
ANN-SPEC: A METHOD FOR DISCOVERING

TRANSCRIPTION FACTOR BINDING SITES WITH

IMPROVED SPECIFICITY

C.T. WORKMAN

Center for Biological Sequence Analysis,

The Technical University of Denmark

DK-2800 Lyngby, Denmark

G.D. STORMO

Department of Genetics

Washington University School of Medicine

St Louis, MO, 63110-8232 USA

This work describesANN-Spec, a machine learning algorithmand its application to
discovering un-gapped patterns in DNA sequence. The approach makes use of an

Arti�cialNeuralNetwork and a Gibbs sampling method to de�ne the Speci�city
of a DNA-binding protein. ANN-Spec searches for the parameters of a simple
network (or weight matrix) that will maximize the speci�city for binding sequences

of a positive set compared to a background sequence set. Binding sites in the
positive data set are found with the resultingweight matrix and these sites are then

used to de�ne a local multiple sequence alignment. Training complexity is O(lN)
where l is the width of the pattern and N is the size of the positive training data.

A quantitative comparison of ANN-Spec and a few related programs is presented.
The comparison shows that ANN-Spec �nds patterns of higher speci�city when

trainingwith a backgrounddata set. The programand documentationare available
from the authors for UNIX systems. Contact: workman@cbs.dtu.dk

1 Introduction

Pattern discovery remains an active area of research in computational biology.

The importance of biological information in primary sequence data is widely

recognized but �nding this information is di�cult. Much of the information

inferred from sequence data has come from sequence motif or homology studies

using various alignment based methods. Most often a multiple sequence align-

ment is desired but �nding the optimal multiple sequence alignment is hard.

For general alignment cost functions, this problem is known to be NP-complete.

ANN-Spec indirectly learns an un-gapped local multiple sequence alignment

by a method related to Expectation-Maximization (EM). In this method, sam-

pled alignments are used to �t a set of weights and the best weights are used to

de�ne an alignment. The work presented here is an extension of the alignment

method presented in1 and is closely related to the Gibbs sampling method of2

3. An early version of this program was tested on short E. coli promoters (100-
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200 bps) and employed simple background sequence models, including Markov

chains. The current implementation can use real background sequences which

allows the method to �nd patterns of greater discriminatory capability when

compared to the original version and other current methods.

1.1 Transcriptional Regulation

Much of gene expression is controlled at the transcriptional level by systems

of transcription factors and regulatory proteins. These factors bind DNA se-

quence elements proximal to the transcription initiation site and modulate

the expression of that gene. Discovering conserved patterns in promoter re-

gions can correspond to known and possibly undiscovered regulatory factors

and may implicate mechanisms of co-regulation. Given a set of promoter se-

quences each known to contain a common binding site, we wish to �nd both

the binding sites and a model for the proteins binding speci�city. Transcription

factor proteins exhibit a range of speci�cities. Some bind a small number of

highly conserved sequences but most bind a large variety of partially conserved

sequences. Highly conserved motifs can be found by word frequency analysis45

6 while weakly conserved motifs are often impossible for these methods to �nd
7. The approach presented here is designed to �nd weakly conserved signals

as well as the highly conserved ones.

New mRNA expression analysis techniques implicate sets of coregulated

genes with little to no information about regulatory mechanism. Methods for

discovering functional sequence elements could greatly expedite experimental

identi�cation of new regulatory genes. A few methods exist for sequence ele-

ment discovery that are not based on word frequency analysis: MEME8, CON-

SENSUS 9 10 and Gibbs sampler 2. The objective functions for each method

are similar, maximizing likelihoods or likelihood-ratios, but the methods for

searching the space of possible alignments are very di�erent. CONSENSUS is

based on a greedy strategy that progressively adds sub-sequences to a set of

alignments where each iteration extends a bounded number of partial align-

ments. MEME is an EM method that considers all sites of the training data

simultaneously and over iterative training converges to a local maximum. The

Gibbs sampler is a stochastic variant of the EM method. In this method a

single sequence contributes a site to the alignment based on a weighted sam-

pling procedure relying on site scores from the alignment of the previous iter-

ation. Again �nal results are obtained through iterative training. In this work

we compare the performance of ANN-Spec to CONSENSUS, MEME and the

Gibbs sampler on simulated data sets.
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2 Algorithm

2.1 Statment of the Problem

Given a positive sequence set, S, and a background sequence set, G, possibly
representing the genome, we wish to �nd the model parameters that describe

a DNA-binding protein with highest speci�city and sensitivity for S. The

objective is to maximize the probability that each of the n sequence regions of

S are bound by the protein.

2.2 Simple Neural Network

The neural network used in this approach is a sparsely encoded perceptron

with one processing unit. Since there is a perceptron weight for each di�erent

nucleotide at each position in the pattern, a single linear perceptron has a set

of weights, 
, with the well recognized representation of a weight matrix 11 12.

A linear model, like a perceptron or weight matrix, has been found to be a

good model for the binding energy of DNA-binding proteins13 14 15 . For these

proteins, the total binding energy is well approximated by the sum of partial

binding energies at each nucleotide of the binding site. The perceptron or

weight matrix de�nes a score related to the binding energy at each nucleotide

in the pattern. The perceptron �rst calculates the linear sum of weights times

their input values by the simple function hj = H(
; Xj);

hj =

l�1X
k=0

jBjX
b=1

!k;bxj+k;b + � (1)

where j speci�es the o�set into a sequence, and k ranges over the l positions

in the pattern. Index b ranges over the alphabet (jBj = 4 for DNA) and both

j + k; b index the pattern matrix Xj (xk;b 2 f0; 1g). The bias term �, can be

shown to contribute a constant factor to the �nal network output and can be

set to zero without loss of generality.

2.3 Perceptrons estimate posterior probabilities

Perceptrons are linear discriminant functions which can be used to estimate

posterior probability distributions. We assume the Maximum Entropy (Max-

Ent) distribution for the most likely distribution for interacting molecules with

energies E�. MaxEnt a de�nes a relationship between the binding probability

and exp(�E�). If we use the linear output of the perceptron to approximate

aMaxEnt is also known as the Maxwell-Boltzmann distribution.
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Figure 1: Schematic representation of the DNA perceptron. Input is sparsely encoded giving

4 input nodes per pattern position. The weights of the perceptron de�ne a weight matrix.

�E� then exp(h�) can be used to estimate the MaxEnt distribution. Classi�-

cation of the binding site can be viewed as a two class problem; at any given

time a particular sub-sequence or word, S�, is either bound or not bound.

Given any l long sequence S� presented to the perceptron as a binary ma-

trix X�, model parameters 
 and binding classes C 2 f0; 1g, the perceptron

estimates P (C = 1jS�;
).

By Bayes' theorem and the MaxEnt distribution we get the conditional

probability for a binding site as

P (S�jC = 1;
) =
P (S�)P (C = 1jS�;
)P
�
P (S�)P (C = 1jS�;
)

=
(g�)e

(�E�=KT )P
�
(g�)e(�E�=KT )

(2)

The degeneracy term g� is proportional to P (S�) the probability of observing

S�, which is independent of 
 (i.e. we assume P (S�j
) = P (S�)). Note that

S� may exist g� > 1 times in the genome. The likelihood that a particular in-

stance of S� is bound is given by P (S�jC = 1;
)=g� as each of the g� instances

are assumed to be equally likely. The binding probability at a particular site

S�;k is given by;

Pacific Symposium on Biocomputing 5:464-475 (2000) 



P (S�;kjC = 1;
) =
P (S�jC = 1;
)

g�
�

eh�P
�
(g�)eh�

=
eh�

Z
(3)

The partion function, Z, is the sum over all sites in the genome so � will range

over the observable l long sequences. Equation 3 is the probability for a single

binding site. We want to know the likelihood that one of our sequence regions

is bound. This is simply the union or sum of individual site probabilities over

the sequence region.

P (SijC = 1;
) �

Pmi

j=0 e
hi;j

Z
=
Qi

Z
(4)

Here i is an index of the positive sequence set, j ranges over the mi positions

in sequence region Si. An i; j pair speci�es a particular l long sequence and

its location in the genome (i.e. there exists a mapping f : S�;k ! Si;j). A

negative h will give exp(h) close to zero and only the sites that select positive

weights will give h > 0 and signi�cant perceptron outputs contributing to Q.

If we wish to maximize the sensitivity and speci�city of our parameters

for our positive sequences, then we should also maximize the probability all

n of our sequences are classi�ed as binding regions and classifying as few of

the background sequences possible. This is the same as maximizing the joint

probability over the n sequence regions assuming we have only n proteins.

P (SjC = n;
) �
Y
i

Qi

Z
(5)

Notice that we do not multiply by the product of (1�Qj=Z) over the negative

set. This allows the method to be rather insensitive to "false positives" during

training. Maximizing the product of likelihoods is the same as maximizing the

sum of log-likelihoods or the mean log-likelihood.

U =
1

n

X
i

ln

�
Qi

Z

�
= hln(Qi)i � ln(Z) (6)

2.4 Parameter Fitting

The goal of training is to �t the free parameters, 
, to the training data. In

supervised training, one would have data consisting of a set of positive patterns

(binding sites) and a set of negative patterns (non-binding sites). In our case,

only the binding and non-binding regions are known while the positions of

the sites are "missing data". As done in the EM algorithm, one option is to
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consider all sites of the positive data as potentially binding. This would be the

case here if we tried to optimize the objective function as described. For our

gradient descent the gradient is derived from a modi�ed version of Eq. 6.

First the weights are initialized to represent a randomly sampled site in

S. Alternatively, the weights may be initialized by a user-provided matrix.

At each training iteration, the perceptron scores all sites of S and uses the

exp(h) distribution for an individual sequence to Gibbs sample k sites. When

Gibbs sampling, if exp(hi;j)=Qi = 0:90 then site j has a 90% chance of being

sampled.

The gradient that is used is the derivative of the new objective U� calcu-

lated from the alignment sites A and a Q�
i
based only on the sites in A. This

gives the gradient a strong bias for the Gibbs sampled sites. As a result of the

frequent sub-optimal samplings, the perceptron is able to wander through the

di�erent patterns found in the positive sequences. Patterns that are conserved

in the positive sequences and have a low background frequency will be sampled

more often and be learned by the weights. The partition function estimates

the expected number of binding regions. When ln(Z) is much larger than n,

then the current pattern is expected to occur often in the background and

would result in poor binding speci�city. In this implementation, Z is either

estimated based on a sampling of G or calculated analytically assuming a ran-

dom background. When estimating Z, a �xed number of sites proportional

to the size of S are sampled at random. A new random sampling is done for

each training iteration. For each alignment and estimate of Z, a weight decay

is applied and the weights are moved a �xed step size in the direction of the

gradient. The weight change is speci�ed as;

�
 = �

�
@U�

@


�
� �
 (7)

where � is the learning rate or step size and � is the decay rate. Convergence

criteria are not practical due to the sampling procedure. Instead, a �xed

number of training iteration are performed and the best answer is reported

based on the objective in Eq. 6. The training performs an extensive search of

the parameter space, but probably only comes close to the true local optimum.

If desired one could start from the best answer and do a local search to re�ne

the parameters to that optimum.

The training time scales linearly with the input data N and more speci�-

cally by O(lN ) where N is the size of S. The most expensive steps, scoring the

positive set and estimating the partition function, are O(lN ) each. The analyt-

ical partition estimate is only O(ljBj) but this does not change the asymptotic

complexity. Typically, on the order of 103 iterations are performed per epoch
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and ten to a hundred epochs are recommended, for a total of � 105 iterations.

In practice the constants associated with training are signi�cant and fast pro-

cessor speeds and long runtimes may be required for thorough analysis.

3 Methods

3.1 Programs and Data

For the comparison the newest version of each program was obtained: version

6 of CONSENSUS, version 2.2.2 of MEME and an unreleased version 1.01.009

of Charles Lawrences' motif sampler (we will call Gibbs).

For a given number of sequences, n, and m = 500 nucleotides, ten di�erent

random data sets with the biased nucleotide priors of yeast (32% A T, 18% C

G) were generated. A simple random sequence generator was used which gave

"zero order" randomization b. In each data set, a site was implanted in each

sequence. Individual sites were variations of a common consensus sequence.

Each position of the aligned sites was assigned a random mutation probability

which caused some positions to be more conserved than others. The alignment

was mutated a �xed number of times based on a "mutation rate", r, where the

number of substitutions was de�ned as brnlc.

Substitution probabilities were de�ned by the nucleotide priors and reex-

ive substitutions were disallowed. Eight di�erent mutation rates were applied

to each of the ten di�erent alignments giving 80 alignments. The value of r

was varied from 0 to 0:4 to provide a range of pattern conservation from com-

pletely conserved to very noisy. The mutated instances of each alignment were

substituted into the sequence sets at random positions and orientations so that

each sequence was given an instance. Positive data sets were generated in this

way for n = (10; 20; 40; 80).

Background data were generated in two ways. The simplest was to create

random sequences with the same priors as the positive data sets. We also

wanted to test the ability of the program to identify patterns that occur only

in the positive data sets even when another common pattern exists in both the

positive and background sets. In that case we implanted an initial common

pattern in both positive and background sets, following the same procedure

as described above for the positive pattern. Therefore, the non-random back-

ground contains a strong bias for one motif but is otherwise random. The

common signal was not necessarily a low complexity pattern and could be dis-

criminatory if it were not present in all regions. A non-random background

data set consisting of 1000 sequences of 500 base pairs was generated. Positive

bThat is to say, no dinucleotide or higher order biases were imposed.
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data sets were then built from this non-random model that also contained a

second pattern with varying mutation rates as before. Care was taken that the

speci�c implant did not overlap the originally inserted pattern.

3.2 Training

Each algorithmwas run/trained assuming one occurrence per sequence: option

"-N" for CONSESNSUS, "-mod oops" for MEME, "site sampler" option for

Gibbs. The stochastic methods, ANN-Spec and Gibbs were run ten times for

each data set and the top ranked answer was selected. Deterministic methods,

CONSENSUS and MEME, were allowed to report ten results and the top

ranked (usually the �rst result) was taken. Since all methods report a di�erent

statistic, it was convenient to compare the information content (IC) 9 13 of the

resulting alignments. The information content calculation implicitly assumes a

random background sequence model and therefore is appropriate in this case.

The IC of each discovered n membered alignment can then be compared to

the IC of the alignment known to be contained in that data set. The �rst

phase of this comparison allows the methods to assume random background

sequence. This is the only current option for Gibbs and CONSENSUS but

ANN-Spec and MEME allow training with a background data set. A second

comparison was done on the simple non-random data sets for Gibbs, MEME,

and ANN-Spec allowing MEME and ANN-Spec to train with the non-random

background data. For each prediction from non-random data, all speci�cities,

sensitivities and correlation coe�cients were calculated. For example, given

one alignment matrix, all n values of speci�city and sensitivity were calculated

using n di�erent log-likelihood score thresholds to determine Tp; Tn; Fp; Fn

counts. We used a site score threshold for each Tp = (1::n) and assumed

(Tp [ Fn) 2 S and (Tn [ Fp) 2 G. Both IC and speci�city statistics were

needed to assess results on non-random data.

4 Results

4.1 Assuming a Random Background

For each data set size, the best 80 resulting alignments were analyzed for in-

formation content. Figure 2 compares the resulting IC from the predicted

alignment to the expected IC of the inserted alignment. Points below the di-

agonal line are runs �nding an alignment with less information than known

to exist. From this set of plots we see that ANN-Spec and Gibbs compare

well while CONSENSUS and MEME show a signi�cant number of failures.

Gibbs does perform slightly better than ANN-Spec and this may be due to
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Figure 2: Plots of the discovered information content (IC) versus the expected IC for each
method. Discovered ICs were calculated from the top ranking alignment predicted from each
data set. These plots show the correlation to the expected ICs calculated from the inserted

alignments. Each plot shows all data points for n = 10;20;40;80 sequences.

its ability to correct the pattern frame during training. By inspection it was

found that most of the high IC results falling just below the diagonal were

correctly predicted patterns in the wrong frame (i.e. plus or minus one nu-

cleotide position). ANN-Spec would require more training epochs to learn the

correct pattern frame in these cases. CONSENSUS often found a higher IC on

alignments with less than n sites. These results were forced to include the best

sites from the remaining sequences but this often reduced the IC signi�cantly.

Interestingly, results in the low IC range tend to drift above the diagonal due

to the low IC of the inserted pattern. In these cases the inserted pattern

contained less information than what could be found by random chance 16.
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Figure 3: Results obtained with the non-random background sequence data. The top two
plots show discovered IC versus the expected IC for the non-common pattern. Here ANN-
Spec (left) is shown to �nd less information than MEME when training with a non-random
background (the desired result). The bottom two plots show the maximum speci�city found
versus the maximum speci�city expected from the same alignment models. The MEME
results show that high IC does not necessarily correlate to high speci�city. Each non-random

positive data set contained 20 sequences.

4.2 Non-random Background

One of the goals of ANN-Spec is to �nd a discriminatory signal as well as one

with good information. Does ANN-Spec or MEME �nd better discriminatory

patterns with knowledge of the background? What if a pattern with a higher

speci�city has a lower information content? The non-random data sets were

designed to answer these questions. Predictions for the non-random data sets

were analyzed in the same way as the single implant results. The expected IC
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was taken from the second implant that was generated with varying mutation

rates. A comparison of ANN-Spec to MEME is presented in �gure 3. The

top two plots are like those of �gure 2. Recall that each alignment generated

up to n speci�cities one for each score threshold. The additional plots show

the correlation of the maximum speci�city from the predicted alignment to

the maximum speci�city of the varying information alignment known to exist.

The results for Gibbs were not found to be signi�cantly di�erent from those of

MEME and are not shown. It should be noted that this analysis was not fair

to Gibbs as it did not train against the background data. MEME appears to

always �nd the pattern with the most IC, even when that pattern is not speci�c

for the positive set of sequences. The sites implanted in both the positive and

background sets had an IC of about 10 (log base e "bits"), and was consistently

found unless the discriminatory pattern had a higher IC. But the speci�city of

that pattern is quite low because it occurs in both the positive and negative

sets. The two lower plots show that ANN-Spec, on the other hand, was able

to identify the discriminatory pattern consistently, even when it had lower IC

than the background pattern. Similar plots for maximumcorrelation coe�cient

show the same trend (data not shown). Because the objective function for

ANN-Spec is designed to �nd patterns that distinguish the positive set from

the background, it succeeds at identifying the desired patterns speci�c for the

positive set.

5 Discussion

A serious limitationof pattern �nding methods arises when low-complexitypat-

terns are present with a high frequency in the sequence data of interest. This

is the case in yeast promoter regions where ploy-A or poly-T are observed with

a higher frequency than would be expected from the nucleotide composition

alone. This means a conserved alignment of poly-A/poly-T can be found in

almost any large set of yeast promoters where each site may align equally well

in many frames. Methods that try to optimize IC alone and assume a random

background model will have di�culty �nding discriminatory patterns in biased

data like that of yeast. But almost all classes of biological sequence data are

known to be biased and not just by low complexity sequences. This work shows

that even a simple pattern bias and not necessarily a low-complexity bias is

enough force these methods into �nding low speci�city patterns.

In conclusion, Gibbs and ANN-Spec both work very well when the back-

ground is assumed to be random. ANN-Spec �nds patterns with higher speci-

�city and higher correlation coe�cients when provided with background se-

quences. These results complement previous results on real yeast promoters 7
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where the transcription factors were known and all yeast promoters were used

as background data.
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