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Markov-process models of codon substitution were implemented that account for features of
DNA sequence evolution (such as transition/transversion bias and codon usage bias) as well
as heterogeneity of amino acid substitution pattern over sites.  The codon (amino acid) sites
are assumed to come from several classes (such as secondary structure categories), among
which the rate of amino acid substitution and the effect of amino acid chemical properties
vary.  Parameters are estimated by the maximum likelihood method, which accounts for the
phylogenetic relationship among species and corrects for multiple hits at the same site.  The
likelihood ratio test is used to compare models.  Mitochondrial cytochrome b genes of 28
primate species are analyzed.  The site-heterogeneity models provide much better fit to
previous homogeneous models.

1  Introduction

There is an urgent need for combining phylogenetic analysis of protein or protein-
coding DNA sequences with protein secondary structure prediction.  The importance
of accounting for the phylogenetic relationship in structure prediction by sequence
comparison has been increasingly realized (Benner et al. 1994).  For example,
Goldman et al. (1996) and Thorne et al. (1996) used a hidden Markov chain
approach to structure prediction.  Amino acids in a protein are assumed to come
from several structural classes (such as α-helix, β-sheet, turn, and coil), and a
Markov chain is used to describe the transition over amino acid sites from one
structural class to another.  Those authors obtained relative amino acid substitution
rates in each structural category from databases, and do not estimate any parameters
specific to the protein being analyzed.  The fine-grade classification of sites into
secondary structural categories and the use of compiled substitution matrices may be
important to achieve a high accuracy in structure prediction (Goldman et al. 1998).
However, when we are interested in understanding the characteristics of the gene or
protein, it may be advantageous to estimate substitution parameters from the data
set.  The substitution pattern, even in the same structural category, may be different
among genes if the proteins perform different functions.
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Phylogeny-based evolutionary analysis has largely ignored the structural
differences of amino acid sites in the protein and concentrated on estimating the
average substitution rates between amino acids.  Early work includes the empirical
amino acid substitution matrix of Dayhoff et al. (1978) and its update by Jones et al.
(1992).  Recently, substitution matrices were estimated for specific proteins (such as
mitochondrial proteins) using more powerful likelihood methods (Adachi and
Hasegawa 1996; Yang et al., 1998).  Those analyses assume that the substitution
pattern is homogeneous among amino acid sites.

Several attempts have been made to account for the among-site heterogeneity.
For example, Yang (1994, 1995) and Felsenstein and Churchill (1996) developed
models of variable substitution rates among amino acid sites.  Those models account
for the existence of fast and slow sites in the protein, but the relative substitution
rates between amino acids are assume to be the same at all sites.  Bruno (1996)
suggested a model that allows each amino acid site in a protein to have a different
and yet strong preference for a particular amino acid.  Koshi et al. (1999) developed
heterogeneous amino acid substitution models, in which amino acid sites come in
several classes, and amino acid chemical properties affect their substitution rates in
different ways among the classes.  Those models ignore the mutational distance
between amino acids determined by the genetic code, and the estimation procedure
used needs justification as well.

Models of codon substitution make it possible to separate mutational biases in
the DNA from selective constraints on the protein, and offer a great advantage over
amino acid models for understanding the evolutionary process of proteins and
protein-coding DNA sequences.  An important biological parameter in codon-based
analysis is the nonsynonymous/synonymous substitution rate ratio (ω = dN/dS), also
known as the acceptance rate by Miyata et al. (1979).  This parameter measures the
selective constraint in the protein.  Simply, a nonsynonymous mutation is neutral if
ω = 1, advantageous if ω > 1, or deleterious if ω < 1.  A low substitution rate
between two amino acids can either be due to a large mutational distance between
the two amino acids or a small acceptance rate, which may be caused by a large
physico-chemical distance.  Chemical properties of amino acids should be used to
modify acceptance rates and not amino acid substitution rates.  Yang et al. (1998)
described an approach to constructing an amino acid substitution model from a
codon substitution model, and examined the relationship between amino acid
chemical properties and acceptance rates.  That relationship was also examined by
Xia and Li (1998), who reconstructed ancestral DNA sequences to count changes
along the phylogeny.  Both studies confirmed early suggestions (e.g., Zuckerkandl
and Pauling 1965) that similar amino acids tend to replace each other more often
than dissimilar ones.  The relationship between the chemical distance and the
acceptance rate is not simple, however, and one reason suggested was the
dependence of acceptance rate on the structural context of the protein.  Nielsen and
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Yang (1998) constructed likelihood models that allow the ω ratio to vary among
sites.

In this paper, the acceptance rate ω is assumed to be influenced by the chemical
properties of the amino acids interchanged, and the effect of the chemical properties
is assumed to differ among site classes.  The model extends previous codon-
substitution models of Goldman and Yang (1994), Yang et al. (1998), and Nielsen
and Yang (1998).  It also appears more plausible biologically than the amino acid
substitution models of Bruno (1996) and Koshi et al. (1999).  The codon-based
model accounts for features of nucleotide substitution such as transition/transversion
rate bias and codon usage bias.  It also takes into account biological processes such
as translation of the DNA into protein according to the genetic code and acceptance
or rejection of the resulting amino acid under selective constraints on the protein.
The estimation is achieved using maximum likelihood (ML), which naturally
accounts for the phylogenetic relationship and corrects for multiple hits at the same
site.  A data set of mitochondrial cytochrome b genes from 28 primate species is
analyzed to compare different models.

2  Theory

2.1  Markov Model of Codon Substitution

A simple codon substitution model is described first with further complications
introduced later.  The basic model specifies instantaneous substitution rate from
codon u to codon v as











=

n, transitioousnonsynonym aby differ   and  if,
ion, transversousnonsynonym aby differ   and  if,

n, transitiosynonymous aby differ   and  if,
ion, transverssynonymous aby differ   and  if,

positions,codon  or three at twodiffer   and  if ,0

vu
vu
vu
vu
vu

q

v

v

v

v

uv

ωκπ
ωπ
κπ
π (1)

(Goldman and Yang 1994).  Parameter κ is the transition/transversion rate ratio,
with κ = 1 meaning no transition bias. The equilibrium frequency of codon v (πv) are
calculated using the nucleotide frequencies at the three codon positions, with 9 [= 3
× (4 – 1)] free parameters used.

The model specified by equation 1 assumes that different nonsynonymous
mutations are fixed at the same rate and ignores the fact that some amino acids are
similar in chemical properties so that changes between them are less disruptive to
the structure and function of the protein than changes between dissimilar amino
acids.  Empirical observations suggest that amino acids with similar properties tend
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to exchange more often than dissimilar amino acids (e.g., Zuckerkandl and Pauling
1965).  Thus, ω in equation 1 is replaced by ωij, where i = aau and j = aav are the two
amino acids involved.  To account for the dependence of the acceptance rate on the
chemical distance, a geometric relationship is used:

ωij = a exp{– b dij/dmax},   a ≥ 0. (2)

Yang et al. (1998) found that the distance of Miyata et al. (1979) provides the best
fit to data among several distances examined.  This distance measure is used in this
paper, which is based on two chemical properties, polarity (p) and volume (v):

dij = 2222 )()( vjipji vvpp ∆∆ −+− σσ , (3)

where σ∆p and σ∆v are the standard deviations of |pi – pj| and |vi – vj|, respectively.
The distance ranges from 0.06 for Pro – Ala to 5.13 for Gly – Trp.

We assume that amino acids come in several categories, among which the
substitution pattern reflected in parameters a and b of equation 2 is different.  One
motivation for such models is the existence of secondary structure categories in the
protein.  Suppose that there are K site classes.  Parameters in the model will include
the proportions (subject to the constraint that the sum is one) and parameters a and b
in equation 2 for each site class:

Category 1 2 … K

Proportion p1 p2 … pK

Parameters a1, b1 a2, b2 … aK, bK

Use of more categories will increase the fit of the model, but the data may not
contain much information to allow estimation of many parameters.  So only a few
categories may be used in practice.

Another model used for comparison in this paper ignores the chemical distances
between amino acids but assume that the ω ratio varies among amino acid sites
(Nielsen and Yang 1998).  The model parameters are

Category 1 2 … K

Proportion p1 p2 … pK

Parameters ω1 ω2 … ωK

2.2 Maximum Likelihood Calculation on a Phylogeny

Given the substitution rate matrix Q = {quv}, the matrix of transition probabilities
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over time t can be calculated as P(t) = {puv(t)} = eQt, where puv(t) is the probability
that codon u changes into v after time t.  Time or branch length t is measured by the
expected number of nucleotide substitutions per codon, averaged over the site
classes.  Note that the probability that codon u changes into codon v over any time
interval t is positive; that is, puv(t) > 0 for any t > 0, even if the two codons are
separated by two or three differences.  A standard numerical algorithm is used to
calculate the eigenvalues and eigenvectors of Q to calculate P(t).  Likelihood
calculation under the heterogeneous models is described by Nielsen and Yang
(1998).  Let n be the number of sites (codons) in the sequence and the data at site h
be xh (h = 1, 2, ..., n); xh is a vector of codons from different sequences at that codon
site.  Let yh denote the class that site h belongs to; yh takes a value from 1, 2, ..., K.
The conditional probability, f(xh|yh), of the data at site h given that site h is from class
yh, can be calculated for a given phylogenetic tree and branch lengths using
Felsenstein’s (1981) pruning algorithm (see also Goldman and Yang 1994; Muse
and Gaut 1994).  We assume that each site belongs to one of the K classes, but no
information is available about which class each site is from.  The probability of the
data at the site is then an average of the conditional probability over the distribution
of yh.

f(xh) = ∑
=

K

y
hhk

h

yxfp
1

)|( .
(4)

The log likelihood is a sum over all n sites in the sequence
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We assume independence of the substitution process among codon (amino acid)
sites, although Markov dependence can easily be introduced through a hidden
Markov chain model (see, e.g., Yang 1995; Felsenstein and Churchill 1996;
Goldman et al. 1996).  A numerical optimization algorithm is used to obtain ML
estimates of parameters.

After parameter estimates are obtained, an empirical Bayes approach can be
used to infer which class the site most likely belongs to.  The posterior probability
that a site with data xh is from site class k  is

Π(yh = k | xh) = 
∑ =

=

=
=

=
K

j hhj

hhk

h

hhk

jyxfp

kyxfp

xf

kyxfp

1
)|(

)|(

)(

)|( (6)

The class k that maximizes the posterior probability is the most likely class for the
site.  The posterior probability provides a measure of accuracy for that inference.
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Fig. 1.  The phylogenetic tree of the 28 primate species analyzed in this paper.
Branch lengths, measured by the number of nucleotide substitutions per codon, are
estimated by ML under the model of equation 1 (Goldman and Yang 1994).

3  Application to Mitochondrial Cytochrome b Genes of Primates

3.1 Sequence Data

The data are mitochondrial cytochrome b genes from 28 species of primates.  The
species include 15 Lemuriformes: Lemur catta (GenBank accession number
U53575), Hapalemur griseus (U53574), Eulemur fulvus collaris (U53576), Eulemur
fulvus rufus (U53577), Eulemur fulvus albifrons (AF081048), Eulemur macaco
macaco (AF081049), Eulemur macaco flavifrons (AF081050), Eulemur mongoz
(AF081051), Eulemur rubriventer (AF081052), Varecia variegata rubra (U53578),
Cheirogaleus major (U53570), Mirza coquereli (U53571), Microcebus murinus
(U53572), Propithecus tattersalli (U53573), and Daubentonia madagascariensis
(U53569); 3 Lorisiformes: Galago crassicaudatus (U53579), Loris tardigradus
(U53581), and Nycticebus coucang (U53580); and 10 Anthropoidea: Saimiri
sciureus (U53582), Colobus guereza (U38264), Macaca mulatta (U38272),
Hylobates agilis (U38263),  Pongo pygmaeus (U38274), Pongo pygmaeus
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(D38115), Pan paniscus (D38116), Pan troglodytes (D38113), Gorilla gorilla
(D38114), Homo sapiens (J01415).  The alignment is from Yang and Yoder (1999).
Two codons involve undetermined nucleotides and are removed, with 377 codons
(1131 nucleotides) in the sequence.  The phylogeny of those species is largely
resolved, and one of the most likely phylogenies is shown in figure 1.  Some
analyses were performed using several candidate tree topologies, and the parameter
estimates are virtually identical; results obtained from using the tree of figure 1 only
are presented in this paper.

3.2 Comparison of Models and Estimation of Parameters

Some parameters are common to all models considered in this paper, which are
estimated for each model but are not presented.  These include 53 branch lengths in
the tree (figure 1), which are estimated by ML, and the base frequency parameters at
the three codon positions (9 free parameters), which are estimated by the observed
frequencies.  All models also involve the transition/transversion rate ratio parameter
κ.
     The site-homogeneous model of Goldman and Yang (1994), specified by
equation 1, is applied to the data set (table 1). The log-likelihood value under this

model is –12285.15.  The estimate ω = 0.041 suggests that on average,
nonsynonymous mutations are fixed at a rate only 4% that of the synonymous
mutations, indicating that cytochrome b is a highly conserved protein.  Results

obtained under models of variable ω ratios among sites (Nielsen and Yang 1998) are

listed in table 1.  These are the Ak models (table 1), where k is the number of site

classes in the model.  Allowing for heterogeneous ω ratios among (codon) sites
increases the model’s fit greatly.  For example, the model with two site classes (A2)
involves only two more parameters than the homogeneous model with one site class

(Model A1), but the log-likelihood difference is ∆l = (−11892.55) – (−12285.15) =

392.60.  This is much greater than 2
%12

1 χ = 4.65.  There is no doubt that the selective

constraint reflected in the ω ratio differs among sites.  The estimates under model

A2 suggests that a large proportion of sites (>70%) are highly conserved with ω =

0.007, while the remaining sites are moderately conserved (ω = 0.137).  The gain in
log likelihood upon adding more site classes quickly becomes small.  The difference
between model A4 (4 site classes) and model A3 (3 site classes) is marginally

significant, with the log-likelihood difference ∆l = 3.44.
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Table 1. Models of variable acceptance rates (ω = dN/dS) among sites

Model l κ Parameters for site classes dN/dS S

A1 −12285.15 6.51 ω = 0.041 0.041 19.3

A2 −11892.55 6.83 p:  0.731  0.269
ω:  0.007  0.137

0.042 20.4

A3 −11849.46 7.17 p:  0.618  0.262  0.119
ω:  0.003  0.058  0.225

0.044 21.4

A4 −11846.02 7.20 p: 0.584 0.243 0.121 0.052
ω: 0.002 0.043 0.138 0.306

0.044 21.5

Note. Tree length (S) is the expected number of nucleotide substitutions per codon along the tree.

Table 2. Models incorporating amino acid chemical properties

Model l κ Parameters for site classes dN/dS S

B1 –12200.51 7.07 a: 0.086 b: 2.832 0.042 20.0

B2 −11805.70 7.76 p: 0.752 0.248

a: 0.036 0.277

b: 6.462 2.498

0.042 21.9

B3 −11758.40 8.19 p: 0.607 0.277 0.116

a: 0.011 0.172 0.382

b: 5.612 4.646 1.970

0.044 23.0

B4 −11747.95 8.50 p: 0.102 0.248 0.548 0.103

a: 0.817 0.169 0.007 0.417

b: 31.105 3.982 3.871 2.086

0.043 23.5

Note. Tree length (S) is the expected number of nucleotide substitutions per codon along the tree.

Likelihood values and ML parameter estimates obtained under models
accounting for amino acid chemical properties are listed in table 2.  Those are the Bk
models (table 2), where k is the number of site classes.  Parameters a and b are
defined in equation 2.  Models A1 and B1 are both homogeneous models (with one
site class), but model B1 uses amino acid distances of Miyata et al. (1979) to modify
the acceptance rate ω.  The log-likelihood difference between the two models is ∆l =
84.64, and model B1 is significantly better than A1.  Use of amino acid chemical
properties improves the fit of the model significantly, and the acceptance rate is
negatively correlated with the chemical distance.

Comparison of models of table 2 again indicates a huge amount of among-site
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heterogeneity.  For example, model B2 (with 2 classes) involves two more
parameters than the homogeneous model B1 (with 1 site class). The log-likelihood
difference, ∆l = 394.81, is extremely significant (compared with a χ2 distribution
with d.f. = 2).  Similar to results of table 1, the gain upon adding more site classes
becomes minor.  The fit of the model measured by the log-likelihood value is plotted
in figure 2 as a function of the model complexity (the number of parameters in the
model).  Model B4 with 4 site classes fits the data significantly better than model 3B
with 3 site classes, but the log-likelihood difference (∆l = 10.45) is not very large.

The tree length, that is, the sum of branch lengths, measured by the total number
of nucleotide substitutions per codon along the phylogenetic tree, is greater for more
complex models than for simple models.  This pattern is the same as observed in
nucleotide-based analysis, since simple models do not correct for multiple hits
properly and tend to underestimate branch lengths.  For similar reasons, simple
models also tend to produce smaller estimates of the transition/transversion rate ratio
κ.  However, the differences in those estimates are small, probably because
nonsynonymous rates are quite low in the data.  For other data sets with higher
nonsynonymous divergences, the differences among models may be much larger.

Fig. 2.  The fit of the model as a function of the complexity of the model

3.3 Inference of Site Classes

Equation 6 is used to calculate the posterior probabilities of site classes for each site
in the protein under the model of four site classes (see model B4 in table 2).  The

functional relationships between d and ω are shown in figure 3 for the four site

classes C1, C2, C3, and C4.  Class C1 includes highly conserved sites with ω close to 0,
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while class C4 includes more variable sites, at which nonsynonymous mutations are
tolerated more frequently (see model B4 in table 2).  Posterior probabilities for the
first 100 sites are plotted in figure 4.
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Fig. 3.  The four functional relationships estimated from the data (from bottom to top: C1, C2, C3, C4)
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Fig. 4. Posterior probabilities for site classes for the first 100 sites in the protein.  The first two of the

eight transmembrame regions are indicted by bars.

Discussions

Both biological considerations and the analysis of the cytochrome b data sets suggest
the importance of the heterogeneity of amino acid substitution patterns among sites.
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The likelihood improvement when site heterogeneity is introduced into the model is
tremendous.  However, the relationship between amino acid chemical properties and
the acceptance rates may not be so simple (Yang et al. 1998).  For example, the size
of an amino acid may be more important if the amino acid is buried inside than if it
is exposed.  Use of a common distance formula of Miyata et al. (1979) for all site
classes does not catch this complexity of the substitution process.  It may be more
realistic to consider individual properties in each site class.
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