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Single nucleotide polymorphisms (SNP) may be used in case-control designs to test for
association between a marker (the SNP) and a disease. However, such designs usually assume
that the genotype data are reported without error. We propose a method, the reduced
penetrance model method (RPM) that allows for errors in a case-control design, as compared
to the full penetrance model method (FPM), that assumes data are errorless. Pearson’s χ2

applied to a 2 × 2 contingency table is the test statistic considered. Additionally, we provide a
likelihood method to estimate error rates using SNP genotype data in CEPH pedigrees. We
test our method (RPM) against the standard method (FPM) using simulated data. All SNP loci
are assumed to have two alleles, coded 1 and 2.

We consider three pairs of error rates, two different sample sizes, and two sets of
allele frequencies for the SNP locus. SNP genotype data in two populations are simulated
under a null hypothesis (allele frequencies equal in both populations) and under an alternative
hypothesis (allele frequencies differ between two populations). The total number of
simulations is 24; 12 simulations under the null hypothesis, and 12 simulations under the
alternative. The significance level threshold is 5%.

For the null case, 9/12 (75%) of the simulations show no increase in type I error
under RPM, while 3/12 (25%) show a slight increase (rejecting the null for at most 7% of the
replicates).  There is no increase in the type I error rate for FPM method, which can also be
shown analytically. For the alternative case (power), there is a consistent increase in power
for the RPM method as compared to FPM method, and average increase of 0.02 for the
simulations considered. When sample sizes are large there is virtually no difference in power
between RPM and FPM methods. Also, the RPM method provides consistently more accurate
allele frequency estimates for the various populations.

Our likelihood method to estimate error rates with CEPH pedigrees provides good
estimates on average. The largest difference between a true error rate and our average
estimated error rate is 0.006. However, there is a fair amount of variability in the estimates,
suggesting the need for multiple experiments or larger numbers of CEPH pedigrees.

Researchers may use the methods presented in this paper to (1) estimate error rates
for their automated genotyping process, and (2) allow for such errors in association analyses,
thereby increasing power to detect differences between allele frequencies in case and control
populations when errors are present.

1  Introduction

There is growing interest in the use of single nucleotide polymorphisms (SNP) for
the genetic dissection of complex human diseases1. Some reasons are: 1) SNPs are
significantly more abundant than microsatellite polymorphisms (about one SNP for
every 500-1000 base pairs2 and therefore are potentially more powerful in detecting
linkage disequilibrium (LD) around disease loci; 2) high throughput genotyping of
large numbers of SNP markers is possible with the use of microarray technologies;
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3) some SNP mutations may be causative of disease phenotype; 4) the completion
of the human genome reference sequence in the not-too-distant future should pave
the way for discovery of many of the common polymorphisms should be possible3.

To take advantage of the greater expected LD between SNP loci and
disease loci, statistical methods being considered are population-based tests of
association (case-control studies). Much work has been done to determine the
statistical properties of such tests, including validity and power of such tests under
different genetic models of disease4. However, it is almost always assumed in these
analyses that the genetic data considered are without errors. By errors, we mean any
miscoding of a person’s correct marker genotype. Sources of error include non-
paternity, sample-swaps in the lab, or genotyping errors. While there has been much
written on methods to detect errors5-12, there is only one very recent set of papers13-16

that consider methodology allowing for errors in linkage and/or LD analysis, even
though it is well known that errors in genetic data can have significant effects on
linkage analyses. Such effects include increase in the estimated recombination
fraction between markers or between marker and trait (more generally, an inflation
of the map distance for multiple markers), an increase in type I error rate, and a
decrease in power17-19. The purpose of this work is the assessment of errors on the
validity (type I error rate) and power of specific population-based association tests,
and the proposal of statistical methods that allow for errors in the analysis. In
addition, with the use of currently available software, the effectiveness of these
methods will be demonstrated empirically.

2 Materials and Methods

2.1 Error Model

For all our analyses, it will be assumed the SNP loci in question have two alleles,
coded as 1 and 2. Also, we assume that each 1 allele has a constant probability ε1 of
being incorrectly coded as a 2 allele, and likewise, each 2 allele has a constant
probability ε2 of being incorrectly coded as a 1 allele. Thus, the number of observed
1 or 2 alleles (as opposed to the actual number of such alleles) in a sample is still a
binomial variable, so that it is possible to compute means and variances for
observed numbers, even when errors are present.

 2.2 Data and Test Statistic

The data selected for use with population-based tests is a SNP locus that has two
alleles in the population. These alleles are coded as 1 and 2.
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Table 1 - 2 × 2 contingency table

1 Allele 2 Allele Row Totals
Cases N11 N12 N1*

Controls N21 N22 N2*

Column Totals N*1 N*2 N

Nij  = number of j alleles observed in the i population (i = 1 - cases; i = 2 - controls)
N*j = N1j + N2j

Ni* = Ni1 + Ni2

N = N11 + N12 + N21 + N22

The statistical test chosen is Pearson’s χ2 on 2 × 2 contingency tables (see
Table 1 for an example). The rows of the table are cases (affected individuals) and
controls (unaffected individuals) randomly sampled from a population. The columns
of the contingency table are the counts of 1 alleles and 2 alleles in each population
(cases and controls). Using the notation from Table 1, the Pearson Chi-square
statistic for a sample is:
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2.3 Reduced Penetrance Model Method (RPM)

As a means of allowing for errors in population-based SNP data, we propose use of
a reduced penetrance model (RPM) as implemented in the ILINK program from the
FASTLINK suite of programs20-23. The ILINK program has the flexibility of
allowing for "reduced penetrance" marker genotypes. This step is achieved by
recoding the marker locus as an affection status locus. For an example, see
reference no. 21, Section 10.2. For error rates ε1 and ε2, the matrix of penetrances
used in the ILINK runs is presented in Table 2.

Table 2 - Penetrances for observed genotypes with 2-allele locus assuming errors

True Genotype
Observed Genotype 1/1 1/2 2/2

1/1 (1- ε1)
2  ε2 (1 - ε1) ε2

2

1/2 2 ε1 (1- ε1) ε1 ε2 + (1 - ε1 )(1 - ε2) 2 ε2 (1 - ε2)
2/2 ε1

2 ε1 (1 - ε2) (1 - ε2)
2

One thousand replicates of genotype data for two populations (labeled in
this study as cases and controls) are simulated using the SIMULATE program24. For
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simplicity, simulations use either population of N = 250 or 500 individuals in each
population. The pedigree structure used in the SIMULATE simped.dat file is a triad
(father, mother, child) in which the parents are assumed to have unknown
genotypes. Allele frequencies for the 1 allele in each population are entered in the
SIMULATE simdata.dat file (see reference no. 21, section 28.5 for an example of
the simped.dat and simdata.dat files). Because the SIMULATE program simulates
null data, genotype data are created independent of disease status (i.e.,
recombination fraction between marker and disease locus is 0.5). For these
simulations, we consider the both different allele 1 frequencies in the case and
control populations (power) and also allele 1 frequencies that are the same in case
and control populations (null or type I error). For power simulations, allele 1
frequencies simulated in (case, control) populations are (0.2, 0.3) and (0.4,0.5). For
the null simulations, allele 1 frequencies simulated are (0.3, 0.3) and (0.5, 0.5).
Errors for the 1 and 2 alleles are introduced using a C program according to error
rates ε1 and ε2. It is assumed that errors are introduced randomly and independently
into a sample of alleles, and that error introduction is independent of population,
i.e., errors are introduced into the set of alleles for both populations according to the
same error rates. For these simulations, we assume error rates of 0.01and 0.05 for
each of the εi (i = 1, 2), for a total of 3 joint error rates (0.01, 0.05), (0.05, 0.01), and
(0.05, 0.05).

The genotype data with errors introduced are recoded so that they are data
for an affection status locus (a necessary step with the ILINK program). The ILINK
program is run assuming full penetrance (i.e., assuming that ε1 = ε2 = 0). We shall
call this analysis "the full penetrance model method" (FPM). Penetrances are then
determined by substituting the correct error rates ε1 and ε2 into the matrix (Table 2).
We call this analysis "the reduced penetrance model method". Output from one
iteration of the ILINK program consists of frequency estimates for the 1 and 2
alleles. These estimates, for each population, are multiplied by the number of alleles
in each population, and placed in the respective cells (Table 1). For example, if we
label the first population as the "case" population, sample size N1, and ILINK
produces an estimate of p1 for the 1 allele under full penetrance, then the value 2 ×
N1 × p1 is entered in the upper-left cell of Table 1, and 2 × N1× (1- p1) is entered in
the upper-right cell. Likewise for the other two cells. These values are then placed
into formula (1) and the chi-square statistic is computed. The proportions of chi-
square statistics greater than 3.84 (corresponding to a p-value of 0.05) for the data
analyzed under the FPM method, and under the RPM method, for all sets of allele
frequencies, and for different sample sizes (N = 250 or 500 individuals in each
population) are reported in Table 4.

2.4 Estimation of Error rates

One potential limitation of the RPM method presented above is the requirement that
accurate error rates be specified in the analysis. To make accurate estimates of the
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parameters ε1 and ε2 we propose the use of CEPH family genotypes25. It is possible
to estimate error rates for an automated genotyping process by genotyping a certain
number of CEPH pedigrees, and by computing the relative likelihoods of the
genotypes for different values of ε1 and ε2 in the ILINK program, under the
assumption that the recombination fraction between marker and "trait" is 0.5 (the
unaffected affection status is provided for each CEPH individual). Evaluation of
genotype likelihood for each setting of the pair (ε1,ε2) is performed in the same
manner as is described above (Section 2.3). The settings of ε1 and ε2 that provide the
largest likelihood for the CEPH genotype data become the maximum likelihood

estimates (MLEs) for ε1 and ε2, denoted by 21 ˆ and ˆ εε  respectively.

To determine the effectiveness of this method for estimating error rates, we
performed several simulation studies. One set of 15 CEPH pedigrees, with a total of
212 individuals, was selected. A list of the pedigrees selected may be found in Table
3. Allele frequency pairs (p1, p2) at one locus chosen for the simulations were (0.3,
0.7) and (0.5, 0.5). Error rate pairs (ε1,ε2) selected were as above, namely (0.01,
0.05), (0.05, 0.05), and (0.05, 0.01). Genotype data were simulated and errors were
introduced as described above (Section 2.3). The grid of parameter values (ε1,ε2) for
which likelihoods were evaluated ranged from (0.0, 0.0) to (0.10, 0.10), in
increments of 0.005 for each coordinate. A total of 212 = 461 likelihoods were
therefore computed in each simulation. The values of (ε1,ε2) that provided the
maximum likelihood for each simulation were recorded. For each pair of allele
frequencies and error rates (one simulation), a total of 100 replicates were created
and analyzed. The sample mean and standard deviation of each simulation are
reported in Table 6.

Table 3 - List of CEPH pedigrees selected for simulation study on estimating error rates
1326 13291 1353
1327 13292 1354
1328 1347 1355
13281 1349 1356
1329 1350 1357

We choose CEPH pedigrees because error rates should be better estimated
by using extended pedigrees instead of nuclear families. Ehm et al.6 pointed out that
errors are more precisely and easily detected in extended pedigrees. Also, Gordon et
al.7 showed analytically that error detection rates are, on average, at most 58% for
nuclear families genotyped at a SNP locus, in which there are at most 3 children.

3 Results

3.1 Type I Error Rate and Power - FPM Method
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Bross26 proved that there is no increase in type I error rate for the statistic
2X applied to 2 × 2 contingency tables, when the errors in diagnosis (mislabeling a

case as a control and vice versa) occur independently of the particular population.
For our purposes, assume that we have collected genotypes for a SNP locus on
cases and controls, and further assume that errors occur in the genotype data
according to the error model presented above. Further assume that the error model is
valid independent of disease status (case or control). It follows immediately from

Bross’s proof26 and from the fact that the Chi-square statistic 2X is invariant under
permutation of indices (i.e., rows and columns may be interchanged) that there is no
increase in type I error rate for the Chi-square statistic X 2 applied to the 2 × 2
contingency table (Table 1) using the FPM method, when errors are introduced
according to our error model. Our simulations (Table 4) also show this result.

Table 4 - Power for case-control samples for SNP genotype data with errors analyzed under
(1) FPM (assuming no errors) and (2) RPM  using correct values of error rates

Sample
Size

1 allele
frequency
- pop1

1 allele
frequency
- pop2

Error
Rate ε1

Error
Rate ε2

Power-
FPM

Power-
RPM

True
power
w/o
errors

POWER AT 5% SIGNIFICANCE LEVEL
250 0.2 0.3 0.01 0.05 0.912 0.943 0.956
250 0.4 0.5 0.01 0.05 0.853 0.880 0.893
250 0.2 0.3 0.05 0.01 0.932 0.943 0.956
250 0.4 0.5 0.05 0.01 0.857 0.871 0.893
250 0.2 0.3 0.05 0.05 0.885 0.937 0.956
250 0.4 0.5 0.05 0.05 0.814 0.857 0.893
500 0.2 0.3 0.01 0.05 0.997 0.998 1.000
500 0.4 0.5 0.01 0.05 0.985 0.988 0.996
500 0.2 0.3 0.05 0.01 1.000 1.000 1.000
500 0.4 0.5 0.05 0.01 0.989 0.995 0.996
500 0.2 0.3 0.05 0.05 0.997 0.999 1.000
500 0.4 0.5 0.05 0.05 0.985 0.989 0.996

TYPE I ERROR FOR 5% SIGNIFICANCE LEVEL
250 0.3 0.3 0.01 0.05 0.050 0.070 0.05
250 0.5 0.5 0.01 0.05 0.046 0.056 0.05
250 0.3 0.3 0.05 0.01 0.055 0.063 0.05
250 0.5 0.5 0.05 0.01 0.041 0.063 0.05
250 0.3 0.3 0.05 0.05 0.037 0.059 0.05
250 0.5 0.5 0.05 0.05 0.044 0.068 0.05
500 0.3 0.3 0.01 0.05 0.036 0.060 0.05
500 0.5 0.5 0.01 0.05 0.036 0.050 0.05
500 0.3 0.3 0.05 0.01 0.046 0.050 0.05
500 0.5 0.5 0.05 0.01 0.054 0.061 0.05
500 0.3 0.3 0.05 0.05 0.038 0.061 0.05
500 0.5 0.5 0.05 0.05 0.038 0.069 0.05
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However, as the saying goes, there is no free lunch. The price one pays for
errors in genotype data is a potential loss in power. The extent of loss (or gain) in
power depends on the values ε1 and ε2. In what follows, we use the notation p1 and
p2 to represent the 1allele frequency in cases and controls, respectively. The null

hypothesis is ,: 210 ppH =  and the alternative hypothesis is .: 211 ppH ≠  Even

in the case of no errors, power to reject a false null hypothesis depends on the

sample size, and the magnitude of the difference27 21 pp − . Errors affect the

power of the test in that they cause the apparent magnitude of the difference to be
altered, as well as affecting the variance of the magnitude.

Power assuming no errors can be computed using exact methods or
approximations27. We compute an estimate of the power by means of simulations.
In each simulation, we specify the sample size in cases and controls, the exact error
rates ε1 and ε2, the allele frequencies p1 and p2, the number of simulations to be
performed, and a random seed. Allele 1 and 2 counts are then determined by
invoking a random number generator. We simulated 20,000 replicates to determine
an estimate of the true power under no errors. Our simulation results agree with
those of Patnaik27 in the case of 18 and 12 individuals at the 2% level up to 2 digits
(Patnaik only considered power at 2% and 10% significance levels).

In studying Table 4, we see that there is a definite and consistent loss of
power for all sample sizes and all error rates when comparing data analyzed under
FPM, as opposed to the true power with errorless data. If we consider the difference
(true power without errors - power assuming FPM) then, the average differences are
0.05 and 0.01 for sample sizes of 250 and 500 respectively. The largest difference
occurs for a sample of 250 individuals, error rates (0.05, 0.05), and for allele
frequencies of 0.4 and 0.5, a difference of 0.079. The smallest difference occurs for
a sample of 500 individuals, error rates (0.05, 0.01), and for allele frequencies of 0.2
and 0.3, a difference of 0.0. These results suggest that, with increasing sample size,
the difference in power between the true power and the power assuming a FPM
decreases.

3.2 Type I Error Rate and Power - RPM Method

Table 4 also contains the results from simulations in which SNP data were analyzed
under the RPM method. Considering type I error rate, we note that for an observed
p-value of 0.064 (= 64/1000) the lower limit of the 95% confidence interval is less
than 5 percent28. Therefore, let us declare an inflation in type I error when the
observed p-values are greater than 0.064. With this threshold, we note that 9/12
(75%) of the simulations showed no increase in type I error, while 3/12 simulations
(25%) did show some increase. The most extreme increase occurs for a sample size
of 250 individuals, allele frequencies of 0.3, and error rates (0.01, 0.05). The
increase was 0.07 - 0.05 = 0.02. Note also that the type I error rate for the RPM
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method is always greater than the FPM method. One reason for this increase is that
the variance of the allele frequency estimates from the RPM method is always equal
to or greater than the FPM method (Table 5).

Regarding power, we note that for each simulation, power under the RPM
method is always greater than or equal to power under the FPM method (Table 4). If
we consider the difference (power under RPM - power under FPM), then the
average difference over sample sizes of 250 and 500 individuals are 0.03 and 0.003
respectively.  The largest difference is 0.052, which occurs for a sample size of 250,
allele frequencies (0.2, 0.3), and error rates (0.05, 0.05).

Additionally, we note that the RPM method provides more accurate
estimates of the allele frequencies for each population. Bross26 noted that when
errors are present, precise estimates of population frequencies are problematic. As
Table 5 indicates, our simulations show that, under the full penetrance model, the
estimates of allele frequencies are biased toward 0.5 on average. That is, when
errors are present, more extreme allele frequencies tend to be estimated as being
closer to 0.5. This observation also explains why there is a loss in power when
analyzing under the FPM method, namely, the difference is allele frequencies
appears to be smaller. It should also be noted that the bias persists even for large
samples (500 individuals). In constrast, under the RPM method, the average of the
allele frequency estimates are much closer to the true values.

3.3 Estimation of Error Rates

Table 6 provides summary statistics for the estimation of error rates from 15 CEPH

pedigrees (listed in Table 3). We note that the average of the estimates iε̂ (i = 1,2)

are reasonably accurate. The largest difference between an average estimated
parameter and the true parameter is 0.006, occurring for the error rates (0.05, 0.01)
and for the allele frequencies (0.3, 0.7). We also note that the standard deviations of

the MLEs iε̂  can be fairly large, ranging from 0.009 to 0.036. This result indicates

the variability in the MLEs. One way to reduce this variability is to perform, say, N
genotyping experiments, and take the average of the MLEs over the N experiments
as the estimates of the error rates. In this way, the standard error becomes the
measure of the variability. Since the standard error is given by

deviation) standard ( , =σσ N , it reduces the variability of the MLEs by a factor

of .N  However, several genotyping experiments must then be performed,
increasing the cost of the study. Another way to decrease variability is to increase
the number of CEPH families genotyped initially, thereby increasing sample size.
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Table 5 - Summary statistics - case-control samples for SNP genotype data with errors
analyzed under (1) FPM (assuming no errors) and (2) RPM using correct values of error
rates

Population 1 Population 2
FPM RPM FPM RPM

Size 1allele
- pop 1

1allele
- pop 2

ε1  ε2

Avg.
1
allele

SD
1
allele

Avg.
1
 allele

SD
1
allele

Avg.
1
allele

SD
1
allele

Avg.
1
allele

SD
1
allele

POWER
250 0.2 0.3 0.01 0.05 0.238 0.019 0.200 0.020 0.332 0.021 0.300 0.023
250 0.4 0.5 0.01 0.05 0.427 0.021 0.401 0.022 0.520 0.022 0.500 0.023
250 0.2 0.3 0.05 0.01 0.198 0.018 0.200 0.019 0.292 0.020 0.300 0.021
250 0.4 0.5 0.05 0.01 0.386 0.022 0.400 0.023 0.480 0.022 0.500 0.023
250 0.2 0.3 0.05 0.05 0.230 0.019 0.200 0.021 0.320 0.021 0.300 0.023
250 0.4 0.5 0.05 0.05 0.411 0.022 0.402 0.025 0.501 0.023 0.502 0.025
500 0.2 0.3 0.01 0.05 0.239 0.013 0.201 0.014 0.333 0.014 0.301 0.015
500 0.4 0.5 0.01 0.05 0.427 0.015 0.401 0.016 0.520 0.016 0.500 0.017
500 0.2 0.3 0.05 0.01 0.198 0.013 0.200 0.013 0.293 0.014 0.301 0.015
500 0.4 0.5 0.05 0.01 0.387 0.016 0.401 0.017 0.481 0.016 0.501 0.017
500 0.2 0.3 0.05 0.05 0.230 0.013 0.200 0.015 0.320 0.015 0.301 0.017
500 0.4 0.5 0.05 0.05 0.411 0.016 0.401 0.018 0.501 0.015 0.501 0.017

NULL
250 0.3 0.3 0.01 0.05 0.332 0.020 0.300 0.021 0.331 0.020 0.299 0.022
250 0.5 0.5 0.01 0.05 0.521 0.021 0.501 0.022 0.520 0.022 0.500 0.023
250 0.3 0.3 0.05 0.01 0.297 0.020 0.305 0.022 0.297 0.020 0.305 0.021
250 0.5 0.5 0.05 0.01 0.489 0.021 0.510 0.023 0.489 0.022 0.510 0.023
250 0.3 0.3 0.05 0.05 0.324 0.019 0.305 0.021 0.324 0.020 0.305 0.022
250 0.5 0.5 0.05 0.05 0.509 0.021 0.510 0.024 0.510 0.021 0.511 0.024
500 0.3 0.3 0.01 0.05 0.337 0.014 0.305 0.015 0.336 0.014 0.304 0.015
500 0.5 0.5 0.01 0.05 0.522 0.015 0.502 0.016 0.523 0.015 0.503 0.016
500 0.3 0.3 0.05 0.01 0.294 0.015 0.302 0.015 0.294 0.014 0.303 0.015
500 0.5 0.5 0.05 0.01 0.484 0.016 0.504 0.017 0.485 0.015 0.505 0.016
500 0.3 0.3 0.05 0.05 0.326 0.014 0.306 0.016 0.325 0.014 0.306 0.015
500 0.5 0.5 0.05 0.05 0.506 0.015 0.507 0.017 0.507 0.015 0.507 0.017

Table 6 - Sample mean and standard deviations for maximum likelihood estimates of error
rates ε1 and ε2 using CEPH pedigree structures - 100 Replicates

Error
Rate ε1

Error
Rate ε2

1 Allele
Frequency

Average

1ε̂
Std. Dev.

1̂ε
Average

2ε̂
Std. Dev.

2ε̂
0.01 0.05 0.3 0.013 0.023 0.046 0.020
0.01 0.05 0.5 0.009 0.010 0.048 0.024
0.05 0.01 0.3 0.044 0.031 0.010 0.009
0.05 0.01 0.5 0.049 0.028 0.010 0.013
0.05 0.05 0.3 0.046 0.036 0.050 0.023
0.05 0.05 0.5 0.051 0.029 0.049 0.031
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4  Summary and Discussion

In this work, we present a method (RPM) that allows for random errors in the SNP
genotype data of cases and controls. The RPM method is more powerful at detecting
allele frequency differences in different populations (e.g., cases and controls) than
the method that assumes errorless genotype data (FPM), and provides more accurate
estimates of the allele frequency parameters on average. The main requirement of
the RPM method is that accurate estimates of error rates εi are needed.

We also provide a likelihood-based method for estimation of the error rates
εi using CEPH pedigrees. The average of the estimates are good, but the variability
from replicate to replicate suggests the need for multiple retests or larger initial
sample sizes. At present, genotyping CEPH pedigrees for the purpose of error
estimation would only be feasible (cost-wise) for one or a few SNP loci, and not for
whole-genome scans.

While it is true that for some the simulations, there was an observed
increase in the type I error rate for the RPM method, the increase was relatively
small (at most 7% of the replicates rejected the true null hypothesis at the 5%
significance level), and the increase only occurred for 25% of the simulations. One
possible solution to the increase in type I error would be an increase in the threshold
used in the RPM method (e.g., a cutoff of 4.0 rather than 3.84 to declare
significance at the 5% level). This is work in progress.
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