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Lateral clustering has emerged as a general mechanism used by many cellular

receptors to control their responses to critical changes in the external environment.
Here we derive a general mathematical framework to characterize the e�ect of

receptor clustering on the sensitivity and dynamic range of biochemical signaling.
In particular, we apply the theory to the bacterial chemosensory system and show

that it can integratea large body of experimentalobservationsand providea uni�ed
explanation to many aspects of chemotaxis. The principles of dynamic receptor

clustering and signal ampli�cation incorporated into this theory may underlie the
design of many cellular networks.

1 Introduction

The swimming behavior of the bacterium Escherichia coli is determined by the
rotation of its 
agella.1 When the 
agella rotate in a counterclockwise (CCW)
direction, the bacterial cell swims straight ahead; when the 
agella rotate in
a clockwise direction (CW), the cell tumbles. An E. coli cell is equipped with
a family of transmembrane receptors 2 that can sense a variety of chemical
stimuli. These proteins are part of a signal transducing system 3 that the cell
uses to compare the current level of a speci�c ligand with the concentration
experienced in the recent past and to adjust swimmingbehavior appropriately.4

Signal transduction in bacterial chemotaxis involves two highly integrated
processes, excitation and adaptation (for a recent review see Ref. 5). The
excitation process is initiated by a change in the state of ligand occupancy of
chemoreceptor. Such a change generates a signal that is transmitted to the cy-
toplasmic portion of the receptor and modulates the autophosphorylation and
phosphoryltransfer activity of the receptor-bound histidine kinase CheA. CheA
activation increases the cellular content of the phosphorylated response regula-
tor CheY (phospho-CheY) which interacts with switch proteins in the 
agellar
motors to induce CW rotation (CCW being the default state in the absence
of phospho-CheY). The binding of attractant or repellent to the chemorecep-
tor downregulates or upregulates the activity of CheA to increase the relative
duration of runs or tumbles, respectively.

Following a transient alteration in tumbling frequency, a bacterial cell re-
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gains sensitivity to further changes in ligand concentration through an adapta-
tion process. The cytoplasmic domain of each chemoreceptor possesses multi-
ple glutamate residues that are subject to reversible methylation. Methylation
increases the kinase activation signal of the receptor. Adaptation is a result
of the kinetic competition between the activities of methyltransferase CheR
and methylesterase CheB; the latter is active in its phosphorylated form and
is also a substrate for phosphoryltranfer from CheA. By regulating the activity
of CheA, and in turn CheB, the chemoreceptors are able to control their own
methylation level, and thereby attenuates the initial response to a stimulus
and returns the motor rotational bias to prestimulus level.

The bacterial chemosensory system has become one of the leading paradigms
for receptor-regulated phosphorylation pathways.5 Detailed molecular descrip-
tions of essentially all pathway components have now been obtained, and many
of the enzymatic reactions involved have been analyzed.6 Despite this progress,
the molecular mechanism controlling a key aspect of bacterial chemotaxis re-
mains unknown. The chemosensory system is exquisite in its sensitivity: in
the case of taxis towards aspartate, a change in receptor occupancy of as lit-
tle as 0:2� 0:3% can trigger a detectable motor response. 4;7 Moreover, an E.

coli cell remains sensitive at attractant concentrations two orders of magnitude
higher than the dissociation constant. 8 This combination of high sensitivity
and extraordinary dynamic range calls for a reexamination of the assumption
that chemoreceptors function as isolated dimers, 9 since the response control
at the 
agellar motor alone exhibits only limited cooperativity.10;11 Increasing
evidence suggests that communications between receptor dimers might play an
important role in the proper functioning of the signaling network. In fact, a
large number of chemoreceptors in E. coli are co-localized with kinase CheA
and adapter protein CheW in complexes or patches at the poles of the cell. 12

It has been shown that CheR bound to one receptor dimer catalyzes methy-
lation of another receptor dimer. 13;14 The reports that signaling can occur
through receptor dimers that have been genetically engineered so that one
monomer lacks a signaling domain 15;16 are also suggestive of receptor interac-
tions extending beyond the dimeric state. Recently, the oligomerization of the
cytoplasmic domains of chemoreceptors has been characterized by in vitro ex-
periments. Oligomerized complexes were found to be better folded17 and more
e�ective in stimulating CheA activity than the homodimers.18;19;20 Based on
these �ndings, it has been proposed that a signal generated at a single receptor
dimer may perturb the lateral packing within an array of closely positioned
receptor signaling domains,20 thereby inducing an ampli�ed response.

Here we show that activity spread within receptor clusters could quantita-
tively account for the observed sensitivity and dynamic range of the chemotac-
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tic response, assuming 1) that attractant-bound receptors can inactivate other
receptors of the same cluster and 2) that the extent of receptor clustering de-
pends on the concentration of ligand. This approach is similar to one taken by
Bray et al. 21 who make the �rst assumption and also discuss a possible e�ect
of ligand concentration on receptor clustering. However, the present study
considers explicitly the number of clusters and the distribution of receptors
within them, and derives mathematical expressions that describe the chemo-
tactic response over the entire range of ligand concentration (whereas the early
study 21 only considers isolated, extreme conditions). Furthermore, in Bray et
al. 21 and other previous computer models of the chemosensory system, 22;23

a bacterial cell was considered to express a single receptor type, although in-
teractions between receptor homodimers of di�erent ligand speci�cities clearly
have physiological signi�cance. 24 In our model, receptors of mixed speci�city
are randomly clustered on the cell surface; we show that this treatment is
not only more realistic, but also leads to better agreement with experimental
observations.

2 Theory

Minimum detectable activity change �Amin. The fraction of time the 
agellum
spends in a CCW motor rotation (or smooth swimming) mode was de�ned as
the rotational bias (Rbias).

1 We adopt the following relationship between the
concentration of response regulator phospho-CheY (Yp) and Rbias:

21

Rbias =
1

1 + (Yp=3:44)5:5
(1)

where Yp is determined jointly by the activity of the phosphoryltransferase
CheA (A) and the concentration of phosphatase CheZ (Z) which accelerates
the decay of phospho-CheY. 5 If Z is treated as a constant, the steady-state
activity of the signaling network, A, can be derived as

A = N

Yp

YT � Yp
(2)

where YT is the total concentration of CheY (�20 �M in E. coli 21;22) and
N is the total number of chemoreceptors in a cell. We choose the constant 

in equation (2) so that receptors in an unstimulated cell have an activity of
A0 = Nâ0 where â0 = 1 is used as the activity unit. The unstimulated wild-
type bacteria used in the experiments published recently7 had a CCW rotation
bias of �0.65, corresponding to Yp = 3:07 �M (equation (1)) and 
 = 5:5 â0.
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Figure 1: The receptor clustering model.

The minimummotor rotational bias change that could be detected was �0.05,
corresponding to an activity change of �Amin = 4:77� 10�2Nâ0.

Dynamic receptor clustering. Five chemoreceptors have been found in E. coli:
Tar, Tsr, Tsg, Tap, and Aer, which mediate taxis toward aspartate and mal-
tose, serine, ribose and galactose, dipeptides, and oxygen and redox potential,
respectively. Here we only consider the �rst four types of receptors whose
characteristics are well known. The folding unit of chemoreceptors is a ho-
modimer. 9 An E. coli cell has about 600 Tar dimers and 1200 Tsr dimers. 2

Since high-abundance receptors Tar and Tsr are present in cellular amounts ap-
proximately 10-fold greater than the low-abundance receptors Tsg and Tap, 24

we assigned 100 dimers each to Tsg and Tap, and thereby placed the total
number of chemoreceptor dimers N at 2000.

In our model, the N chemoreceptors are randomly mixed and form a total
of B clusters. The sizes of the clusters are not uniform (Figure 1), since both
free dimers and receptor oligomers with various numbers of subunits have been
identi�ed.12;19;20;25 At the concentrations found in cells, we expect that a large

fraction of the clusters contain a single dimer or a few associated dimers, 9;25

whereas a small percentage of the clusters are large complexes. 12;20 This gives
rise to an exponentially decaying distribution of clusters on size (also called a

geometric distribution).

Our primary objective is to model the chemotactic response to attractant

aspartate, which is mediated by chemoreceptor Tar. When exposed to aspar-
tate at a concentration C, the average number of Tar dimers bound with ligand
is 
 = NTarC=(Kd +C), where NTar = 600 is the total number of Tar dimers

and Kd is the dissociation constant. At equilibrium, these 
 dimers can be
considered as a random sample from the NTar Tar dimers, and the number of
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clusters they are members of is a

B
 =
BN


N
+B(N � 
)
(3)

(in particular, we denoted B
 at 
 = NTar as BTar). In general, these clusters
also contain unligated Tar receptors as well as non-Tar receptors. One can
show that the total number of chemoreceptors in the B
 clusters is

R(
) = N �

�
NB

NW (
) +B(N �W (
))

�2

(N �W (
)) (4)

where W (
) is the number of Tar receptors included in R(
):

W (
) = NTar �

�
NTarBTar

NTar
+BTar(NTar �
)

�2

(NTar �
): (5)

The only free parameter in the above expressions is B which describes
the extent of receptor clustering on cell surface. Because the loss of kinase
stimulation function is correlated with the dissociation of receptor complex, 20

attractant binding is expected to promote the rate of complex dissociation.
Here, we model the process by a simple function

B = B0 + � (
=NTar)
�
NTar (6)

where the extent of receptor clustering is inversely correlated with the level
of receptor occupancy. We assign the number of receptor clusters in an un-
stimulated cell B0 = 300 based on a recent estimate that oligomers formed
by soluble Tar cytoplasmic domains contain on average 14 Tar monomer (or
7 Tar dimers). 20 We assume that in a fully ligated state, the chemoreceptors
form B0 + NTar clusters, i.e. � = 1. The remaining parameter � speci�es how
many clusters would be added for every newly engaged receptor dimer at a
given ligand occupancy state. As we show later, the precise value of � has
a signi�cant impact on the dynamics of receptor clustering, and in turn, the
overall behavior of chemotactic response. A choice can be made in accordance
with the experimental observation.

Exact adaptation. For simplicity, here we assume all receptors within the same
cluster are turned on or o� together. The occupation of 
 receptors by attrac-
tant molecules should inactivate all R(
) receptors falling in the same clusters

aThe mathematical framework used to derive equations (3-5) were developed previously26

in the context of an unrelated problem which yet shared the same underlying distribution.
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(equation (4)). The activity of the entire chemoreceptor array is dependent on
both R(
) and the methylation state of the receptors (represented by M ):

A = �M (N � R(
)) + �MR(
) (7)

where �M and �M represent the average activities of active and inactive re-
ceptors, respectively.

The adaptation in chemotaxis has been shown to be remarkably robust, 27

although the underlying mechanism remains to be determined. In an exact
adaptation,23;27 the e�ect of methylation should completely balance the signals
generated by the bound attractant. For a constant stimulus 
 (or C), the
activity of the receptor array should maintain its resting value A0:

�M(N �R(
)) + �MR(
) = A0: (8)

Here we assume that the methyltransferase and methylesterase enzymes act
globally on all the chemotaxis receptors in the cell28 and thus all receptors are
methylated at the same level M . Because the activity of ligand-bound recep-
tors is about 20 fold less than the unoccupied receptors, 29 for simplicity we
assign �M=0. Therefore, the adaptation to attractant is primarily mediated
by increasing the activity of those receptors that are not a�ected by ligand
binding (�M).

Excitation and gain. A transient rise in aspartate concentration (�C) from
a constant background shifts more Tar receptors (�
) to the occupied state.
The signal is spread to turn o� more chemoreceptors (�R(
)) and cause a net
reduction in the activity of CheA:

�A = (�M � �M )�R(
): (9)

Because receptor-sensing and activity spread are rapid relative to the adap-
tation reaction and the stimulus-induced receptor reorganization process, we
assume that the methylation level M (and therefore �M and �M ) and the
number of the receptor clusters B remain the same during the early phase of
the excitation response. We de�ne the gain of the signaling network as

G = �A=�
: (10)

Based on equation (9), G is a function of both 
 and �
. If �
 is taken
as the minimum occupancy change �
min for a detectable activity reduction
�Amin, the gain G

� = �Amin=�
min depends solely on 
. Using the following
relationship between ligand concentration and receptor occupancy

�Cmin =

�
�
min

NTar ��
min

�
Kd; (11)
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we can also deduce the minimum detectable concentration change �Cmin for
any given background concentration C. The sensitivity of the excitation re-
sponse is de�ned as

S = C=�Cmin: (12)

Threshold concentration and saturation concentration. The dynamic range of
a receptor signaling network is de�ned by two values, the threshold concen-
tration (Cmin) and the saturation concentration (Cmax).

8 Cmin describes the
concentration of attractant that gives a just experimentally measurable change
in Rbias (or equivalently, an activity change of �Amin). The minimum num-
ber of Tar dimers (
min) that have to be ligated to produce �Amin can be
estimated from

G(0;
min)
min = �Amin; (13)

and Cmin can be obtained from Cmin = Kd
min=(NTar �
min).

Cmax represents the highest background concentration at which bacteria
can still generate a detectable response to higher concentration stimuli. 8 In
analogy with Cmin, Cmax can be estimated from Cmax = Kd
max=(NTar �


max), where 
max is the solution to

G (
max; NTar � 
max) (NTar �
max) = �Amin: (14)

3 Results and Discussion

The model presented here provides a direct estimate on the minimum concen-
tration change �Cmin required to produce a detectable motor bias change at
any initial concentration C. A plot of �Cmin vs. C is called a sensitivity curve
whose essential features can be described by �ve values. The concentration at
which sensitivity S (equation (12)) reaches maximum (Smax), is de�ned as the
maximally sensitive concentration (denoted here as C�). Earlier studies have
shown that the C� of an attractant approximately equals the apparent disso-
ciation constant (KD) of its chemoreceptors.8;30;31 The region surrounding C�

with sensitivity deviating less than 20% from the maximum (S � 0:8Smax) is
de�ned as the maximal sensitivity region (MSR). The lower and upper bounds
of MSR, Cl

20% and Cu
20%, correspond to the two concentration values on either

side of C� that have S = 0:8Smax.

The only adjustable parameter in our model is � (equation (6)). For �
ranging from 0.1 to 0.7, the values of C�, Cl

20% and Cu
20% are listed in Table 1

(note that when � � 0:8, �M peaks before receptors reach saturation). C� =
1:08 �M at � = 0:6 matches the maximally sensitive concentration observed in
experiments; 8;30 it is also comparable with the apparent dissociation constant
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Table 1: The maximally sensitive concentration (C�) and the maximal sensitivity region

(MSR, [Cl
20%

;Cu
20%

]) as functions of � .

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C� (�M) 5.26 4.30 3.34 2.43 1.64 1.08 0.78
Cl
20% (�M) 1.068 0.742 0.488 0.313 0.208 0.158 0.129

Cu
20% (�M) 18.8 17.7 16.2 14.5 12.5 10.3 8.1

of aspartate binding to Tar, KD = 1:2 �M. 32 The fact that the optimal value
� is less than 1 is consistent with the observation that receptors with higher
levels of methylation are more stable. 20 The sensitivity curve corresponding
to � = 0:6 is shown in Figure 2. The MSR extends from 0.158 �M to 10.3 �M,
over a range of about two orders of magnitude in concentration. Within MSR,
�Cmin can be considered as a linear function of C, a type of behavior speci�ed
by the Weber-Fechner law. 33 The MSR predicted here is much broader than
previously predicted by using law of mass action ([0:31KD; 3:2KD]),

8;31 and
agrees better with the observed sensitivity behavior. 8

The other two values that can be read out from the sensitivity curve include
the threshold concentration Cmin and saturation concentration Cmax. Based on
equation (13), Cmin corresponds to �Cmin when no aspartate is initially present
(C = 0). Unlike the three aforementioned values, Cmin is independent of
parameter � . The lowest concentration to produce a detectable rotational bias
change in our model is Cmin = 3 nM, in close agreement with the previously
published values. 4;8 Furthermore, the �Cmin at C = 60 nM predicted by our
model, 10 nM, is remarkably close to the experimental value (11 nM) reported
recently. 7 These results indicate that the extent of known lateral interactions
in the receptor array20 could fully account for the signal ampli�cation observed
in experimental systems.

The saturation concentration predicted by our model is 70.8 �M, approach-
ing the reported 100 �M�1 mM range. 8 A number of factors may contribute
to the discrepancy. Most importantly, in this study we only considered the
high-a�nity aspartate binding site on a Tar dimer. Based on an analysis of
the concentration dependence of chemotactic recovery times, Jasuja et al. 7

suggested that the e�ect of the low-a�nity binding site of the Tar dimer,
which had an apparent dissociation constant of �70 �M, became signi�cant
for taxis towards aspartate at high concentrations. These low-a�nity binding
sites could act as aspartate \sinks" to deter the onset of saturation. Further-
more, in addition to lateral control at the receptor level and response control at
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Figure 2: The sensitivity curve for taxis towards aspartate. The background concentration

of aspartate (C) is plotted on the abscissa, and the minimum concentration change �Cmin

required to produce a detectable 
agellar rotational bias change is plotted on the ordinate,

both in logarithmical scale. Five values that de�ne the characteristics of the sensitivity curve
are: A. the threshold concentration Cmin; B. the lower bound of the maximal sensitivity

region Cl
20%

; C. the maximally sensitive concentration C�; D. the upper bound of the
maximal sensitivity region Cu

20%
; and E. the saturation concentration Cmax.

the 
agellar motor level, additional control sites might be involved in bacterial
chemotaxis, 5 which may have an impact on the near-saturation response of
the receptor array.

Figure 3 provides more details about the operation of the chemosensory
system at di�erent aspartate concentrations. In an unstimulated cell (C = 0),
the 600 Tar dimers, none of which is occupied (i.e. 
 = 0), are present in
222 of the 300 clusters. A detectable rotational bias change is obtained when
as little as 0.3% of receptors change their occupation states (Figure 3(b)).
The activity is spread to 95 chemoreceptors. The signaling pathway has a net
gain of 52 (activity unit per receptor binding) at 
 = 0 (Figure 3(c)). As
the background ligand concentration (or 
) increases, the gain of the system
decreases monotonically, and as a result, increasingly larger �
 is required
to induce a detectable motor response. At saturation concentration C = 70:8
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Figure 3: (a) The number of receptors (solid line,�1000) and the number of receptor clusters
(dashed line, �1000) a�ected by ligand binding of 
 Tar dimers (abscissa); (b) �
min (solid

line) and �R(
) (dashed line), (c) gain G�, and (d) �M as functions of 
 (abscissa).

�M, 
 = 546, or 91% of the Tar dimers are ligated, and they a�ect a total
of 1241 receptors in 402 clusters (Figure 3(a)). The system has a gain of 1.45
(activity unit per receptor binding) (Figure 3(c)). Theoretically, a detectable
rotational bias change can still be induced, but to do so, an in�nite amount of
aspartate has to be administered.

The activity of the receptors una�ected by activity spread, �M , which is
determined by the receptor methylation level M , also shows a dependence on
the strength of the stimulus (Figure 3(d)). At the unstimulated state, about
one methylation site per receptor monomer is esteri�ed, 34 and we have used
the average activity of such receptor dimers to de�ne the activity unit â0. In
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the fully methylated state, all methylatable sites are esteri�ed; in the case of
Tar, the three additional esters raise the activity to about four times the rest-
ing level. 29 However, the fully methylated state is unlikely to be reached by
adaptation to aspartate stimulus alone, because methylation acts globally on
all chemoreceptors including those that do not bind aspartate.13;28 Based on a
recent report, 35 when one type of chemoreceptors has reached saturation, at-
tractant or repellent binding to another set of receptors can still induce a motor
response followed by adaptation. Therefore, we expect that the chemorecep-
tors are only partially methylated when Tar dimers are saturated at Cmax, and
therefore, the maximum value of �M should be less than 4 â0. From Figure
3(d), �M increases from 1 â0 to 2.65 â0 as 
 changes from 0 to 
max. In
comparison, Bray et al. 21 assumed that the saturated receptors were 19 times
more active than the resting receptors in order to explain the dynamic range
using their raindrop model on a cell expressing only a single receptor type.

In this work, we have explored the possible role of lateral interactions
within a receptor array in controlling the sensitivity of chemotactic response.
The proposed model provides a good quantitative account of several impor-
tant aspects of bacterial chemotaxis. The mathematical framework developed
should be generally applicable to the characterization of many biochemical
signaling networks.
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