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Abstract

This paper discusses the issues involved in implementing a dynamic

programming algorithm for biological sequence comparison on a general-

purpose parallel computing platform based on a �ne-grain event-driven

multithreaded program execution model. Fine-grain multithreading per-

mits e�cient parallelism exploitation in this application both by taking

advantage of asynchronous point-to-point synchronizations and commu-

nication with low overheads and by e�ectively tolerating latency through

the overlapping of computation and communication. We have imple-

mented our scheme on EARTH, a �ne-grain event-driven multithreaded

execution and architecture model which has been ported to a number of

parallel machines with o�-the-shelf processors. Our experimental results

show that the dynamic programming algorithm can be e�ciently imple-

mented on EARTH systems with high performance (e.g., speedup of 90

on 120 nodes), good programmability and reasonable cost.

1 Introduction

Today, one of the most powerful methods for inferring the biological function
of a gene (or the protein that it encodes) is by sequence similarity searching on
protein and DNA sequence databases. With the development of rapid methods
for sequence comparison, discoveries based solely on sequence homology have
become routine. A good introduction can be found in a book by Waterman.1

Although sequence comparison algorithms based on the dynamic program-
ming method | such as Needleman-Wunsch 2 and Smith-Waterman 3 | pro-
vide optimal solutions, they are computationally expensive. Therefore, most
current sequence comparison methods used in practice, e.g., BLAST 4 and
FASTA,5 are based on heuristics which are much faster, but do not produce
optimal results. Speed is important given the sizes of the sequence databases
currently available, but it comes at the price of getting incomplete results.

In this paper, we are interested in studying how to apply the computational
power of parallel computers to speed up the process of comparing sequences,
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but without having to compromise by missing some optimal results. We look
at dynamic programming algorithms for sequence comparison. The �rst al-
gorithm introduced for �nding the optimal alignment between sequences, the
Needleman-Wunsch algorithm,2 used this technique. This algorithm had a
great impact on later sequence alignment algorithms, such as the well-known
Smith-Waterman method 3 and others.6;7 Therefore, speeding up dynamic pro-
gramming algorithms for �nding optimal solutions to sequence comparisons is
an important problem in computational biology and bioinformatics.

The dynamic programming algorithm works by computing the so-called
similarity matrix. As will be discussed in detail in Section 2, the computation
at each element in this matrix depends on the results of three other elements:
its nearest west, northwest and north neighbors in the matrix. Such �ne-grain
data dependences present serious challenges for e�cient parallel execution on
current parallel computers. To meet such challenges, we exploit the power of
a multithreaded execution and architecture model, such as the EARTH (E�-
cient Architecture for Running THreads) model,8 where �ne-grain parallelism
can be e�ciently exploited on top of a parallel machine based on o�-the-shelf
microprocessors. Under the EARTH model, the computation of an element
(or a block of elements) of the similarity matrix can be assigned to one thread.
The thread scheduling under EARTH is event-driven; a thread will become
enabled if and only if the events on which it depends have arrived. There-
fore, we can map the �ne-grain data dependences into such events, and the
enabling and execution of the threads in di�erent points are performed in an
asynchronous fashion. With similarity matrices above a reasonable threshold,
this mapping provides ample thread parallelism to keep the processors usefully
busy. Maintaining multiple enabled threads in the same processor also pro-
vides the ability to tolerate interprocessor communication and communication
latencies, and to sustain high and smooth scalability.

2 Sequence Comparison Using Dynamic Programming

The �rst algorithm for comparing biological sequences using the dynamic pro-
gramming technique was proposed by Needleman and Wunsch in 1970.2 The
algorithm consists of two parts: the calculation of the total score indicating
the similarity between the two given sequences, and the identi�cation of the
alignment(s) that lead to the score. In this paper we will concentrate on the
calculation of the score, since this is the most computationally expensive part.

The idea behind using dynamic programming is to build up the solution
by using previous solutions for smaller subsequences. The comparison of the
two sequences X and Y, using the dynamic programming algorithm, is illus-
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trated in Figure 1. This algorithm �nds global alignments by comparing entire
sequences. The sequences are placed along the left margin (X) and on the top
(Y). A similarity matrix is initialized with decreasing values (0;�1;�2;�3; : : :)
along the �rst row and �rst column to penalize for consecutive gaps (insertions
or deletions).

Sequence
X

Sequence
Y

score       1 1 0 -1 1 1 1
TOTAL= 4

TOTAL= 4
score       1 1 -1 0 1 1 1

sequence X  A T  - A A G T
sequence Y  A T  G C A G T

sequence X  A T A  - A G T
sequence Y  A T G  C A G T

G

A

G

A

A
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Figure 1: Similarity matrix and global alignments

The other elements of the matrix are calculated by �nding the maximum
value among the following three values: the left element plus gap penalty, the
upper-left element plus the score of substituting the horizontal symbol for the
vertical symbol, and the upper element plus the gap penalty. For the general
case where X = x1; : : : ; xi and Y = y1; : : : ; yj , for i = 1; : : : ; n and j = 1; : : : ;m,
the similarity matrix SM [n;m] is built by applying the following recurrence
equation, where gp is the gap penalty and ss is the substitution score:

SM [i; j] = max

8<
:

SM [i; j � 1] + gp

SM [i� 1; j � 1] + ss

SM [i� 1; j] + gp

In our example, gp is -1, and ss is 1 if the elements match and 0 otherwise.
However, other general values can be used instead.

Following this recurrence equation, the matrix is �lled from top left to
bottom right with entry [i; j] requiring the entries [i; j � 1], [i� 1; j � 1], and
[i�1; j]. Notice that SM [i; j] corresponds to the best score of the subsequences
x1; : : : ; xi and y1; : : : ; yj . Since global alignment takes into account the entire
sequences, the �nal score will always be found in the bottom right hand corner
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of the matrix.a In our example, the �nal score 4 gives us a measure of how
similar the two sequences are. Figure 1 shows the similarity matrix and the
two possible alignments (arrows going up and left).

3 Parallel Computation | Challenges and Problem Formulation

A parallel version of the sequence comparison algorithm using dynamic pro-
gramming must handle the data dependences presented by this method, yet
it should perform as many operations as possible independently. This may
present a serious challenge for e�cient parallel execution on current general
purpose parallel computers, i.e., MIMD (Multiple Instruction stream, Multiple
Data stream) computers.

Given the data dependences presented by the algorithm, the similarity
matrix can be �lled row by row, column by column, or anti-diagonal by anti-
diagonal (i.e., all elements (i; j) for which i+ j is a �xed value). The problem
with the �rst two approaches is that most of the elements in a row or col-
umn depend on other elements in the same row (column). This means the
row (or column) cannot be computed in parallel. On the other hand, the ele-
ments in an anti-diagonal depend only on previously calculated anti-diagonals.
This means that parallel computation can proceed as a wave front across the
similarity matrix, i.e., by computing successive anti-diagonals of the matrix
simultaneously, during successive time steps.

Although it exposes parallelism, the anti-diagonal approach faces a few
challenges when it comes to an e�cient parallel implementation. First, the
sizes of the anti-diagonals vary during the computation, which leads to unbal-
anced work among processors. For example, assume six processors, one per
symbol (row) of sequence X, are available to compute the matrix in Figure 1.
The computation would start with processor 1 calculating the element [1,1]
(assuming rows and columns are numbered 0,1,2 . . . ). Then, in the next time
step, processors 1 and 2 would calculate the elements [1,2] and [2,1] respec-
tively, and so on. This way, processor 6, for instance, would have to wait 6
time steps before starting to work, and by the time we get to time step 8,
processor 1 would already be idle. In the worst case, where X and Y are the
same length, each processor would only be used half of the time on average.

Another challenge has to do with the number of elements to be computed
by each processor in each time step. In the previous example we assumed that
each processor would calculate one element of the matrix at a time. However,

aWhen this information is stored during the calculation of the matrix, the second part

of the algorithm, identi�cation of the alignment, can be easily computed by following the

pointers from the lowest right corner to the upper left corner.
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this �ne-grain computation would require a very large number of processors
if real biological data is to be considered. An additional problem is the high
communication overheads for such an implementation, which would require
data exchange among all active processors at every time step.

In this paper, we are interested in the following challenging question: Can
the dynamic programming algorithm be e�ciently implemented on general-
purpose parallel computers with high performance and e�ciency, good pro-
grammability, and reasonable cost? Here we are particularly interested in
parallel machines made mainly of commodity o�-the-shelf microprocessors
and stock hardware. The requirement of \high performance" implies good
speedup and scalability, and \good programmability" and \reasonable cost" fa-
vor general-purpose parallel computer solutions as opposed to special-purpose
hardware or exotic processor technology.

4 Parallel Implementation of the Dynamic ProgrammingAlgorithm

The previous section mentioned that computing the anti-diagonal element by
element would lead to expensive communication overheads. For each element,
the program would compute a single maximum, yet would have to send the
result to three processors (though one of these may be the same processor).

One solution to this problem is to divide the similarity matrix into rect-
angular blocks, as shown in Figure 2(a). In this example, the program would
compute block 1 �rst, followed by 2 and 5, etc. If each block has q rows and r

columns, then the computation of a given block requires only the row segment
immediately above the block, the column segment to its immediate left, and
the element above and to the left | a total of q+r+1 elements. For instance,
if each block has 4 rows and 4 columns, then each block has to compute 16
maxima after receiving 9 input values. The communication-to-computation
ratio drops from 3:1 to 9:16 | an 81% reduction!

Note that this blocking will decrease the maximum achievable parallelism
somewhat, by introducing some sequential dependences in the code. However,
given the sizes of the current problems and the parallel machines currently
used, this potential loss will not be a limiting factor.

The load-balancing problem can be addressed by putting several rows of
blocks (or \strips") on the same processor. Figure 2(b) illustrates this ap-
proach when four processors are used. The �rst and �fth strips are assigned
to processor 1, the second and sixth strips are assigned to processor 2 and so
on. This helps to keep all processors busy through most of the computation.
For example, processor 1 initially works with the �rst strip, then simultane-
ously with the �rst and �fth strip, then �nally only with the �fth strip. The
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Figure 2: Partition of the similarity matrix

processor utilization rises to 75%.

4.1 The EARTH Multithreaded Architecture | Our Platform

EARTH 8;9 supports a multithreaded program execution model in which a
program is viewed as a collection of threads whose execution ordering is deter-
mined by data and control dependences explicitly identi�ed in the program.
Threads, in turn, are further divided into �bers which are non-preemptive and
scheduled according to dataow-like �ring rules, i.e., all needed data must be
available before it becomes ready for execution. Programs structured using
this two-level hierarchy can take advantage of both local synchronization and
communication between �bers within the same thread, exploiting data local-
ity. In addition, an e�ective overlapping of communication and computation is
made possible by providing a pool of ready-to-run �bers from which the pro-
cessor can fetch new work as soon as the current �ber ends and the necessary
communication is initiated.

The EARTH model de�nes a common set of primitive operations required
for the management, synchronization and data communication of threads.
Each node in an EARTH system consists of an execution unit (EU), a syn-
chronization unit (SU), queues linking the EU and SU, local memory, and an
interface to interconnection network. While the EU merely executes �bers, i.e.,
does the computation, the SU is responsible for scheduling and synchronizing
threads, handling remote accesses and performing dynamic load balancing.

Although designed to deal with multiple threads per node, the EARTH
model does not require any support for rapid context switching (since �bers
are non-preemptive) and is well-suited to running on o�-the-shelf processors.
EARTH systems have been implemented on a number of platforms: MANNA
and PowerMANNA, IBM SP2, Sun SMP cluster and Beowulf. EARTH pro-
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Figure 3: Computation of the similarity matrix on EARTH

grams are written using the programming language Threaded-C.8;9 This is
an extension of the ANSI-C programming language which, by incorporating
EARTH operations, allows the user to indicate parallelism explicitly.

4.2 Our Multithreaded Implementation

Our multithreaded implementation follows the description given at the begin-
ning of this section. Generally speaking, it assigns the computation of each
strip to a thread, having 2 independent threads per node. However, in order
to better overlap computation and communication, blocks on a strip are ac-
tually calculated by two �bers within a thread. These �bers are repeatedly
instantiated to compute one block at a time, and only one of the two �bers of
each thread can be active at a particular time.

The decision of having two alternating �bers within each thread was based
on the following reasoning. It would be a waste of resources if we had one sep-
arate �ber for each block, in each strip, since only one block can be calculated
at a time. Having just one �ber for all blocks is also not a good idea because
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this �ber would get delayed due to the synchronization signal coming from
the �ber immediately below. This signal acknowledges the receipt of data |
without it the �ber, re-instantiated, would be allowed to overwrite the previous
data. Thus, with just one �ber, computation would not be allowed to proceed
until this acknowledgment signal is received. With the addition of an extra
�ber we can further overlap computation and communication since one of the
�bers can wait for the acknowledgment while the other starts working on the
following block. (This double-bu�ering and acknowledgment scheme is used
with other parallel applications on EARTH.8;10)

A snapshot of the computation of the similarity matrix using our multi-
threaded implementation is illustrated in Figure 3. A thread is assigned to each
horizontal strip and the actual computation is done by �bers labeled E(ven)
and O(dd). The �gure shows the computation of the main anti-diagonal of
the matrix. The arrows indicate data and synchronization signals. For exam-
ple, processor 2 sends data (downward arrows) to processor 3 and receives data
from processor 1 | i.e., �bers E of strips 2 and 6 send data to �bers E of strips
3 and 7, and �bers O of strips 1 and 5 send data to �bers O of strips 2 and 6.
Fibers within a same thread, that is, associated with the same strip, send only
a synchronization signal (horizontal arrows) since they share data local to the
thread to which they belong. Finally, dotted upward arrows acknowledge the
receipt of data so that the �ber receiving this signal can be re-instantiated to
calculate another block of the same strip.

During the initialization phase, each thread grabs a piece of the input
sequence X. This piece is all a thread needs from sequence X so the whole
sequence need not be stored. Moreover, after computing a block, each �ber
sends to the �ber beneath a piece of the sequence Y being compared. By
doing so, we minimize the initialization delay that occurs when the nodes are
reading sequence X from the server. Furthermore, since subsequent pieces of
sequence Y can be stored in the same memory area, the demands for space are
considerably reduced.

5 Results

The experiments in this study are based on the EARTH implementation for
the MANNA parallel machine. Our experiments were run using both a 20-node
MANNA and SEMi, an accurate simulator of the MANNA.8;9 The di�erence
in the clock cycle counts between the simulator and the real MANNA have
been measured and were less than 3% for the same Threaded-C code. The
simulator allows one to test di�erent con�gurations for the EARTH system.
In this paper we consider only the most conservative of them, one in which each
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node contains only a single o�-the-shelf microprocessor, and the operations of
the EU and SU must be performed therefore on the same processor.

The proposed multithreaded dynamic-programming algorithm for sequence
comparison has been implemented under the EARTH experimental platform.
The results are reported for sequences ranging from 512 to 10K elements. Fig-
ure 4 shows absolute speedups for various problem sizes (sizes list the length
of the X and Y sequences). Absolute speedup compares the running time of
the parallel code to the best sequential program, so that the results account
for multithreading overheads.

The main experimental results include: b

� Speedup: The multithreaded implementation has achieved impressive
speedup: up to 90 on a 120-node platform.

� Scalability: A good scalability is obtained from 4 up to 120 nodes.

� Processor E�ciency: Very good e�ciency has been achieved; on 8
nodes, processors are utilized 99% as much as on one node running se-
quential code. Even on 120 nodes, processors achieve 75% utilization on
the largest problem size.

� Programmability: The good performance is achieved using a straight-
forward partitioning method, without requiring expensive compiler sup-
port for optimal partitioning algorithms.

� Reasonable cost: This is achieved on an EARTH platform based on
o�-the-shelf general-purpose microprocessor technology.

6 Related Work

Di�erent parallel implementations of pair-wise sequence comparison algorithms
using dynamic programming techniques range from the exploitation of instruc-
tion level parallelism in uniprocessor machines 11;12 to SIMD 13;14 (Single In-
struction stream, Multiple Data stream) and MIMD implementations.15;16 Re-
lated problems such as sequence alignment and database search have also made
extensive use of parallel hardware, from special-purpose VLSI to recon�gurable
hardware and programmable co-processor designs.14;17 Some work has been re-
ported in the �eld of hardware accelerators18 and some basic software platforms

bThe authors are not aware of any published work reporting results, for a parallel MIMD

implementation of the dynamic programming algorithm, for the range of input data and

number of processors reported in this paper.
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for parallel computers have been developed which provide a general framework
for sequence similarity searching.19 None of these implementations have made
use of �ne-grain multithreading, and in this paper we have shown that this
greatly improves the performance of the dynamic programming algorithm.

7 Conclusion

The aim of this study is to apply the computational power of parallel com-
puters to speed up the process of comparing sequences, but without having to
compromise with incomplete results (e.g., missing some optimal results). We
looked at the dynamic programming algorithm and presented a multithreaded
parallel implementation under the EARTH model | a �ne-grain multithreaded
execution and architecture model.

The implementation uses straightforward data partitioning but takes ad-
vantage of the special features of the EARTHmultithreading model. Fine-grain
threads (\�bers") in the code are synchronized strictly according to which data
they need, and local data is shared so that data locality can be exploited.
The result is that the current implementation of the dynamic programming
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on EARTH runs completly asynchronously and is able to e�ectively overlap
communication and computation.
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