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Abstract

In this paper we consider the problem of extracting information from
the upstream untranslated regions of genes to make predictions about
their transcriptional regulation. We present a method for classifying
genes based on motif-based hidden Markov models (HMMs) of their pro-
moter regions. Sequence motifs discovered in yeast promoters are used
to construct HMMs that include parameters describing the number and
relative locations of motifs within each sequence. Each model provides
a Fisher kernel for a support vector machine, which can be used to pre-
dict the classi�cations of unannotated promoters. We demonstrate this
method on two classes of genes from the budding yeast, S. cerevisiae.
Our results suggest that the additional sequence features captured by
the HMM assist in correctly classifying promoters.

1 Introduction

The regulation of transcription is largely dependent on the complex inter-
actions of DNA binding proteins with regulatory sequence elements in the
promoter regions of genes. While there is a wealth of information regarding
promoters and the basis of their inuence on gene transcription, it is usually
very diÆcult to identify coregulated genes. The availability of the sequences
of entire genomes, coupled with computational methods for sequence analysis
and classi�cation, provides an opportunity to perform this task automatically
on large numbers of genes. In this paper, we address the problem of identifying
coregulated genes based on promoter sequences.
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Any approach to this problem should account for the various kinds of in-
formation present in promoters. A simple approach to classifying promoters
would rely on the presence of short (6-12 base pairs), highly conserved motifs
that function as binding sites for proteins called transcription factors. Many
computational techniques for identifying such motifs exist, including several
recently reported methods.1;2;3;4;5 However, the small size and degeneracy of
these binding sites make classi�cation based on these sequences diÆcult. It is
well known that transcription regulatory elements include features in addition
to these binding sites that could be exploited by a more sophisticated classi-
�er. For example, the promoters of many genes contain poly(dA-dT) elements,
which, while not comprising a speci�c motif, have been shown to be critical
for the regulation of transcription.6 The presence of multiple copies or combi-
nations of motifs can also be critical to normal transcriptional regulation, as
is the spacing between two motifs that form a binding site for a heterodimeric
transcription factor.7 Finally, the DNA sequences anking highly conserved
binding motifs can have profound e�ects on the ability of the transcription
factor to bind eÆciently and regulate gene transcription.8 Thus, the features of
a promoter region that function in transcriptional regulation include important
elements in addition to the canonical transcription factor binding motifs. We
hypothesize that classi�cation can be improved by capturing these additional
features.

Here we describe a method for automatically classifying promoters based
upon the presence and relative positions of one or more transcription fac-
tor binding sites. The method consists of �rst building a motif-based hidden
Markov model (HMM) from a collection of transcription factor binding site
(TFBS) motifs. In addition to the nucleotide distributions at each position
within the motifs, the HMM includes parameters that capture the number and
relative locations of motif occurrences within each sequence. This model then
acts as the kernel function for a support vector machine (SVM).9;10;11 SVMs
have previously proven useful in classifying proteins from primary sequence
12 and in classifying genes from microarray expression data.13 In the current
application, the SVM uses the motif-based HMM to learn to discriminate be-
tween a given set of promoters from coregulated genes and a second set of
\negative example" promoters. We demonstrate this method on two classes of
genes in S. cerevisiae.

2 Algorithm

The process of building a promoter-based classi�er consists of �ve steps. First,
TFBS motifs are identi�ed from the promoter regions of a given set of genes
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that are either known or predicted to be coregulated. Second, the motifs and
the promoter region sequences are used to build a motif-based HMM. Third,
the promoter regions of a larger set of genes, which includes the coregulated
genes plus a large number of genes that are known not to be coregulated, are
compared to the HMM, and the gradients of the model parameters are com-
puted with respect to each sequence. Fourth, these gradient vectors are used to
train an SVM. In the �nal step, the trained SVM is used to search a database
of un-annotated genes. For each gene, the SVM predicts whether it belongs
in the original class of coregulated genes. Thus, the algorithm takes as input
two sets of promoter sequences (positives and negatives) and an unannotated
database. The output is a set of labels (positive or negative) for each promoter
sequence in the database. The following section describes in detail each step
of this method.

Motif models can be generated using any motif-discovery algorithm or can
be constructed by hand from the literature. In this work, we generate motif
models using Improbizer, which is part of the cis-Site Seeker software package
(www.cse.ucsc.edu/~kent/improbizer). Similar to MEME,14 Improbizer uses
expectation-maximization to discover motifs. We use Improbizer mainly due
to its ability to use a �rst-order Markov background model, thus reducing the
likelihood of �nding low-complexitymotifs such as polyA tracts. For each class
of genes, we instruct Improbizer to �nd �ve motifs, each of which occurs at
most twice within a gene, allowing motif occurrences to be present on either
strand. Each motif is represented as a matrix, where each column speci�es the
probability of a nucleotide (A,C,G,T) occuring at that position in the motif. A
motif cannot be less than seven nucleotides in length, but a strong preference is
made for shorter, highly conserved sequences, controlled by setting the Restrain
Expansionist Tendencies parameter to 5.0. We use all positive and negative
sequences to create a �rst-order Markov background model. A score for each
promoter sequence relative to a particular motif is calculated by summing the
log-probability scores for the two subsequences that best match the motif. Each
of the �ve motifs is then scored by averaging the promoter sequence scores for
that motif. Of the �ve motifs, the two with the highest scores are retained for
use in the next step.

In step two, we use Meta-MEME 15 to construct a motif-based hidden
Markov model from the TFBS motif matrices generated by Improbizer. Each
model consists of a collection of �ve completely connected motif models: a
forward and reverse-complement version of each of the two Improbizer motifs,
as well as a \background" motif. The reverse complementmotifs are important
because transcription factor binding sites can occur on either strand of DNA.
The background motif consists of two states, each with emission probabilities
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the same as the base frequencies of the nucleotides in all of the promoter
sequences. This motif permits modeling of sequences that do not contain any
of the TFBS motifs. The �ve �xed-length motif models are connected via
variable-length spacer states. The emission probabilities at the spacer states
are the same as the background motif. The self-transition probability at each
spacer state is 0.999, and the exit transition is 0.001. Thus, a typical path
through this model for a sequence involves alternating between emitting bases
from a spacer state and emitting bases from the states in a motif. Though
it is possible to further train the parameters of the Meta-MEME model via
expectation-maximization, doing so in conjunction with an SVM can lead to
over-training, because the same sequences would be used to train the HMM and
the SVM. Therefore, we use the Meta-MEME model without further training.

The third step consists of comparing the Meta-MEME model to the com-
plete set of promoter sequences and computing the model parameter gradi-
ent vector with respect to each sequence. This technique was introduced by
Jaakkola and Haussler,11 who subsequently showed it to be highly e�ective for
detecting remote protein homologies.12 Here we extend this method to clas-
sifying promoter region sequences. The gradient, or Fisher score, vector for
observation X given a generative probability model H with parameters � is
de�ned as ~U = r� logP (XjH;�). For an HMM, the components of this vector
associated with the parameters for the emission probabilities in the states can
be computed as follows:

~Uij =
Ej(i)

ej(i)
�
X

k

Ej(k);

where Ej(i) is the number of times that nucleotide i is observed in state j,
and ej(i) is the emission probability for nucleotide i in state j. Likewise, for
transition probabilities from states, the components are calculated as:

~Vij =
Tj(i)

tj(i)
�
X

k

Tj(k);

where Tj(i) is the number of times a transition to state i is taken from state
j, and tj(i) is the transition probability for transitions to i from state j.12 The
counts Ej(i) and Tj(i) can be computed easily using the forward algorithm.16

Each such component of the Fisher score vector measures how a given parame-
ter in the model contributes to the total posterior probability. For each positive
and negative promoter region sequence, we create a Fisher score vector that
consists of Fisher scores for all transitions in the model except those within
the motif sequences, which are �xed at a probability of 1, and for all emission
probabilities.
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These vectors are then used to train a support vector machine to dis-
criminate between the positive and negative promoter region sequences. We
use a particularly simple SVM optimization algorithm that was introduced
by Jaakkola et al.12 Our implementation is described in Brown et al.13 and
is freely available on the web (www.cs.columbia.edu/compbio/svm). Briey,
the SVM learning algorithm constructs a maximum-margin hyperplane that
separates the negative and positive examples in a training set. The margin is
soft, in the sense that it permits some misclassi�cations, as might be expected
in a noisy data set. The hyperplane is calculated in an implicit feature space,
whose dimensionality depends upon the choice of kernel function used. We use
the radial basis kernel function K(~X; ~Y) = exp(�jj~X� ~Yjj2=2�2), which has
previously been shown to provide good recognition performance for protein se-
quence and gene expression classi�cation.12;13 Once the separating hyperplane
is constructed, the SVM can be used to predict the classi�cations of previously
unseen examples. For a more complete explanation of our SVM methods, see
13;17 and the accompanying web page (www.cse.ucsc.edu/research/compbio/
genex).

3 Results

To test our method, we analyze two classes of genes in the budding yeast
S. cerevisiae, cytoplasmic ribosomes and nucleosomal complex proteins (core
histones), as de�ned by the MIPS Yeast GenomeDatabase.18 These classes were
selected because they contain patterns of motif occurences that we believed
could be learned using our method. The majority of cytoplasmic ribosomes
are regulated by the Rap1p transcription factor, and this factor usually binds
in pairs in close proximity.19 The histone genes are coregulated during the cell
cycle and share a distinctive promoter structure.20 The coordinate expression of
the genes in these classes has also been demonstrated in recent DNA microarray
experiments.21;17

For training, we use the 2465 annotated genes a originally used by Eisen
et al.21 Predictions are then made on the remaining 3807 yeast genes, many of
which are unannotated. Upstream sequences consisting of 1000 base pairs for
all of the genes were obtained from the Stanford Genome web site (genome-
www.stanford.edu). Complete data and results from these experiments are
available at www.cs.columbia.edu/compbio/prom-svm.

Only one motif discovered by Improbizer for these two classes clearly cor-
responds to a known TFBS, that for Rap1p. Our motif has a consensus twwa-
cayccrtacatywy. While Rap1p binding sites are found in many genes, the

aThis is the updated version of the orginal 2467 gene dataset.
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Figure 1: Patterns of motif occurences in the nucleosomal promoters. Each line
corresponds to a single 1000-base pair promoter region. Squares and diamonds indicate
occurrences of motifs 1 and 2, respectively. The top eight lines are promoters of known
nucleosomal genes. The �nal line is a promoter from a gene (YOR084W) identi�ed by the

Meta-MEME + SVM method.

one we discovered may have features speci�c to the ribosomal class, which will
aid in classi�cation performance.19

Three of the four motifs found by Improbizer are statistically surprising.
Improbizer reports motif scores that are scaled relative to the given data set.
We therefore assess the quality of a given motif by running Improbizer �ve
times on shu�ed versions of the given dataset and comparing the relative
motif scores of the original motifs to the scores generated by the control runs.
For the ribosomal genes, the Rap1p motif has a score 41.8% greater than
the corresponding average control run score. The score of the second motif,
however, exceeds the average score of the second control run motif by only
6.0%. For the nucleosomal genes, both motif scores, with consensus sequences
ttaccacck and yhcgggcgm, exceed the control run scores by more than
20%.b We therefore expect the �rst ribosomal motif and both nucleosomal
motifs to provide useful classi�cation.

The observed patterns of motif occurrences support the hypothesis that
relative motif positions are conserved throughout each class. An illustration of
this conservation in the nucleosomal complex genes is shown in Figure 1. The
obvious pattern of occurences suggests that using the number and locations of
the motifs will be useful in recognizing members of the class.

Figure 2 presents a visualization of the Fisher score vectors created from
the cytoplasmic ribosomal proteins. The vectors of class members are clearly
similar to one another and di�erent from the vectors of genes not in the class.
The vectors were created using both Improbizer motifs, but the �gure illus-
trates that the second motif does not provide a sharp contrast between ribo-
somal and non-ribosomal genes.

In order to quantify the relative discriminative power of parameters in the

bImprobizer found one slightly more surprising motif with consensus atatataaa, but we
elected not to use this motif.
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Figure 2: Fisher score vectors for a representative class. A. Fisher score vectors for
the 121 cytoplasmic ribosomal protein gene 5' UTRs. Green indicates negative values of the
Fisher score, red positive, black represents zero. B. Fisher score vectors for a representative
subset of the remaining genes in the dataset. The colored bars at the bottom apply to both
A and B and indicate the (arbitrary) organization of the scores in this image. Green bar:
Spacer states. Black bars: Forward-strand versions of motifs. Grey: Reverse complements of
motifs. Blue: State transitions. This image was generated by TreeView (rana.stanford.edu).
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model, we use the Fisher criterion score22 to identify components of the Fisher
score vectors most relevant to the given classi�cation.c For a given feature j, we
compute the mean and standard deviation of that feature across the positive
examples (�+j and �+j , respectively) and across the negative examples (��j and

��j ). The Fisher criterion score, (�+j � ��j )
2=((�+j )

2 + (��j )
2), gives higher

values to features whose means di�er greatly between the two classes, relative
to their variances.

This analysis shows that many of the non-motif features of the HMM
are strongly discriminative. In both classes, the transitions between motifs,
which are at the right in Figure 2, are among the most signi�cant features. In
particular, transitions leading to the null motif are consistently emphasized,
showing that the presence or absence of the speci�c motifs generated from
the class is a key feature, as expected. In the cytoplasmic ribosomal class
model, self-transitions for several spacer states are discriminative, suggesting
that di�erences in the location or spacing of motifs within the promoter are
informative. Among these states is the spacer state on the self-transition to
the Rap1p binding site motif, which is often found in closely-spaced pairs
within the 5' UTRs of the ribosomal protein genes. In addition, some motif
states have high Fisher criterion scores. In general, these scores correspond
to states in which either one base is highly conserved, or in which one base
is seen with a very small probability. This tendency reects the preference of
a given transcription factor for bases in certain positions. In the ribosomal
class, none of the motif positions in the less-conserved second motif is strongly
discriminative. Thus, given a set of negative training examples, the SVM must
learn to focus on the highly discriminative parameters and ignore less useful
parameters.

Classi�cation of the unannotated genes produces 36 predictions in the
ribosomal class and 1 prediction in the nucleosomal complex class. The single
nucleosomal gene prediction, YOR084W, is a putative lipase and is shown in
Figure 1. The relative locations of the TFBS motifs in this promoter closely
matches those of other genes in the family, suggesting that this gene belongs
in the class. Table 1 lists the ribosomal gene predictions. As can be seen, eight
of the 36 have been annotated elsewhere as cytoplasmic ribosomal proteins.
Another �ve are identi�ed as transporters.

The availability of DNA microarray gene expression data for yeast provides
an additional means of validating the prediction results. A set of coregulated
genes should exhibit strongly correlated expression pro�les. We use published
gene expression data 21 to compute the average Pearson correlation coeÆcient

cThese two names both refer to R. A. Fisher, but the criterion score and score vectors
are otherwise unrelated.
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Table 1: Cytoplasmic ribosomes predictions Listed are the genes from the unannotated
class predicted to be regulated similar to the cytoplasmic ribosomes. The discriminant value
calculated by the SVM is shown, with higher discriminants indicating a stronger prediction.
Annotations for these genes are given when available. Genes in boldface have correlated

gene expression pro�les, as described in the text.

Gene Disc Annotation
YMR194W 0.546 RPL43B; cytoplasmic ribosomal protein L36A
YBR190W 0.495
YBR220C 0.391 acetyl-coenzyme A transporter (AcCoAT) family
YBL049W 0.303
YHR002W 0.300 Mitochondrial carrier family member
YJL049W 0.275
YNL101W 0.239 amino acid/auxin permease (AAAP) family
YDL133C-A 0.222 RPL41B; cytoplasmic ribosomal protein L41B
YMR230W 0.200 RPS10B; cytoplasmic ribosomal protein S10B
YMR144W 0.186
YOR292C 0.182
YPR068C 0.165 HOS1; putative histone deacetylase
YGR260W 0.155 TNA1; nicotinic acid transporter
YPL034W 0.117
YML010C-B 0.108
YDR281C 0.097 PHM6; involved in phosphate metabolism
YJR094W-A 0.095 RPL43B; cytoplasmic ribosomal protein L43B
YNR062C 0.092
YKL151C 0.090
YML073C 0.083 RPL6A; cytoplasmic ribosomal protein L6A
YDR467C 0.082
YPL189W 0.080 GUP2; putative active glycerol transporter
YPL249C-A 0.079 RPL36B; cytoplasmic ribosomal protein L36B
YLR362W 0.068 STE11; kinase involved in mating signalling
YML026C 0.057 RPS8B; cytoplasmic ribosomal protein S8B
YOR249C 0.053 APC5; subunit of the Anaphase Promoting Complex
YDR479C 0.050
YLR287C-A 0.047
YGR283C 0.042
YIL063C 0.042 YRB2; Ran-GTPase-binding protein
YCL036W 0.029
YFR031C-A 0.029 RPL2A; cytoplasmic ribosomal protein L2A
YMR014W 0.025
YGL136C 0.013 Possible S-adenosylmeth-dependent methyltransferase
YDR325W 0.009 YCG1; involved in chromatin structure
YBR180W 0.001 DTR1; dityrosine transporter
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between the expression pro�le of each predicted gene with the pro�les of other
genes in the class. We then compare this average similarity with similar values
derived from 1000 randomly selected genes. This analysis shows that the av-
erage correlation for the predicted nucleosomal gene (0.308) is more than one
standard deviation away from the mean (mean = 0.026, stdev = 0.170). The
analysis also identi�es eight predicted ribosomal genes (indicated in bold in
Table 1) with strongly correlated expression pro�les.

4 Discussion

We have demonstrated a method for extracting from promoter sequences
higher-order features that capture information about the occurences of tran-
scription factor binding site motifs. We use these features for the supervised
learning of classes of coregulated genes. The resulting classi�er combines gen-
erative and discriminative models using the Fisher kernel method,11 which
has previously been shown to produce excellent protein family classi�cation
performance.12 The HMM provides an understandable probabilistic model ca-
pable of handling variable-length sequences and missing data. The SVM pro-
vides improved classi�cation performance relative to the HMM via the SVM's
ability to learn from both positive and negative examples.

While the method we describe is promising, it is clear that the �rst step
to obtaining good discrimination is generating highly conserved, speci�c mo-
tifs. Thus the success of the method is dependent on the motif-discovery
phase. For example, the promoter regions of nucleosomal complex proteins
are known to contain multiple occurrences of an activating TFBS, consensus
gcgaaaaantnngaac, and six of the eight regions also contain a negative
site, consensus tnnacgctnaangnc.20 Some ribosomal genes are known to be
regulated by abf1, consensus rtmrybnnnnacg, instead of or in addition to
Rap1p.19 These motifs were not found using our current settings of Improbizer,
most likely due to our preference for shorter motifs. In the future, we plan to
explore �nding motifs using multiple parameter settings and possibly other
methods in order to obtain better motifs. We expect that this will improve
the classi�cation performance of our method.

In addition to motif content and relative motif locations, other kinds of
information may be relevant to the classi�cation of coregulated genes. For ex-
ample, the base composition of the spacer regions between motifs may relate to
DNA bendability, which in turn inuences the ability of transcription factors
to bind to the DNA.23 Thus, future promoter models should explicitly include
information about bendability. Further improvements might come from in-
cluding general promoter sequence elements such as the TATA box. While
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not speci�c to a particular class of genes, they would assist in the accurate
modeling of the overall promoter structure.

One of the greatest challenges in developing a classi�er of coregulated genes
is identifying trustworthy training and test sets. The MIPS database is useful
in this regard because the annotations therein are largely based upon wet
lab experiments. However, MIPS does not provide classi�cations based upon
coregulation. In this paper, we use two protein complexes, under the hypothesis
that such complexes tend to share regulatory elements. This hypothesis does
not always hold true. Consequently, apparent errors in the predictions made
by the classi�er may result from the inclusion of non-coregulated genes in the
class, or from the exclusion of coregulated genes from the class. An alternative
to MIPS would be to use classes of genes that are known to be coregulated,
such as the ones identi�ed by Van Helden et al.,24 but such classes rarely are
accompanied by large sets of \negative example" genes that are known not
to be coregulated. A large-scale comparison of the method presented here
with other promoter classi�cation techniques must await the availability of a
suitable gold standard database of coregulated genes. This database may be
available soon from microarray analyses of transcription factor mutants.

The correlation analysis of gene expression data with promoter classi�ca-
tion predictions presented above is only the �rst step toward combining the
information available in gene expression and promoter sequence data. In fu-
ture work, we will develop Fisher kernel models that are capable of learning
from heterogeneous data sets that include combine promoter sequence and
microarray expression data.
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