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The nature and information content of neural signals have been discussed exten-
sively in the neuroscience community. They are important ingredients in many
theories on neural function, yet there is still no agreement on the details of neural
coding. There have been various suggestions about how information is encoded
in neural spike trains: by the number of spikes, by temporal correlations, through
single spikes, or by spike patterns in one, or across many neurons. The latter
scheme is most general and encompasses many others. We present an algorithm
which can recover a coarse representation of a pattern coding scheme, through
quantization to a reproduction set of smaller size. Among many possible quantiza-
tions, we choose one which preserves as much of the informativeness of the original
stimulus/response relation as possible, through the use of an information-based
distortion function. This method allows us to study coarse but highly informa-
tive models of a coding scheme, and then to re�ne them when more data becomes
available. We shall describe a model in which full recovery is possible and present
example for cases with partial recovery.

1 Introduction

When discussing neural systems, one of the questions we are interested in is
how the activity of a set of neurons represents the input to these neurons from
other cells or from the environment. The nature and information content of
neural signals have been discussed extensively in the neuroscience community.
They are important ingredients in many theories on neural function, yet there
is still no agreement on the details of neural coding. There have been vari-
ous hypotheses about how information is encoded in neural spike trains: by
the number of spikes, by temporal correlations between spikes, through sin-
gle spikes, or by complete temporal patterns of spikes from a single neuron
or groups of neurons 10. The latter scheme is most general and encompasses
many others.

The search for pattern codes requires exponentially more data than the
search for mean rate or correlation codes 9. We will describe a method that
allows us to uncover as much of the details of a coding scheme as is supported
by the available data, by quantizing the set of responses to a smaller repro-
duction set of �nite size. To assess the quality of the quantization we use
an information-based distortion measure. The quantization is optimized to
have minimal distortion for a �xed reproduction size. This method allows us
to study coarse models of coding schemes which can be re�ned as more data
becomes available.
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2 Quantizing neural responses

With communication systems, the usual use of information theory is to de-
sign a coding scheme given the structure of the communication channel. Our
application di�ers since now we are analyzing an already implemented neural
coding scheme (the cricket cercal system in particular 2;5). Our goal is to un-
cover the structure of the the scheme from observations of the stimulus and
response properties of a neural system.

2.1 Quantizing the response

The basic concepts of information theory are the entropyH(X) and the mutual
information I(X,Y) of random sources (X;Y ) 12;1. The information quantities
H and I depend only on the underlying probability function and not on the
structure of the event space. This allows us to estimate them in cases where
more traditional statistical measures (e.g., variance, correlations, etc.) simply
do not exist. There is a drawback though, since now we must either model
the necessary probabilities or use large amounts of data to estimate them non-
parametrically. As pointed out by Johnson et.al. 9, the amount of data needed
to support coding schemes which contain long sequences (length T) across
multiple neurons (N) grows exponentially with T and N. It is conceivable that
for some systems the required data recording time may well exceed the expected
lifespan of the system.

To resolve this issue we need to sacri�ce some detail in the description of
the coding scheme in order to obtain robust estimates of a coarser description.
This can be achieved through quantization 1;7 of the neural representation Y

into a coarser representation in a smaller event space YN . YN is referred to
as the reproduction of Y . Most of the results in this section are valid for the
general case of continuous, ergodic random variables 7. The formulation for
the most general case requires special attention to details though. For clarity
of the presentation here we shall assume that all random variables are �nite
and discrete.

Quantizers are maps from one probability space to another. They can
be deterministic (functions) or stochastic (given through a conditional prob-
ability) 11. We shall consider the most general case of a stochastic quantizer
q(yN jy) { the probability of a response y belonging to an abstract class yN . A
deterministic quantizer f : Y ! YN is a special case in which q takes values 0
or 1 only. In both cases, stimulus, response and reproduction form a Markov
chain X ! Y ! YN . In information theory the quality of a quantization is
characterized by a distortion function 6. We shall look for a minimum dis-
tortion quantization using an information distortion function and discuss its
relationship to the codebook estimation problem.
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2.2 A distortion measure based on mutual information

In engineering applications, the distortion function is usually chosen in a mod-
erately random fashion 1;6, and is the one that introduces structures in the
original space, to be preserved by the quantization. We can avoid this arbi-
trariness since we expect that the neural system is already reecting pertinent
structures of the sensory stimuli and we would like to preserve this in the
reproduction. Thus our choice of distortion function is determined by the in-
formativeness of the quantization. The mutual information I(X ;Y ) tells us
how many di�erent states on the average can be distinguished in X by ob-
serving Y . If we quantize Y to YN (a reproduction with N elements), we can
estimate I(X ;YN ) - the mutual information between X and the reproduction
YN . Our information preservation criterion will then require that we choose a
quantizer that preserves as much of the mutual information as possible, i.e.,
the quantizer q(yN jy) which minimizes the di�erence

DI(Y ;YN ) = I(X ;Y )� I(X ;YN ) (1)

(note that DI � 0). We use the functional DI as a measure of the average
distortion of the quality of a quantization. It can be interpreted as an infor-

mation distortion measure, hence the symbol DI . The only term that depends
on the quantization is I(X ;YN ) so we can reformulate the problem as the
maximization of the e�ective functional Deff = I(X ;YN).

The average distortion can be rewritten as the expectation of a pointwise
distortion function of a rather interesting form. Using the de�nition of the
mutual information and the Markov relation X ! Y ! YN between the
spaces, we can express DI as the expectation

DI = Ep(y;yN )d(y; yN ) (2)

where

d(y; yN ) � KL(q(xjy)jjq(xjyN )) (3)

is the Kullback-Leibler directed divergence of the input stimulus conditioned
on a response y relative to the stimulus conditioned on a reproduction yN .
Intuitively, this measures the similarity between the stimulus partition induced
by the quantization to the one induced by the sensory system.

2.3 Implementations

Using a quantization (deterministic or stochastic) of the output space 7 allows
us to control the exponential growth of required data. With this approach we
estimate a quantity which is known to be a lower bound of the actual mutual
information. We obtain a biased estimate but control the precision with which
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it can be estimated. We �x the coarseness of the quantization ( the size of the
reproduction, N) and look for a quantization that minimizes the information
distortion measure DI = I(X ;Y )� I(X ;YN ) described previously.

Constrained maximum entropy optimization.

The problem of optimal quantization has been formulated for a large class of
distortion functions 11 as a maximum entropy problem 8. We cannot use this
analysis directly, since in our case the distortion function depends explicitly
on the quantizer. The reasoning behind the maximum entropy formulation is
that, among all quantizers that satisfy a given set of constraints, the maximum
entropy quantizer does not implicitly introduce further restrictions in the prob-
lem. We pose the minimum distortion problem as a maximum quantization
entropy problem with a distortion constraint:

max
q(yN jy)

H(YN jY ) constrained by (4)

DI(q(yN jy)) � Do andX
yN

q(yN jy) = 1 8y 2 Y

This is an ordinary constrained optimization problem that can be solved
numerically with standard optimization tools. The cost function H(YN jY ) is
concave in q(yN jy), and the probability constraints

P
yN

q(yN jy) = 1 are linear

in q(yN jy) 1. The constraint DI is also concave in q(yN jy), which make the
whole problem one of concave maximization.

The problem with this formulation is that it relies on knowing DI , which
depends on the mutual information between X and Y . We can easily avoid
the need for that by using the e�ective distortion Deff � I(X ;YN). In this
case, the optimization problem is

max
q(yN jy)

H(YN jY ) constrained by (5)

Deff � I(q(yN jy)) � Io andX
yN

q(yN jy) = 1 8y 2 Y

The solution to the optimization problem (5) depends on a single param-
eter Io, which can be interpreted as the informativeness of the quantization.
If Io � 0, the distortion constraint is always satis�ed and we obtain only the
unconstrained maximum entropy solution q(yN jy) = 1=N for all pairs (y; yN ).
For Io � 0 the distortion constraint becomes active and the uniform quantizer
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is no longer a solution to the optimization problem. Because of the convexity
of the problem, the optimal solution will lie on the boundary of the constraint
and thus carry I(X ;YN ) = Io bits of information.

Maximum cost optimization.

A standard approach to constrained optimization problems is through the use
of Lagrange multipliers. The system (4) can be solved as the unconstrained
optimization of

max
q(yN jy)

�
H(YN jY )� �Deff (q(yN jy)) +

X
y

�y
X
yN

q(yN jy)
�
:

The solution depends on the parameters (�; f�yg) which can be found from
the constraints

Deff (q(yN jy)) � IoX
yN

q(yN jy) = 1 8y 2 Y

Since � is a function of Io, which is a free parameter, we can as well discard Io
and reformulate the optimization problem as �nding the maximum of the cost
function

max
q(yN jy)

F (q(yN jy)) � maxq(yN jy)

�
H(YN jY ) + �Deff (q(yN jy))

�
(6)

constrained byP
yN

q(yN jy) = 1 8y 2 Y:

An implicit solution for the optimal quantizer.

Further analysis of the problem uses the simplicity of the linear constraint
in (6). Extrema of F can be found by setting its derivatives with respect to
the quantizer q(yN jy) to zero. In the subsequent steps we shall explicitly use
the assumption that all spaces are �nite and discrete. The expressions are
thus in a form convenient for programming on a computer. The results for
continuous random variables can easily be adapted from this using analogous
methods from the calculus of variations. We use Latin indices (i; j; k) to denote
members in the original spaces X;Y and Greek indices (�; �; �) for elements
of the reproduction YN . With this in mind we solve the Lagrange multiplier
problem

q(y� jyk) =
e
�

�
(rDeff )�k

p(yk)

�

P
� e

�

�
(rDeff )�k

p(yk)

� : (7)
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In practice, the expression (7) can be iterated for a �xed value of � to
obtain a solution for the optimization problem, starting from a particular initial
state. For small �, before the �rst bifurcation 11, the obvious initial condition
is the uniform solution q(yN jy) = 1=N . The solution for one � can be used as
the initial condition for a subsequent � because solutions are continuous with
respect to the quantizer.

3 Neural Information Processing

We shall present a general model of a neural system which can be fully re-
covered by the quantization procedure described earlier. Sensory stimuli and
their neural representation can be quite complex. Information theory suggests
a way for dealing with this complexity by extracting the essential parts of the
signal while maintaining most of its information content. The method of choice
is through typical sequences. We can a�ord just a brief sketch of the model
here. A more complete presentation can be found in an earlier paper 3.

3.1 Jointly Typical Sequences

When analyzing information channels, we deal with two sets of random se-
quences { input and output. In this case it is necessary to consider the com-
bined behavior of the pair (X;Y ). In the current formalism this is achieved
by using jointly typical sequences: xn and yn are independently typical and
(xn; yn) is also typical in the product space 1. All the elements of the jointly

typical set are nearly equiprobable, the set has probability close to 1, and the
number of elements is about 2nH(X;Y ).

Not all pairs of typical xn and typical yn are also jointly typical. The
probability that a randomly chosen pair is jointly typical is about 2�nI(X;Y ).
Hence, for a �xed yn, we can consider about 2nI(X;Y ) such pairs before we
are likely to come across a jointly typical pair. This suggests there are about
2nI(X;Y ) distinguishable messages in Xn that can be communicated through
Y n (�gure 1).

3.2 Decoding with jointly typical sequences

The jointly typical pairs (xn; yn) can be used as codewords. Since there are
2nI(X;Y ) distinguishable signals and 2nH(X;Y ) codewords, some of the code-
words represent the same signals. The redundancy helps to combat noise or
is due to projections to a lower dimensional subspace. Sets of codewords rep-
resenting the same signal form equivalence classes, which we call codeword
classes. We shall equate the distinguishable signals with the codeword classes.
Within each class, a stimulus in Xn invokes a corresponding jointly typical
response in Y n with high probability (about 1� 2�nI(X;Y )).

Pacific Symposium on Biocomputing 6:251-262 (2001) 



Figure 1: The structure of the jointly typical set. There are about 2nH(X) typical x se-
quences, 2nH(Y ) typical y sequences but only 2nH(X;Y ) jointly typical sequences. This
suggests there are about 2nI(X;Y ) distinguishable equivalence classes Ci of (xn; yn) pairs.

The number of output sequences in each class is about jCij � 2nH(Y jX).

We de�ne the codebook of this system as the map F : xn ! yn. The code-
book is stochastic on individual elements, so it is better represented through as-
sociation probabilities q(ynjxn). When considered on codeword classes though,
the map is almost bijective, that is, with probability close to 1 elements of Y n

are assigned to an elements of Xn in the same codeword class. We shall decode
an output yn as (any of) the inputs that belong to the same codeword class.
Similarly, we shall consider the representation of an input xn to be any of the
outputs in the same codeword class.

3.3 Resolving the decoding problem

The minimal information distortion quantization can help us resolve the neural
decoding problem. We quantize the neural response by �xing the size of the
reproduction to N . This bounds our estimate of Deff to be no more than
logN bits. In the ideal case, maxDeff � max I(X ;YN ) � logN but in gen-
eral it will be lower. Due to the Markov relation, I(X ;YN ) � I(X ;Y ) as well.
Since logN increases with N and I(X ;Y ) is a constant, these two independent
bounds intersect for some N = Nc at which point adding more elements to YN
does not improve the distortion measure. If I(X;YN ) increases with N until
N = Nc and then levels o�, we can identify the correct Nc by looking at the
behavior of the expected distortion (or, equivalently, Deff � I(X ;YN)) as a
function of N , given suÆcient data. The elements of YN are then representa-
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tives of the original equivalence classes which we wanted to �nd. The quantizer
q(yN jy) gives the probability of a response y belonging to an equivalence class
yN . As mentioned in 11, the optimal quantizer for low distortions (high �) is
deterministic (or e�ectively deterministic, in case of duplicate classes) and so
we recover an almost complete reproduction of the model.

If there is not enough data to support a complete recovery, the algorithm
has to stop earlier. The criterion we use in such a case is that the estimate of
Deff does not change with N within its error bounds (obtained analytically
or by statistical re-estimation methods like bootstrap, or jack-knife). Then
N < Nc and the quantized mutual information is at most logN . We can
recover at most N classes and some of the original classes will be combined.
The quantizer may also not be deterministic due to lack of enough data to
resolve uncertainties. Thus we can recover a somewhat impoverished picture
of the actual input/output relationship which can be re�ned as more data
becomes available.

4 Results

We shall discuss the application of the method described so far to a few test
cases of synthetic data. Applying it to physiological data from a sensory system
involves additional diÆculties associated with the estimates of DI for complex
input stimuli, which are dealt with elsewhere 4;5.

4.1 Random Clusters

We present the analysis of data drawn from the probability shown in �gure 2a.
This model was chosen to resemble the picture of decoding with jointly typical
sequences (�gure 1). The mutual information between the two sequences is
about 1.8 bits, which is comparable to the mutual information of single neurons
in the cricket cercal system 2. In this case we assume the original relation
between X and Y is known (the joint probability p(x; y) is used explicitly).

The results can be seen in �gure 2b. The algorithm recovers an incomplete
representation when two classes are forced (b.1). This is improved for the 3
class version (b.2). The next re�nement (b.3) separates all the classes correctly
and recovers most of the mutual information. Further re�nements (b.4) fail
to split the classes and are e�ectively identical to b.3 (note that classes 4 and
5 in b.4 are almost evenly populated and the class membership there is close
to a uniform 1/2). The quantized mutual information (c) increases with the
number of classes until it recovers about 90% of the original mutual information
(N = 4) at which point it levels o�.

The behavior of Deff as a function of the annealing parameter � is shown
in �gure 3. One can observe the bifurcations of the optimal solution (1 through
5) and the corresponding transitions of the e�ective distortion. The abrupt
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Figure 2: A joint probability for the relation between two random variables X and Y with
52 elements each (a) with optimal quantizers q(yN jy) (b) for di�erent number of classes.

The behavior of the mutual information with increasing N can be seen in (c).

Figure 3: Behavior of Deff (top) and the optimal quantizer q(yN jy) (bottom) as a function
of the annealing parameter �.
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Figure 4: A joint probability for a linear relation between two random variables X and Y (a)
with optimal quantization (b) for di�erent number of classes. The behavior of the mutual

information with increasing N can be seen in (c).

transitions (1! 2, 2! 3) are similar to the ones described in11 for an arbitrary
distortion function. We also observe transitions (4 ! 5) which appear to be
smooth in Deff even though the solution for the optimal quantizer undergoes
a bifurcation.

A random permutation of the rows and columns of the joint probability
in �gure 2a has the same channel structure. The quantization is identical to
the case presented in �gure 2 after applying the inverse permutation and fully
recovers the permuted classes (the quantization is contravariant with respect
to the action of the permutation group).

4.2 Linear encoding

We also applied the algorithm to a case which, unlike the previous cases, does
not have clearly de�ned clusters. This model tries to simulate the process of
a physical measurement where X is the physical system and Y is the mea-
surement. In this example we model a linear relation between X and Y and
Gaussian measurement noise, that is

Y = kX + �

where � 2 N (0; �) is drawn from a normal distribution with zero mean and
variance �2. The particular relation we used (�gure 4a) contains about 2 bits
of mutual information.

The results can be seen in �gure 4. The algorithm recovers a series of
representations (b.1 { b.4), where each is a re�nement of the previous one.
The reproduction classes were permuted to roughly follow the original linear
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relation. There isn't a natural stopping point and so the quantized mutual
information I(X ;YN ) approaches a constant. This is in contrast to the previous
two cases where I(X ;YN ) abruptly stopped changing after some N .

5 Conclusions

We presented a method for recovering the structure of a neural coding scheme
from observations. We choose to recover an impoverished description of the
coding scheme by quantizing the responses to a reproduction set of a few
variables. To assess the quality of the reproduction, we de�ned the information
distortion DI = I(X ;Y )� I(X ;YN) which measures how much information is
lost in the quantization process. For a �xed reproduction size N we pose the
optimization problem of �nding the quantization with smallest distortion, as
the one which preserves most of the information present in the original relation
between X and Y . Re�ning the reproduction by increasing N was shown to
decrease the distortion. We showed empirically on a set of synthetic problems
that, if the original relation contains almost disjoint clusters, a suÆciently
�ne optimal quantization recovers them completely. If the quantization is too
coarse, then some of the clusters will be combined, but in such a way that a
large fraction of the original information is still preserved.

It is interesting to note that, although we had neural systems in mind
while developing the information distortion method, the ensuing analysis is in
no way limited to nervous systems. Indeed, the constraints on the two signals
we analyze are so general that they can represent almost any pair of inter-
acting physical systems. In this case, �nding a minimal information distortion
reproduction allows us to recover certain aspects of the interaction between the
two physical systems, which may improve considerably any subsequent analy-
sis performed on them. It is also possible to analyze parts of the structure of a
single physical system Y , if X is a system with known properties (e.g., a signal
generator, controlled by a researcher) and is used to perturb Y . These cases
point to the exciting possibility of obtaining a more automated approach for
succinct descriptions of arbitrary physical systems through the use of minimal
information distortion quantizers.
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