
AN ALGORITHM FOR STATISTICAL ALIGNMENT OF SEQUENCES
RELATED BY A BINARY TREE

JOTUN HEIN
Department of Ecology and Genetics,

University of Aarhus, Ny Munkegade, Aarhus, Denmark
jotun.hein@biology.au.dk

Keywords{ Sequence evolution, insertion-deletion model, dynamic pro-
gramming

Abstract

An algorithm is presented that allows the calculation of the probability of a set of
sequences related by a binary tree that has evolved according to the Thorne-Kishino-
Felsenstein model (1991) for a �xed set of parameters. There are two ideas underlying
this algorithm. Firstly, a markov chain is de�ned that generates ancestral sequences
and their alignment at two neighboring nodes in a tree. Secondly, a stochastic walk
on the binary tree, that de�nes a markov chain generating ancestral sequences and
their alignment at the internal nodes in the tree is described. The running time of
this algorithm is O(l2k), where l is the geometric average of the sequence lengths and
k the number of sequences - leaves at the binary tree. This could be improved to
O(lk).

Introduction
Proteins and DNA sequences evolve predominantly by substitutions, inser-

tions and deletions of single characters (amino acids/nucleotides) or strings of
these elements. During the last two decades, the analysis of the substitution pro-
cess has improved considerably, and has increasingly been based on stochastic
models. The process of insertions and deletions has not received the same at-
tention and is presently being analysed by optimisation techniques (minimizing
distance (parsimony) or maximising a similarity score).

A pioneering paper by Thorne, Kishino and Felsenstein1 proposed a well
de�ned time reversible markov model for insertion and deletions (denoted more
briey as the T KF -model) that allowed a proper statistical analysis for two se-
quences. Such an analysis can be used to provide maximum likelihood (pairwise)
sequence alignments, or to estimate the evolutionary distance between two se-
quences. Recently, an algorithm was presented by Steel and Hein2 that allowed
statistical alignment of sequences related by a star shaped tree - a tree with one
internal node. Here a recursion is presented that leads to a polynomial-time
algorithm for calculating the probability of k sequences that evolve on a binary
tree according to the T KF-model.

An alternative approach to statistical alignment has been taken by Alli-
son and Wallace3, Zhu, Liu and Lawrence,C.E.4, and Mitchison5. These are

Pacific Symposium on Biocomputing 6:179-190 (2001)

Bayesian or HMM approaches and also di�er from the T KF -model in not being
based on an evolutionary process, but on a probability measure on alignments
directly.

The TKF -model used three classes of variables1. Firstly, to each character
was associated a reversible substitution process (identical to the usual site sub-
stitution models that did not allow insertions or deletions). Secondly, to each
character is associated a deletion stochastic variable, Di, that is exponentially
distributed with parameter �. If this Di �res, character i is removed. Thirdly,
to the right of every character an insertion stochastic variable, called a mortal
link, Ii, was associated. It is exponentially distributed with parameter, �. If
Ii �res a character is chosen in the stationary distribution of the substitution
process. If the i{th character dies, Ii dies with it. To the left of the complete
sequence there is an immortal link that can give birth to characters (with as-
sociated mortal links), at the same rate as mortal links, but cannot die. This
prevents the empty sequence from becoming a sink.

We will let te denote the (scaled) time parameter that the markov process
operates on the edge of the tree incident with edge e. One possible scaling is to
measure time, so one unit corresponds to one expected event in the substitution
process per position. Since each edge will have di�erent time lengths, it will also
have di�erent time parameters and they are denoted by �e = te� and �e = te�,
where e refers to the e{th edge. If it is clear from the context which edge is in
question, the subscript e is suppressed in the following.

The probability that a sequence at the equilibrium distribution is l characters
long is (1 � �

�
)(�

�
)l. The probability of a speci�c sequence of length l is (1 �

�
�
)(�

�
)l
Q

i=1;l �s[i] where s[i] is the i{th character of the sequence and �s[i] the
probability of this character in the equilibrium distribution of the substitutional
process.

Let1 pk(t) (resp. p
0

k(t)) denote the probability that after duration t, a mortal
link has exactly k descendants, and the �rst of these is (resp. is not) the original
mortal link. Let p00k(t) denote the probability that after duration t an immortal
link has exactly k descendants (including itself).

Let the immortal link be labelled with a * and the mortal link and associated
character by a # . We have1: For k > 0

pk(t) = p
�

� � � �

#
1 2 k

�
(t) = e��t[1� ��(t)][��(t)]k�1 ;

p0k(t) = p
�

� � � � �

� # # # # #
1 2 k

�
(t) = [1� e��t � ��(t)][1� ��(t)][��(t)]k�1 ;

p00(t) = p
�

#
�

�
(t) = ��(t);

Pacific Symposium on Biocomputing 6:179-190 (2001)

and
p00k(t) = p

�
� � � � � �

� # # # # #
1 2 k

�
(t) = [1� ��(t)][��(t)]k ;

where �(t) = 1�e(���)t

���e(���)t
: In the following � is short for �(t) and �e is short for

�(te).
To exemplify these probabilities we have that

p
�

C � � � � � �

P T D I G S L
1 2 3 4 5 6 7

�
(t) = �C � p7(t) � PC!P � �T � :: � �L;

since the expression on the right hand side is the probability of selecting a
C, times the probability that a character survives itself and has 6 additional
children, times the probability of the substitutional evolution that a C mutates
to a P , and lastly the probabilities that the new children are T;D; : : : ; L.

Any pairwise alignment can be represented by a sequence of the above three
alignment building blocks having probabilities pk(t), p

0

k(t) and p00k(t), respec-
tively. Each alignment building block describes fate of each character in the
upper (parent) sequence into the lower (child) sequence. The decomposition of
alignments into these building blocks and their easily obtainable probabilities
were essential in the formulation of a dynamical programming algorithm that
calculates the probability of observing two complete sequences. The probability
of an alignment of two complete sequences is the product of the probability of the
length of the upper sequence, l1, ((1�

�
�
)(�

�
)l1), multiplied by the probabilities

of all its alignment blocks and the probabilities of the observed substitutional
molecular evolution (matched characters).

An alignment block starting with two aligned immortals (those with prob-
ability p00k(t)) can be generated by a markov chain that starts in �

�

�
parent
child

�
(stops in E) and has the following transition probabilities:

parent �

child #
E

parent �

child �

�� 1 - ��

parent �

child #
�� 1 - ��

Blocks tracing the fate of a mortal link in the parent sequence down in the
child sequence (those with probabilities pk(t) and p0k(t)) can be generated by a
chain that starts in #

�
with probability (1� e��) and in #

with probability
e��, and then proceeds according to the following transition probabilities:

Pacific Symposium on Biocomputing 6:179-190 (2001)

parent �

child #
E

parent #

child #
�� 1 - ��

parent �

child #
�� 1 - ��

parent #

child �

(1� �� � e��)=(1� e��) (��)=(1� e��)

Generating Ancestral Sequences and Their Alignments.
The basic idea in constructing recursions allowing the calculation of the

likelihood of the observed sequences on the leaves is to construct a markov chain
that generates ancestral sequences (without their actual characters) and their
alignment with a probability that corresponds to the T KF process. Conditioned
on the realisation of this process it is easy to calculate the probability of the
observed sequences.

Thorne (pers. comm.) has together with Gary Churchill in another context
used a similar markov chain in unpublished work generating sequence pairs.

The markov chain is constructed by combining the alignment block markov
chains with a parent sequence generating markov chain. A markov chain gen-
erating one ancestral sequence can be made using three states - start (*) and
stop (E) state plus a (#) state that jumps to itself with probability (�=�) giving
the correct geometric distribution. The procedure is most easily described by
an example, and we consider a binary tree with 4 leaves. Due to the time re-
versibility of the T KF process, likelihood value is independent of the placement
of the root and the binary tree with four leaves can be arbitrarily rooted. We
choose to root it at the ancestral sequence, a1 (see �gure 1).

In the T KF process, two ancestral sequences will have two matched im-
mortal links and these matched immortal links will be the starting state of the
markov chain. A markov chain can be constructed that combines the probabil-
ity of an additional character in the ancestral sequence and if such a character
is chosen uses the markov chain generating alignment blocks to create such
a block, before choosing yet another character in the ancestral sequence (see
Table 1). There are �ve states in the markov chain. Two special states that
starts

�
�

�

�
and thus ends

�
E
E

�
the markov chain and three states that cor-

responds to the possible con�gurations in a column in the alignment of two

Pacific Symposium on Biocomputing 6:179-190 (2001)

�
�
�
�
��	

-�
�
�
�
���

@
@
@
@
@@R

@
@
@
@
@
@I
s1

s3

s2

a1 a2

s4

Figure 1: Tree arbitrarily rooted at a1 with 2 internal nodes and 4 leaves

a1 - # # E
a2 # # - E

a1 �

a2 �

�� �=�(1 � ��)e�� �=�(1 � ��)(1 � e��) (1 � �=�)(1 � ��)

a1 �

a2 #
�� �=�(1 � ��)e�� �=�(1 � ��)(1 � e��) (1 � �=�)(1 � ��)

a1 #
a2 #

�� �=�(1 � ��)e�� �=�(1 � ��)(1 � e��) (1 � �=�)(1 � ��)

a1 #
a2 �

(1�e�����)

1�e��
��e��

1�e��
��

�(���)

1�e��

Table 1: Table of transition probabilities among states.

sequences
�

�

�

�
. Assume the ancestral sequences and their align-

ment in Table 2 has been observed. What is the probability of for instance the
�rst transition?

The realisation of the process starts in
�

�

�

�
, then jumps to

�
#
#

�
. This in-

volves 3 independent events. First, that the immortal link in a1 had no children
(probability (1���)). Then that the ancestral sequence at a1 is elongated by one
character (probability �=�) and lastly that this character has not been deleted
in a2 (probability e��). This gives a combined probability of �=�(1� ��)e��.
This process is continued until the end state

�
E
E

�
is reached.

a1 * # - # # E

a2 * # # - # E

�=�(1 � ��)e�� �� �=�(1 � ��)(1 � e��)
��e��

1�e��
(1 � �=�)(1 � ��)

Table 2: Example of ancestral sequences and their alignment

Pacific Symposium on Biocomputing 6:179-190 (2001)

The most complicated transition probabilities start at the state
�

#
�

�
. Going

to
�

�

#

�
will choose within the case with no survival of the character (probability

1� e��), if the character goes extinct (no children and not surviving - uncon-
ditional probability ��). Chosing among the possibility of going to [

�
#
#

�
and�

#
�

�
] or E amounts to deciding between elongation of the ancestral sequence

(��) or not elongating (1 � ��). Choosing among
�

#
#

�
or
�

#
�

�
again is to

choose between survival and non-survival of a character.

Dynamical Programming Recursion for 4 sequences.
Let P�(si) be the probability of s1[1; : : : ; i1]; : : : ; s4[1; : : : ; i4] given that the

ancestral sequences were generated by a markov chain (Table 1) ending in
markov chain state �. Let H be a 0,1 vector with four elements that for ev-
ery leaf indicates if the character there has survived undeleted (1) from its
parent character or if it has been inserted (0). Let lj be the length of the j{
th sequence. Let is refer to s1[i1 + 1; : : : ; l1]; : : : ; s4[i4 + 1; : : : ; l4] and

isk be
s1[i1 + 1; : : : ; k1]; : : : ; s4[i4 + 1; : : : ; k4]. Let P (� ! �) denote the probability
of the transition from � to � according to Table 1. Let P (isk;H j �) be the
probability that the subsequences isk have evolved from the con�guration of
characters at ancestral nodes corresponding to � and that character sj [ij +1] is
a survived character if H(j) = 1 and otherwise it is an inserted character.

The probability of the complete sequences can then be calculated through
following recursions:

P�(sk) =
X
�

X
i2S�

X
H2C�

P�(si)P(� ! �)P(isk;H j �): (1)

S� are all pre�xes, si, of sk, where i(j) = k(j) if �(parent(j)) =0 �0. Parent
refers to the parent node on the tree, which is the argument to �. This condition
prevents a substring from being nonempty, but having no parent character that
has generated it. C� is the set of 4-dimensional vectors over f0; 1g, obeying the
restriction H(j) = 0 if �(parent(j)) =0 �0. The restriction guarantees that H
and � de�ne a connected set on T .

In recursion (1) two points should be noted. First, P�;�(sk) , can be calcu-
lated directly, serving as initialisation of the recursion. Second, P�(sk), is present
on both sides of the equation, but the coeÆcients in front of them on the left
side can be calculated easily, allowing a proper recursion to be formulated.

The only quantity on the left side of equation (1) that is diÆcult to calculate

Pacific Symposium on Biocomputing 6:179-190 (2001)

is P (isk;H j �). The exact value of P (isk;H j �) is

F (H; is)

0
@ Y

j:H(j)=0

p0k(j)�i(j)+1(tj)�sj[i(j):k(j)]

1
A
0
@ Y

j:H(j)=1

pk(j)�i(j)+1(tj)�sj[i(j)+1:k(j)]

1
A

F (H; is) is a function that evaluates the probability of observing the characters
at the leaves j, where H(j) = 1 using Felsenstein's algorithm6. F can also
perform the same evaluation directly on a tuple of characters and gap signs.
The above is then the product of

1. the probability of the observed substitutional evolution (the F-function).

2. the probability of the strings that have been created using alignment
blocks like

�
� � � �

� # # # #

�
. This probability also includes the proba-

bility of picking the inserted characters.

3. the probability of the strings that have been created using alignment
blocks like

�
� � � �

#

�
. This probability also includes the proba-

bility of picking the inserted characters. This does not include the prob-
ability of the �rst character in the corresponding substring as this has
evolved from its parent and has not been inserted.

Following a simple example, based on the four sequences: GCTAC, AATTAG,
CGGAG and CCTG.

s1 G C T A - C
s2 A A T T A G
a1 # -

� ! �

a2 # -
s3 C G G A G
s4 C C T G - -

In this case H = (0; 1; 1; 0) and � =(#,#). Assume � =(#,-). The �rst columns
including � signi�es the probability of those sequences given their ancestral
sequences were generated by a markov chain ending in � and no assertion is

Pacific Symposium on Biocomputing 6:179-190 (2001)

otherwise made about their alignment. Then comes the transition from � to
�. The columns after � signify the remaining part of the sequences given that
they have been derived from two ancestral characters and that these ancestral
characters survived in s2 and s3. The contribution of this speci�c con�guration
to the whole sum,

P#;#(GCTAC;AATTAG;CGGAG;CCTG);

would be the product of following three factors:

P#;�(GCTA;AATT;CGG;CCTG)

P (#� ! ##) =
e����

1� e��

p01(t1) � �C � p2(t2) � �G � p2(t3) � �G � p
0

0(t4) � F (�; A;A;�)

The �rst factor is known because it has been calculated recursively. This
algorithm allows an O(l8) algorithm to be formulated. The recursions have to
be applied to all pre�xes and possible ending states, (�; sk). This accounts for a
factor constant � l1�; : : : ; �l4. For each �xed (�; sk), the right side of the recursion
has to be calculated. The summing over (�! �) and H is a constant factor and
P�(

isk) is constant, since it is tabulated. The additional growth in complexity
is due to the summation over all possible pre�xes (of the pre�xes) that have
evolved from the markov chain ending in � and the remaining suÆxes that have
evolved from the � assignment to internal nodes.

Recursion for arbitrary number of sequences.
Extending the algorithm for four sequences to an arbitrary number of se-

quences related by known tree requires some additional concepts. A markov
chain is used to generate the ancestral sequences and their alignment in propor-
tion to the T KF process. Two points should be noted about such alignments.
Firstly, the columns with characters will constitute a connected set on the tree,
relating the sequences and this will therefore itself be a tree. The leaves of this
tree only relating the ancestral sequences will be called internal leaves. Secondly,
the T KF process does not itself unambigously de�ne the order of all characters
in the alignment. The simplest illustration of this is

Pacific Symposium on Biocomputing 6:179-190 (2001)

@
@
@
@R

#-
�
�

�
�	

-#

a

-#
s1 s2

In this case the character at the root did not survive itself, but left one
descendant. This happened in both the left branch and the right branch. How
are they to be aligned? Obviously the �rst column must be (s1,a,s2) = (-,#,-),
but which of the characters at the leaves should come �rst? The evolutionary
history does not specify this, so the alignments

s1 - # - - - #
a # - - or # - -
s2 - - # - # -

are evolutionary equivalent.
A further complication relative to the simple case is that the whole run of

inserted characters at a1 cannot be created immediately. The children of the
�rst character must be created before the children of the second character etc.
all the way down the tree.

Here is an example with 3 ancestral sequences:

@
@
@@R

- - - # # # a1

@
@
@@R

- - - - - - - a

a2

- # # # # - - - a2

a

a1

In this case the character (at a) has �ve descendants (at a1) and survived
itself. The second character (of the �ve descendants at a1) has four descendants
(at a2) including itself. These four grandchildren must be generated before

Pacific Symposium on Biocomputing 6:179-190 (2001)

characters 3-5 at a1. One way to handle this is to create the children of a
character before creating its siblings to the right.

With these points in mind it is possible to generalise the markov chain
generating ancestral sequences on neighboring nodes to the set of ancestral
sequences at all internal nodes.

Fix one node as the root and then traverse the tree depth-�rst and for
instance left-child before right-child. Such an order of traversal will pick out
one alignment among the evolutionary equivalent. In the example above, the
�rst alignment is chosen because (a, s1) will be visited before (a, s2).

This process can be described as a stochastic walk on the tree relating the
ancestral sequences. Each time an edge is traversed a process analogous to the
process relating the two ancestral sequences in the 4-sequences with 2 ancestral
sequences case is performed.

Following procedure written as pseudocode will perform a random walk on
the tree and ancestors and their alignments in accordance with the distribution
dictated by the T KF process and then select among evolutionary equivalent
alignments according to the depth-�rst, order of children traversal dictated by
the traversal order of this tree.

Let ANCESTORS be a 2-dimensional array, where each entry has either *, -
or # at each entry. It has dimensions [ancestors][0;1]. Pre�ll this with �. The
pseudocode will now place "*" and "#" signs according to the T KF process.

In the pseudocode, the function random will choose a real number uniformly
betweeen 0.0 and 1.0. The variable of type is necessary to handle the immortal
links in the begining of the alignment - where the treewalk has to continue all
the way to the internal leaves, since they cannot be deleted.

Variables used:
parent, child, enfant : node in tree;
type: immortal (*), mortal (#)
column: integer initialized to 0.

siblings(child,type) (processes a new character)
f ANCESTORS[child][column]=type;
for (enfant member of child's children) treewalk(child, enfant, type);
column++;

g

treewalk(parent, child, type) (processes a character down an edge)
f if (type � random < e��) f

Pacific Symposium on Biocomputing 6:179-190 (2001)

ANCESTORS[child][column]=type;
for (enfant member of child's children) treewalk(child, enfant, type);
while (random < ��) siblings(child,type);

g
else if (random > ��=(1� e��)) f
siblings(child,type);
while (random < ��) siblings(child,type);
g

g
g

The procedure must be called at the begining and each time the ancestral
sequence at the root is chosen to be elongated by one character. This can be
done as follows:

siblings(root, immortal)
while (random < �=�) siblings(root,mortal);

When no more elongations are chosen at the edges and the ancestral sequence
at the root is completed, the whole process is terminated.

The steps of this stochastic process have to be grouped, so each group of
consecutive steps creates one column in the alignment. This is done by de�n-
ing a new group each time the last step �nished tracking a character and its
rami�cations down the tree. The state of the tree walking process can at that
point be summarized by labelling all the nodes where the last character didn't
survive and so far had no additional children with a "-". Due to the nature of
the process, this will de�ne a subtree hanging from the root and terminating
in internal laves or in nodes labelled "-". Nodes above these are labelled "#".
The set of such node labellings is the state space of the markov chain. The
transition probability from state to the next is the product of the probabilities
of three sets of events.

First, a set of edges where it is chosen that the parent could not have addi-
tional children.

Second, a new character is created by either elongating the ancestral se-
quence or deciding that the parent at an edge should have an additional child.

Pacific Symposium on Biocomputing 6:179-190 (2001)

Third, the fate of the new character is traced down the tree. The probability
of such a transition will be the product of

Q
e��e and

Q
(1� e��e) for the edges

with survival and no survival, respectively.
Using this markov chain the central recursion for 4 sequences (eqn. 1) can

now be used for k sequences related by a binary tree. The size of the set of states
in the markov chain is less than 2k, due to the restriction that the positions in
an alignment column with # must be a connnected set, so # and - cannot be
chosen freely.

Discussion
The algorithm presented here is slow. However, an O(lk) algorithm is pos-

sible by using the geometric tails of the p-functions to make an algorithm, that
only adds 0 or 1 character of the leaf sequences at a time. Doing this in the
general case is slightly more technical and will not be pursued here.

The present method could possibly be made to work for four to seven se-
quences by di�erent methods of corner cutting allowing the amount of computa-
tion to be reduced. For larger number of sequences it seems that markov chain
monte carlo (MCMC) methods would be the obvious choice.

Acknowledgements. I am grateful to Anne-Mette Krabbe, Bjarne Knudsen,
Carsten Wiuf, Jens Ledet Jensen, Christian Storm and Mike Steel for critical
comments on the manuscript.

References
1. J.L. Thorne, H. Kishino and J. Felsenstein, An evolutionary model for maxi-
mum likelihood alignment of DNA sequences, J. Mol. Evol. 33, 114-124 (1991).

2. Steel, M. and J.Hein Applying the Thorne-Kishino-Felsenstein model to
sequence evolution of a star tree, Appl. Math. Lett. (submitted) (2000).

3. Allison,L. and Wallace, C.S., The posterior probability distribution of align-
ments and its application to parameter estimation of evolutionary trees and to
optimisation of multiple alignments, J. Mol. Evol. 39, 418-430 (1994).

4. Zhu,J.,Liu,J.S. and Lawrence,C.E. Baysian adaptive sequence alignment al-
gorithms, Bioinformatics 14, 25-39 (1998).

5. G. Mitchison, A probabilistic treatment of phylogeny and sequence alignment,
J. Mol. Evol. 49(1), 11-22 (1999).

6. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likeli-
hood approach, J.Mol.Evol. 17, 368-76 (1981).

Pacific Symposium on Biocomputing 6:179-190 (2001)

