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With the completion of the sequencing of the human genome, the need for tools
capable of unraveling the interaction and functionality of genes becomes extremely

urgent. In answer to this quest, the advent of microarray technology provides the

opportunity to perform large scale gene expression analyses. Recently, genetic net-

works were proposed as a possible methodology for modeling genetic interactions.

Since then, a wide variety of di�erent models have been introduced. However, it is,

in general, unclear what the strengths and weaknesses of each of these approaches

are and where these models overlap and di�er. This paper compares di�erent ge-

netic modeling approaches that attempt to extract the gene regulation matrix from
expression data. A taxonomy of continuous genetic network models is proposed

and the following important characteristics are suggested and employed to com-

pare the models: (1) inferential power; (2) predictive power; (3) robustness; (4)

consistency; (5) stability and (6) computational cost. Where possible, synthetic

time series data are employed to investigate some of these properties.

1 Introduction

Genetic network models are typically constructed in order to extract the `gene
regulation matrix', that describes which genes regulate each other and how
environmental inputs a�ect gene expression. This matrix can be employed to
�gure out how genes act `in concert' to achieve speci�c phenotypic character-
istics. The genetic modeling process usually starts out with the construction
of a (parameterized) model that describes the regulation process. Such models
are usually inspired by existing biological knowledge about gene-gene interac-
tions, gene product degradation, responses of genes to speci�c inputs etc. In
addition, gene expression data sets that contain measured time responses of
the studied genes to various stimuli are used to infer the unknown parameters
of the model. A wide variety of approaches for the inference of genetic net-
works from data have been proposed (see Sec. 2). The contributions of this
work are the following: (1) a taxonomy of the existing repertoire of genetic
network models is proposed (Sec. 2); (2) several properties which are consid-
ered to be important for successful genetic network modeling are introduced
(Sec. 3); (3) models are compared with respect to these properties (Sec. 3) and
(4) where applicable properties are further investigated empirically (Sec. 4).

aThese authors contributed equally to this work
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This evaluation results in some preliminary conclusions (Sec. 5).

2 Model Descriptions

This comparison will focus on continuous models 1;2;3;4;5;6;7;8;9;10, i.e. models
which do not require explicit discretization of the measured input data prior to
the inference process. Boolean networks 11, Bayesian networks 12 and Qualita-
tive models 13 are therefore excluded. Studying the continuous models reveals
that they can be divided into three categories: (1) methods based on pair-wise
comparisons, (2) methods that model rough networks of gene-interactions and
(3) more complex models that also describe intermediate products, such as
proteins.

2.1 Pair-wise Methods

These methods construct relationships between genes based solely on pair-wise
comparisons. Therefore, they do not take into account interactions where the
resulting expression-level of one gene is governed by the combined action of
multiple other genes. Because these methods have no actual model that de-
scribes exactly how genes are activated by external inputs and other genes, no
predictions of gene expression can be made. We now elaborate on two of these
methods that were recently introduced.
Arkin and Ross '97: Correlation Metric Construction (CMC) The
CMC method 1 �rst computes the magnitude and position at which the max-
imal (time-shifted) cross-correlation occurs. This provides a measure of sim-
ilarity and temporal ordering, respectively. Then a distance matrix, D, is
constructed, by comparing, for each pair of genes, their similarities to other
genes. The signi�cant eigenvalues of the constructed distance matrix provides
an indication of the intrinsic dimensionality of the system. Single linkage hi-
erarchical clustering is employed to �nd a singly linked tree that connects
associated genes. This tree (association diagram) is augmented with direc-
tional and time-lag information, revealing temporal ordering.
Chen, Filkov and Skiena '99: Activation/Inhibition Networks The
method proposed by Chen et al. 2 expresses regulation based on whether peaks
in one signal precede peaks in another signal. After thresholding and clus-
tering, resulting in a set of prototype signals, each prototype is represented
as a series of peaks. For each pair of prototypes three scores are computed,
representing a possible activating, inhibiting or unmatching relationship. The
regulation matrix is inferred by taking for each pair of genes the highest of
these three scores.
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Method Equation g(z) Ri = �i =

Mjolsness '00 3 (1) 1
1+e�z

Ri �i

Spirov '97 4 (1) 1
1+e�z

Ri �i

Wahde '99 5 (1) 1
1+e�z

Ri Ri

Weaver '99 6 (2) 1
1+e�z

Ri 0

Someren '00 7 (2) z 1 0
D'Haeseleer '99 8 (2) z 1 0

Table 1: Deviation of each network model with respect to the general equations (1 & 2).

2.2 Rough Network Models

These networks directly model e�ects that result from the combination of dif-
ferent input genes, by means of a weighted sum of their expressed levels. The
term `rough' refers to the fact that the inuence of all intermediate products
are summarized in the linear gene-to-gene relationship. These weights provide
information about the relationships between genes, i.e. zero weights indicate
the absence of interaction and a positive or negative weight corresponds to
stimulation or repression. The absolute value of a weight corresponds to the
strength of the interaction. All network models can be represented in the
following generalized di�erential equation:

dxi(t)

dt
= Ri � g

0
@

JX
j=1

Wi;jxj(t) +

KX
k=1

Vi;kuk(t) + Bi

1
A� �ixi(t) (1)

or di�erence equation of similar form:

xi[t+ 1] = Ri � g

0
@

JX
j=1

Wi;jxj [t] +

KX
k=1

Vi;kuk[t] +Bi

1
A� �ixi[t] (2)

with the following (biological) interpretations:
g(�): monotonic regulation-expression (activation) function

xi(t); xi[t]: gene expression of gene i at time instance t.
Ri: rate constant of gene i.

Wi;j : strength of control of gene j on gene i
uk(t); uk[t]: k-th external input at time instance t.

Vi;k : inuence of the k-th external input on gene i.
Bi: basal expression level of gene i.
�i: degradation constant of the i-th gene expression product.

All rough models included in this comparison are a speci�c instance of one
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Method Pre-Processing Structuring Inference

Mjolsness '00 - EM-Clustering SA

Spirov '97 - - GA + SA + GD

Wahde '99 - - GA

Weaver '99 Normalization - De-squashing +
LR

Someren '00 Normalization + Hierarchical LR
Thresholding Clustering

D'Haeseleer '99 Interpolation - LR

Table 2: Methodology to infer parameters. EM = Expectation Maximization, SA = Simu-

lated Annealing, GA = Genetic Algorithm, GD = Gradient Descent, LR = Linear Regression

of these generalized equations. An overview of the network models is given
in Table 1. Table 2 summarizes the algorithms employed to infer the model
parameters from measured mRNA levels.

2.3 Complex Networks

These networks are more complex in that they not only model interactions be-
tween genes based on measured mRNA levels, but also explicitly model their
intermediate products, such as proteins and metabolites. Consequently, their
parameters cannot be inferred from data-sets that contain only measurements
of mRNA levels, since explicit knowledge about the expression levels of the
intermediates are necessary (see Chen 9). However, in this comparison we used
the model of Savageau 10 to generate realistic gene-expression data to test the
other modeling approaches.
Savageau '99 The genetic network model proposed by Savageau 10 models
mRNA, protein and metabolite expression levels. The changes in the expres-
sion level of a given chemical species are modeled as follows:

dxi

dt
= �i

Y
j2SI

x
Wi;j

j � �i

Y
k2SD

x
Wi;k

k (3)

The �rst term constitutes an activation term (SI being all activating species)
and the latter a degradation term (SD being species involved in degradation).
The `product-power law' formulation results in expression levels that behave
non-linearly, but remains an easily interpretable format. This model contains
a large number of parameters in comparison to the rough and pair-wise models
which makes the inference process particularly di�cult.
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3 Model Evaluation

This section introduces several characteristics that are central to successful ge-
netic network modeling and are therefore appropriate benchmarks with which
genetic modeling approaches can be evaluated. These characteristics are (1)
inferential power, (2) predictive power, (3) robustness, (4) consistency, (5) sta-
bility and (6) computational cost. In this section each characteristic is de�ned
and motivated. Both pair-wise and rough network models are also subjected
to a preliminary evaluation with respect to each of the characteristics. In
Sec. 4 each of these models are compared empirically (where applicable) based
on these characteristics. In order to simplify the discussion of the di�erent
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Figure 1: Graphical representation of the framework that relates the expression space

(X ) to the gene regulation matrix space (W).

characteristics, a simple framework and nomenclature (depicted in Fig. 1) is
introduced. For a particular class of genetic network models, let W represent
the space of gene regulation matrices, with W an instance of a regulation ma-
trix. Let X denote the space of expression data sets associated with W , with
X a particular data set. For experimental purposes, a particular matrix, W0

is chosen to represent a `real' network.b Based onW0 (and initial conditions) a
dataset, X0, is generated (X0 = P(W0)). During the inference step (employ-
ing one of the models described in Section 2) an estimate of W0 is obtained

based solely on X0, and this is represented as Ŵ0 with Ŵ0 = I(X0). Ŵ0

can, in turn, be employed to make a prediction of the expression data, given
the same initial conditions. This produces an approximation of X0, which is
denoted by X̂0, with X̂0 = P(Ŵ0).

bIn realityW0 is not known, but needs to be inferred by the genetic network algorithms.

However, in synthetic experiments, we are free to choose W0, allowing us the opportunity

to verify the results produced by the algorithms.
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3.1 Inferential power, PI

Since genetic network models are primarily employed to infer regulatory inter-
action patterns from expression data, it is quite important that this process
delivers accurate estimates of the gene regulation matrix. Inferential power is
a measure of this capability.
De�nition: Formally, inferential power is measured as the similarity between
the actual (W0) and inferred (Ŵ0) gene regulation matrices: PI(W0;Ŵ0) =

0:5(1 + �(W0;Ŵ0)), with �(�) the Pearson product moment correlation.
Preliminary evaluation: Pair-wise approaches infer a regulation matrix
based on pair-wise comparisons. Consequently sparse, yet greedy, sub-optimal
solutions are obtained. When a gene is inuenced by more than one other
gene, even erroneous solutions may be obtained. Network models do not suf-
fer from this disadvantage, but the regulation matrix is inferred indirectly, i.e.
by minimizing the prediction error (di�erence between X0 and X̂0) instead of

maximizing �(W0;Ŵ0). This is done under the assumption that small predic-
tion errors result in accurate regulation matrices. More de�nitive statements
about the inferential power of individual models can only be made based on
empirical evidence (Sec. 4).

3.2 Prediction power, PP

Prediction power is reected in the prediction accuracy, i.e. how closely X̂0

approximates X0. For network models, regulation matrices are inferred by
minimizing prediction error. It is therefore important to gain insight into the
relationship between PP and PI for the di�erent models in the comparison.
De�nition: For a given expression data set, X0, and the predicted approxima-
tion thereof, X̂0, prediction power is expressed as PP = 1=(1+EMSE), with the

mean squared error given by EMSE(X0; X̂0) =
1

TN

P
i;t(X0(i; t)� X̂0(i; t))

2.
Preliminary evaluation: It is to be expected that more complex models,
such as the network models containing non-linearities and larger parameter
sets have potentially greater predictive power than simpler network models
such as the linear models proposed by D'Haeseleer 8 and van Someren 7. How-
ever, more complex models require more training data (or regularization con-
straints) and non-deterministic inference algorithms (such as a GA 5 or SA 3)
that do not guarantee convergence to a global minimum, possibly resulting in
a sub-optimal value for PP . To shed more light on these issues, an empirical
investigation was performed (Sec. 4).

Pacific Symposium on Biocomputing 6:508-519 (2001) 



3.3 Robustness

Noise is an ever present phenomenon that always needs to be dealt with. Gene
expression measurements are particularly noisy and it is therefore important
to know to what degree an accurate gene regulation matrix will be extracted
in the presence of noise.
De�nition: Let X0;N � X denote the set of expression data sets that are
obtained when noise, N(0; �) c, is added to X0, i.e. X0;N = fX0;�jX0;� =

X0 +N(0; �); � 2 [0; �MAX]g. (See also Fig. 1). Let Ŵ0;N denote the set of
regulation matrices that are obtained by performing inference on each element
of X0;N , i.e. Ŵ0;N = fŴ0;�jŴ0;� = I(X0;�);X0;� 2 X0;N g. A measure of ro-
bustness, PR, is de�ned as the minimal correlation amongst the inferred regula-
tion matrices in Ŵ0;N : PR = min[fŴ0

0;�
;Ŵ0;�g2Ŵ0;N ][0:5(1 + �(Ŵ0;�;Ŵ

0
0;�))].

Preliminary evaluation: None of the techniques contain features that were
explicitly included to increase robustness. However, some implicit characteris-
tics may improve robustness, For example: 1) several techniques 2;3;7 perform
a clustering step prior to the inference step which could increase robustness
since inference is performed on the prototypes (averaged signals in a cluster);
2) CMC 1 also employs an averaging process (cross correlation) which could
contribute to increased robustness and 3) the method proposed by Chen et al.
2 may also result in improved robustness by creating a �ltered signal represen-
tation prior to the inference step. However, robustness can be most e�ectively
evaluated empirically by monitoring the behavior of PR as a function of the
noise level, �.

3.4 Consistency

One of the most striking properties of available gene expression data is the rela-
tively large number of genes compared to the number of measured time-points.
This so called `dimensionality problem' is an important cause of inconsistency
in the inferred genetic network models, and therefore an important character-
istic to investigate.
De�nition: A genetic network model is said to be inconsistent if multiple pa-
rameter sets can be inferred from the same expression data. Formally, for an
arbitrary expression data set, XC 2 X (See Figure 1), the following set of gene
regulation matrices is de�ned: WC = fWC jWC = I(XC);PI(P(WC);XC)
> 1� �g. The degree of consistency of a model is given by
PC = min[fWC;i;WC;jg2WC ] [0:5(1 + �(WC;i;WC;j))].

czero-mean, Gaussian noise with a standard deviation of �.
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Preliminary evaluation: Without a principled mechanism to select the most
appropriate regulation matrix from a set of possible solutions, the inferred pa-
rameters will be meaningless. Inconsistency originates from the combination
of two causes, 1) the dimensionality problem, i.e. the data represents an in-
complete description of the underlying process, or 2) the predictive power of
the model exceeds the intrinsic complexity of the data. The �rst cause can
be only partly corrected by interpolation. To handle the second cause one
needs to control the predictive power of the model, which can be attained by
thresholding (to eliminate very noisy signals), clustering (grouping signals that
cannot be distinguished by the model) and/or the introduction of appropriate
constraints.

3.5 Stability

Due to limited energy and storage within a cell, concentrations of gene expres-
sion products, such as mRNA, remain bounded. All real genetic networks are
therefore stable by de�nition. Consequently, inferred genetic network models
should also be stable in order to be realistic.
De�nition: A model, parameterized by a speci�c gene regulation matrix, is
stable if the predicted expression levels remain bounded over all time, for any �-
nite initial state. If in�nitely large training sets are available, and EMSE remains
bounded, stability can be guaranteed. On �nite data sets, the requirement for
bounded EMSE must be augmented by other stability requirements such as the
existence of a Lyapunov function.
Preliminary evaluation: Since the pair-wise methods have no explicit model
to generate signals, no indication can be given about their stability. Both li-
near network models 7;8 are stable when the magnitude of the eigenvalues of
the weight matrix are all smaller than or equal to one. In contrast, the net-
work models that have a sigmoidal transfer function are ensured to have a
bounded output and are therefore by de�nition stable. However, the plausi-
bility of genetic network model that generates gene expression pro�les that
are oscillating rapidly between minimal and maximal expression bounds are
questionable. None of the methods described in Section 2 are equipped with
explicit mechanisms to ensure that a stable network is inferred.

3.6 Computational cost

Methods that require extremely long computation times to reach a solution are
obviously undesirable, unless the additional waiting time results in substan-
tially improved results. Methods that can not compute analytical solutions,
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but rely on iterative solution approaches require, in general, much longer com-
putation times. Empirical evaluation was employed to obtain an indication of
the time required to reach a solution for each of the approaches.

4 Experimental Evaluation

Three di�erent types of data sets were generated based on a given �ve d gene
regulation matrix with no external inputs: (1) D1: a simple gene expression
data set generated by the linear model of van Someren, (2) D2: a data set of
intermediate complexity generated by the model of Wahde and (3) D3: the
most `realistic' data set, generated by (arguably) the most accurate model pro-
posed by Savageau. Five datasets consisting of 25 time-points were generated
of each type by using di�erent random initial conditions. For each of these 15
datasets, ten additional sets were created by adding varying amount of noise:
[1; 2; : : : ; 10 %] of the average signal energy.

Six models (Arkin, Chen, Wahde, Weaver, Someren e and a reference
model) were implemented and were trained on each of the 165 datasets. The
reference model f returns a random regulation matrix as inference and the
mean of the signals as a prediction. Figure 2 depicts the measured inferential
(PI) and prediction (PP ) power as a function of the noise level for all the tested
models on the three types of datasets g .
Inferential power: The inferential power is judged on the noise-free dataset.
Arkin performs reasonably on D1 and D2. On D3, Arkin is the only model
that performs signi�cantly better than the reference model. This is proba-
bly caused by the fact that the regulation matrix in D3 is sparse, a situation
well suited to the single linked tree approach employed by Arkin. In contrast,
Someren performs best on the simple and intermediate data-types but fails to
capture the relations of the realistic dataset. The performance of the other
models on D2 and D3 is indistinguishable from the reference model.
Predictive power: Predictive power is also evaluated at zero noise. Sur-
prisingly the linear model of Someren outperforms the more complex model of
Wahde on D1 and D2 in terms of prediction powerh. The good performance
of Someren on D3 is probably due to the fact that D3 is generated with a
sparse gene regulation matrix and the data does not fully reect the nonlin-

dThe number of genes was limited for practical reasons.
eIn this experiment the models of the D'Haeseleer and Someren are equivalent.
fThis model serves as a reference to indicate whether the other models give signi�cant

results. In the case of inferential power no correlation should correspond to PI = 0:5.
gEach point depicts a �ve-fold average; standard deviations were relatively small and

therefore not depicted in the interest of clarity.
hOn D3 Wahde failed to converge to stable solutions.
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Figure 2: Inferential and prediction power (in left resp. right column) of �ve di�erent models

(see legend) as a function of noise-levels. Data was generated using the models of Someren,
Wahde and Savageau (in top, middle and resp. bottom row).
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earity of the Savageau model. This allows the Someren model to trade quality
of �t for a non-sparse solution, resulting in a low inferential power. Weaver
performed signi�cantly worse than the reference model on all datasets. In this
experiment no evident relation between inferential and prediction power could
be observed.
Robustness: We approximate the measure of robustness proposed in Sec. 3
by the change in inferential power with increasing noise. On D1 and D2 the
Someren method shows a decrease in inferential power proportional to the
noise-level. In cases where the inferential power approximates the reference
level, the e�ect of noise diminishes. Surprisingly on D1, the inferential power
of the Weaver model increases as the noise-level increases. This might be ex-
plained by the fact that noise causes the maximal signal range of the sigmoid to
be overestimated causing the method to operate in its linear range, improving
compatibility with the linear dataset. Arkin displays remarkable robustness on
all datasets, which is probably caused by the averaging e�ect of the correlation
measure.
Stability: Weaver's poor and unpredictable performance are probably due to
the inverse sigmoid step which is sensitive to small deviations in the signals,
causing the linear regression to produce unstable matrices, resulting in turn in
oscillatory behavior.
Computational cost: All analytical methods performed similarly. For a
single inference and prediction step the models of Arkin, Chen, Weaver and
Someren took on average .6, 1.1, 1.3 and 3.8 seconds respectively. In contrast,
the iterative method of Wahde often needed at least 15 minutes to converge.
Given such large convergence times for a �ve gene network computational costs
severely compromise the scalability of this approach.

5 Conclusions

In this paper a taxonomy of modeling approaches was proposed consisting of
three classes: pair-wise, rough, and complex network models. In addition,
a set of characteristics which are central to genetic network modeling, were
proposed and a comparison of a set of models was performed based on these
characteristics.
Of the pair-wise methods, CMC performed consistently and robustly achieving
the best performance on the complex dataset. Due to their low computational
burden, pair-wise methods may be particularly useful for extracting an initial
network hypothesis, which could be further re�ned by more extensive models
that take multiple gene interactions into account. The linear models 7;8 per-
formed surprisingly well compared to other rough network models. Speci�cally,
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they achieved the highest predictive power on all data sets and were the only
approaches which exhibited excellent inferential power on the simple dataset.
The more complex network models performed particularly poorly in terms of
inferential power. In terms of prediction power these methods either performed
poorly (Weaver) or were hampered by prohibitively long computation times
(Wahde).
A common theme in genetic network modeling is the fact that the gene regu-
lation matrices are assumed to reveal the structure of the underlying genetic
network. The implicit assumption is that the inferential power of the employed
technique is su�ciently high. The most striking conclusion of this work is the
fact that the inferential power of most techniques is surprisingly low even when
very good predictive power is exhibited. In principle, more complex models
should be capable of establishing both high prediction and inferential power,
provided that appropriate measures are taken to adapt the model complexity
to the underlying process. Currently, this is an unsolved problem. In the mean
time, simple models must be employed to obtain good `rough' inferential power
(at high prediction power) with the additional advantage of low computational
cost.

Acknowledgment

This work was funded by the Intelligent Molecular Diagnostic Systems program
of the Delft Inter-Faculty Research Center at the TU Delft.

References

1. A. Arkin et al. Science, 277, 1997.
2. T. Chen et al. RECOMB 99, 1999.
3. E. Mjolsness et al. Advances in Neural Information Processing Systems,

12:928{934, 2000.
4. A.V. Spirov et al.

http://academic.mssm.edu/molbio/tmp/circuits/hox1circ.html, 1997.
5. M. Wahde and J. Hertz. IPCAT 99, 1999.
6. D.C. Weaver et al. PSB '99, 4:112{123, 1999.
7. E.P. van Someren et al. Accepted for ISMB2000, 2000.
8. P. D'Haeseleer et al. PSB '99, 4:41{52, 1999.
9. T. Chen et al. Paci�c Symposium on Biocomputing '99, 4:29{40, 1999.
10. M.A. Savageau. Paci�c Symposium on Biocomputing '98, 3:54{65, 1998.
11. A. Wuensche. Paci�c Symposium on Biocomputing '98, 3:89{102, 1998.
12. N. Friedman et al. Submitted, 1999.
13. D. Thie�ry and R. Thomas. PSB '98, 3:77{88, 1998.

Pacific Symposium on Biocomputing 6:508-519 (2001) 


