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An important problem in the analysis of microarray data is correlating the high-
dimensional measurements with clinical phenotypes. In this paper, we develop
predictive models for associating gene expression data from microarray experiments
with such outcomes. They are based on the singular value decomposition. We
propose new algorithms for performing gene selection and gene clustering based
on these predictive models. The estimation procedure using the regression models
occurs in two stages. First, the gene expression measurements are transformed
using the singular value decomposition. The regression parameters in the model
linking the principal components with the clinical responses are then estimated
using maximum likelihood. We demonstrate the application of the methodology
to data from a breast cancer study.

1 Introduction

DNA biochips have the potential of significantly impacting the study of human
disease. By simultaneously gauging the expression of thousands of genes in clin-
ical specimens, a wealth of data points is generated coalescing to form a molec-
ular fingerprint of a disease process. Such experiments have been performed
on acute leukemias, lymphomas, breast cancers and cutaneous melanomas.!?»
Obtaining large-scale gene expression profiles of tumors should theoretically al-
low for the identification of subsets of genes that function as prognostic disease
markers or biologic predictors of therapeutic response.

Most primary analyses have utilized hierarchical clustering techniques?
However, in many instances, there is external clinical information (such as
survival time or tumor type) available. Typically, the investigators use these
variables in secondary analyses. For many molecular profiling studies, the
scientific goal appears to be finding candidate genes that successfully discrim-
inate between disease classes based on the clinical phenotype. These genes
can then be screened for further follow-up studies using immunohistochemical
techniques such as tissue microarrays?

Some preliminary work has been put forward correlating gene expression
data with clinical outcomes®7 However, these approaches have been univariate
and ignore correlations between genes. A problem with joint modeling of gene
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effects on clinical outcomes is that the number of genes is typically much larger
than the number of samples profiled. In statistical terminology, the dimension
space of the predictors is much larger than that of the independent samples.
Consequently, it is not possible to calculate regression parameter estimates
using traditional statistical procedures.

In this paper, we develop a regression framework based on the singular
value decomposition for correlating gene expression data with clinical pheno-
types. We explore the use of these models for three goals: prediction, gene
selection and clustering. We propose novel algorithms for accomplishing the
latter two tasks. While the framework presented here can be generalized, we
are motivated by the specific problem of modeling the association between gene
expression data with type of tumor. Singular value decomposition has been
applied to other areas of microarray data analysis. ®2-10 In the statistical liter-
ature, singular value decomposition analysis is known as principal components
analysis; we will use the two terms interchangeably throughout the article.
Regression modeling using SVD has been done with great success in other
areas of application, such as chemometrics!! A complication in the current
setting that does not arise in other applications is that the clinical outcome
may not be continuous; our proposal here involves using categorical regression
models'? for associating the gene expression measurements with tumor type.
We demonstrate the procedure using data from a recently published breast
cancer study!® Because of space limitations, we refer the interested reader to
the following URL for more details regarding this project and the analysis of
the breast cancer data:

http://www.sph.umich.edu/ ~ghoshd/SVD/.

2 Methods

Before describing the regression model for correlating gene expression profiles
with tumor phenotype, we introduce some notation. Let X; denote the p-
dimensional column vector of gene expression measurements for the ith subject,
it =1,...,n. Note that p will typically be much larger than n. For¢=1,... n,
we define Y; to be the tumor type for the ith individual; this will take values
0,1,...,J —1, where J is the number of tumor types. The class Y = 0 will be
known as the reference category or reference tumor type. We will assume that
the X; are standardized across chips to have mean zero and variance one for
each gene.
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2.1 Regression model and estimation

We formulate the effects of gene expression on tumor type using the following
multinomial logistic regression model:

P(Y; =1)

i = Qmwum? AC

log
where P(A) is the probability of the event A, a’ is the transpose of the vector
or a matrix a, and (3, is a p-dimensional vector of unknown regression coeffi-
cients, r = 1,...,J—1. The model is quite general in that separate gene effects
are specified for each of the J(J-1)/2 tumor comparisons. More structure can
be imposed by placing constraints on 8, (r = 1,...,J — 1). For example,
we could set (8,0 = fo for all . This corresponds to a one-unit change in
expression level for any gene having the same effect for discriminating any two
tumor classes.

In a typical microarray experiment, it is not possible to estimate the pa-
rameters in (1) using standard statistical methods because p is much larger
than n. We propose using the singular value decomposition to reduce the di-
mension of 3,.9. If we let X denote the p x n matrix [X; ---X,,], then the
singular value decomposition leads to the following decomposition of X:

X = UDV, (2)

where U is p X n matrix, and D and V are n x n matrices. The columns of
U are orthonormal, i.e. UTU = I,,, the n x n identity matrix. The diagonal
matrix D contains the ordered eigenvalues of X on the diagonal elements so
that D = diag(ds,-..,d,), whered; > ds > d3 > -+ > d,, > 0. We will assume
without loss of generality that d; > 0 for ¢ = 1,...,n. Finally, V is the n x n
singular value decomposition factor matrix and has both orthonormal rows and
columns. The algorithms used to compute the singular value decomposition
are typically iterative and quite computationally efficient!*

The effect of the singular value decomposition is to project high-dimensional
multivariate data into a lower dimensional subspace. By plugging (2) into (1),
we obtain the following model:

PY;,=r) T
0og wc\s — Ov Yro va
where v, (r = 0,...,J — 1) is a n x 1 vector of regression coefficients and

W; (i =1,...,n) is the ith column of the n x n matrix W = DV. It can be
shown that 8.0 in (1) and 7,9 in (3) are linked by the following relationship:

Yro = UT By.
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By transforming the regression model from (3) into (1), we have reduced
the dimension of the space for the predictor variables from p to n. This makes
the problem computationally tractable, i.e. model (3) can be fit using tra-
ditional statistical estimation procedures. We use the method of maximum
likelihood to estimate vq0 (r =0,...,J —1).

2.2 Gene selection and clustering based on SVD regression

Ultimately, we are interested in determining which genes have the greatest
ability in discriminating between disease classes defined by the clinical pheno-
type. This corresponds to ranking the components of .o (r =0,1,...,J —1).
It would be desirable if we could backtransform the estimators of v,¢ in order
to derive estimators of B in (1) (r = 0,1,...,J — 1). However, this is not
possible because the mapping from S, to .o (defined by U) is a many to one
mapping, so the inverse mapping is not well-defined.

Our proposal is to rank the p genes using the vector of gene scores s,, = U7,
(r =0,1,...,J —1). This gives a measure of the p genes to discriminate
between the rth category relative to the reference category. If one were to
adopt a Bayesian framework for model (1), one can show that with a suitable
choice of prior on the regression parameters, s, is asymptotically equivalent
to the posterior mode of (,9!® However, our interest is in ranking the values
of s, not in performing formal inference. An advantage of this proposed gene
selection scheme relative to previous approaches is that potential correlation
between the genes is taken into account.

The variance-covariance matrix of the s, (r =0,...,J — 1) can be stan-
dardized to yield a correlation matrix, which can then be used as an input
in a hierarchical clustering algorithm. The clustering algorithm attempts to
find relationships between these discriminating genes and is based on the as-
sumption that mutual coexpression potentially implies a common regulatory
mechanism or that the genes might be involved in the same pathway. This
clustering procedure utilizes the clinical phenotype information in a sensible
fashion. Previous clustering methods have failed to take this external informa-
tion into account

2.3 Filtering genes

Typically in microarray experiments, the number of potential predictor genes
will be on the order of thousands. In studies involving gene expression, it
seems biologically plausible that only a fraction of the set of genes on the chip
have real biological activity. Consequently, certain authors have suggested that
reducing the initial number of variables under consideration leads to improved
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predictive performancel®1'® With the breast cancer data, we study the use of
an initial preprocessing in order to filter out a subset of the original set of genes.
We fit an analysis of variance (ANOVA) model of gene expression measurement
versus tumor class individually for each gene. For each ANOVA model, we
calculate an overall F-statistic; this yields a set of p F-statistics. We then take
the M genes with the largest F-statistics as the potential predictor variables
in the model. The effect of this variable selection is to eliminate genes whose
power in discriminating between tumor types is not significantly above the
experimental variability in the gene expression measurements. An empirical
study of the effect of M on the predictive performance on the singular value
decomposition regression modeling is given in the application to the breast
cancer data.

It has been noted in the literature that variable selection is an inherently
unstable procedure!” This instability will be even more apparent here because
of the relatively small values of n. In order to stabilize the performance of the
variable selection described in the previous paragraph, we also examined the
use of bagging methods!® This method involves creating B perturbed versions
of the original dataset by resampling from the set of independent samples B
times. For each dataset, we rank the genes by the values of the F-statistic.
We then compute the average rank of each gene over the B datasets and take
those with the M highest averages. We break ties using random jittering.

2.4 Choosing number of principal components

A major issue in the application of singular value decomposition regression
modeling to high-dimensional data is determining how many principal compo-
nents to use in model (3). There are many ways of performing this variable
selection!! We have employed leave-one-out cross-validation. In this proce-
dure, one sample is removed from the dataset at a time. For a fixed number
of principal components, say k, the regression model is fit to the remaining
data. Based on the estimated model, the model is used to predict the tumor
type of the withheld sample. An error measure is then calculated based on
Hamming distance. We repeat this training procedure leaving out each of the
other samples from the dataset one at a time; this yields an estimate of the
classification error rate. This is done for every possible value of k; the value of
k that yields the smallest classification error rate is then chosen. Leave-one-out
cross-validation is a popular method in situations with small samples where
no test data are available. We note that this is a data-driven rule for selecting
the number of principal components to use in the modeling.
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3 Application

In this section, we apply the proposed methodology to data from a study of
BRCA1- and BRCA2-positive tumors!? In this study, 23 biopsy specimens of
primary breast tumors were collected. Seven had BRCA1 germ-line mutations,
and eight had BRCA2 germ-line mutations. In addition, another eight samples
were collected that had neither BRCA1 nor BRCA2 germ-line mutations; these
were treated as sporadic cases of breast cancer. The goal of the study was
to determine if there were differences in global gene expression profiles that
could be used to discriminate the three classes of cancer (BRCA1, BRCA2
and sporadic).

While we will not go into the details of the analysis performed by Hedenfalk
et al., we do wish to make two points. First, univariate statistical methods
were used in order to determine the ability of genes to discriminate between the
tumor types. Second, the analysis of the data was divided into two subgroup
analyses. The first subgroup comparison was between BRCA1-positive and
sporadic tumors; the second involved comparing BRCA2-positive and sporadic
tumors. While this analysis approach seems reasonable in terms of the scientific
goals of the study, it is potentially statistically more efficient to incorporate
the correlations between the three tumor classes as well as the genes in order
to incorporate correlations between genes. In the discussion that follows, we
take the sporadic tumor class to be the reference category.

We first focus on the performance of the principal components regression
modeling in terms of the classification error rate, defined using Hamming dis-
tance. In particular, we look at the effect of varying M. The results are
summarized in Figure 1. Based on Figure 1, the optimal number of principal
components varies on M; however, it does not appear to be possible to derive
a general rule. For example, for M = 25, we have one misclassification using
the singular value decomposition procedure with 11 principal components in
the model. Comparable optimal misclassification rates can be obtained using
M = 1500 and M = 3226. Using cross-validation, the choice of the number
of principal components will depend on the particular dataset. We also ex-
amined the effect of the bagging variable selection procedure described in the
paper (data not shown). The bagging variable selection tends to improve the
predictive performance of the singular value regression models; we refer the
interested reader to our website for these results.

We now illustrate the ranking and clustering procedures based upon the
SVD regression modelling. For the purposes of discussion, we take M = 100.
Based on Figure 1, the number of principal components for M = 100 that
minimizes the classification error rate is &k = 2. We subsequently fit model (3)
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with two principal components and estimate the regression parameters using
maximum likelihood estimation. Based on fitting the model and the back-
transformation described in Section 2.2, we can rank the genes in terms of
their ability to discriminate between these three classes of tumors. A ranking
of the top 20 genes from the subset of M = 100 and their corresponding gene
scores for discriminating BRCA1-positive tumors from sporadic tumors is given
in Table 1. A similar table of the top genes for discriminating BRCA2-positive
tumors from sporadic tumors can be found at the website. Many of the genes
on this list overlap with the discriminatory genes found by Hedenfalk et al.,
but there are also genes that do not make their list.

Finally, we wish to examine potential relationships between the genes in
Table 1. One way to do this would be to simply cluster the genes using average
linkage hierarchical clustering? We do not present the resulting dendrogram
here; it can be found at our website. However, if we now use the estimated
variance matrix of the gene scores from the SVD regression model based on
two principal components as the basis of the hierarchical clustering, this yields
the dendrogram in Figure 2. In particular, we find that there are two distinct
groupings with the second dendrogram, but this increase in separation comes
at the price of losing the finer substructure between the genes . The reason
for this because the estimates of the gene scores are highly correlated. Con-
sequently, most of the off-diagonal entries of the distance matrix used in the
hierarchical clustering algorithm are close to one. However, the initial sepa-
ration between the genes is greater using this method compared to that from
performing hierarchical clustering on the gene expression data where the tumor
class is not taken into account (data not shown).

4 Discussion

In this article, we have developed a singular value decomposition regression
modelling approach for correlating gene expression profiles with tumor class
in microarray settings. This methodology is important for determining the
diagnostic and predictive ability of microarray technology in clinical settings.
While we have focused mainly on a categorical response (tumor type), the
ideas in this article can be applied to other types of clinical phenotypes, such as
censored failure times, using different regression models in lieu of (1). Singular
value decomposition regression models have a rich tradition in other fields of
application, but the presence of noncontinuous clinical phenotypes introduce
new issues in statistical modelling.

We utilized SVD regression modeling for three purposes. First, predictive
models were constructed in the situation where the dimension of predictors is
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much larger than that of the independent samples. Second, it provided the
basis for ranking genes in terms of their discriminative abilities. Finally, the
parameter estimates from the principal components regression method were
used to cluster genes. Based on the analysis of the breast cancer data, we found
that the SVD regression approach is successful for prediction and variable
selection. However, it is problematic for clustering in terms of finding finer
structural relationships among genes.

As was mentioned in the Introduction, singular value decomposition re-
gression models have been applied in other disciplines; one unique challenge
here is that the outcome measure is not continuous. A major advantage of
this method is that it can accommodate the scenario where the number of
predictors is larger than the number of independent samples. However, other
predictive modelling methods exist in this setting, such as partial least squares
and ridge regression!! It would be very useful to compare these methods in
terms of their predictive modelling capabilities and is a current area of fo-
cus of our research. However, it should be noted that it does not appear to
be straightforward to develop gene selection and clustering schemes based on
partial least squares.

Because gene expression data are highly multivariate, they are inherently
complex. This research has also demonstrated that multiple levels of data anal-
ysis are needed in order to perform classification of tumors using microarray
data.
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Figure 1: Plot of estimated classification error rates (based on Hamming distance) versus
number of principal components. Solid line: M = 25; dashed line: M = 100; dotted line:
M = 1500; dashed/dotted line: M = 3226.
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Figure 2: Hierarchical clustering dendrogram of genes from Table 1 based on gene scores.

Average linkage clustering used.
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Table 1: List of ranked genes and gene scores for discriminating BRCA1-positive tumors

from sporadic breast cancer tumors.

Clone

823775

364840
44180
32231
81518

417124

839594

239958

234150
73531

204897

725860

246524
429135

307843
22230
50413
81331

341130

810551

Gene

guanine nucleotide binding protein (G protein),

alpha inhibiting activity polypeptide 3

ESTs, Moderately similar to mouse Dhm1 protein [M.musculus]
alpha-2-macroglobulin

KIAA0246 protein

apelin; peptide ligand for APJ receptor

APEX nuclease (multifunctional DNA repair enzyme)
ribosomal protein L38

DKFZP586G1822 protein

myotubularin related protein 4

nitrogen fixation cluster-like

phospholipase C, gamma 2 (phosphatidylinositol-specific)
transcription factor AP-2 gamma

(activating enhancer-binding protein 2 gamma)

CHK1 (checkpoint, S.pombe) homolog

suppression of tumorigenicity 13

(colon carcinoma) (Hsp70-interacting protein)

ESTs

collagen, type V, alpha 1

armadillo repeat gene deletes in velocardiofacial syndrome
fatty acid binding protein 5 (psoriasis-associated)
retinoblastoma-like 2 (p130)

low density lipoprotein-related protein 1
(alpha-2-macroglobulin receptor)

Score

0.204

0.194
0.175
0.172
0.171
0.167
0.155
0.154
0.151
0.150
0.148
0.146

0.144
0.143

0.142
0.131
0.130
0.129
0.128
0.127




