reduction in the signi�cance of

many previous correlations, though correlations with target sequence ghosts

remain strong. More motifs cannot be removed from a dataset this small to

explore the e�ects of other factors without rendering the derived correlation

coeÆcients indistinguishable from the e�ects of sampling error. Hence, future

research should look at redoing the experiments described in this section with

more real datasets.

4.5 Integrating Symbol Similarity Information

Amino-acid similarity matrices and, to a lesser extent, nucleotide mutation

models have been used pro�tably in many sequence alignment and pattern

construction algorithms.2 Can such information be used to improve target

motif detection? It is not obvious how such information can be integrated

into either the Lawrence et al 6 or Rocke and Tompa algorithms. The solu-

tion adopted here is to partition the amino acids into 7 biochemically-based

classes (namely, fA; I; L;M; F;W; V; Y g (hydrophobic), fS; T;N;Qg (polar but
uncharged), fK;R;Hg (positively charged), fE;Dg (negatively charged), and

fCg, fGg, and fPg) such that protein sequences are mapped into sequences

over a 7-symbol alphabet prior to motif search. We ran a simulation study to

compare the performance of our modi�ed Gibbs algorithm in unmapped and

mapped mode relative to mapped-biased sequence datasets, and we also re-ran

the real data experiments relative to mapped mode. Details will be given in the

Pacific Symposium on Biocomputing 5:389-400 (2000) 



journal version of this paper.15 For now, we can say that mapped mode boosts

performance dramatically for certain real datasets, e.g., Acetyltransferase A

was detectable in 6.32 runs under mapped mode, and the decreased perfor-

mance of mapped mode for gapped motifs in the simulation study supports

our algorithm's conjectured sensitivity to sequence-alphabet size.

5 Concluding Remarks

Given the sensitivity of our modi�ed Gibbs algorithm to target sequence ghosts,

future research should focus on applying the modi�cations described in

Section 3 to more complex Gibbs-based motif identi�cation algorithms that

allow multiple copies of a motif to occur in a sequence.7;11 One of the authors

(Trendall) has also used these modi�cations to implement a Hidden Markov

Model1 (HMM) algorithm for target motif identi�cation, and preliminary tests

relative to ungapped motif DNA sequence datasets have shown that this algo-

rithm has performance comparable to the modi�ed Gibbs algorithm. Future

work should test this modi�ed HMM algorithm against other simulated and

real datasets and compare the derived results with those reported here.
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