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We report the identification of several putative muscle−specific regulatory elements, and
genes which are expressed preferentially in the muscle of the nematode Caenorhabditis
elegans. We used computational pattern finding methods to identify cis−regulatory motifs
from promoter regions of a set of genesknown to expresspreferentially in muscle; each motif
describes the potential binding sites for an unknown regulatory factor. The significance and
specificity of the identified motifs were evaluated using several different control sequence
sets. Using the motifs, we searched the entire C. elegans genome for genes whose promoter
regions have a high probability of being bound by the putative regulatory factors. Genes that
met thiscriterion and were not included in our initial set were predicted to be good candidates
for muscle expression. Some of these candidates are additional, known muscle expressed
genes and several others are shown here to be preferentially expressed in muscle cells by
using GFP (green fluorescent protein) constructs. The methods described here can be used to
predict the spatial expression pattern of many uncharacterized genes.

1   Introduction

Establishing where and when a gene is expressed and understanding the
underlying regulatory network which guides its expression are critical in
understanding gene function in a multicellular organism. The transcription
regulatory apparatus which directs temporo−spatial expression of genes is encoded
in the DNA, in the form of organized arrays of transcription factor (TF) binding
sites1,2. These cis−regulatory sites are recognized sequence−specifically by
cognate TFs which control and guide the expression pattern of genes. 

We are interested in identifying muscle−specific regulatory elements,
and genes expressed in muscle as tools to study muscle development. Out of the
thousands of genes which express in a particular tissue, the most interesting genes
to study for understanding its development, differentiation, function and structure,
are the ones which are preferentially expressed in that tissue. Preferential
expression can be either selective (expression in a subset of tissues or cell types in
an organism) or specific (expression in only one tissue or cell type).
Experimentally elucidating novel, additional genes which are expressed
specifically or selectively in a tissue, or finding new cis−regulatory elements
which function only in one tissue type is time consuming as well as challenging.
Hence, computational methods which can accurately predict tissue−specific genes
and regulatory elements are of great value. Here we describe computational
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approaches for the identification of muscle−specific cis−regulatory elements and
genes which are expressed preferentially in the C. elegans muscle.

We obtained a list of 35 genes known to be selectively or specifically
expressed in the muscle of C. elegans. We used a subset of these genes as the
training set and the remaining genes as the test set. From the promoter regions of
the training set genes we identified several conserved motifs using two different
computational methods. We evaluated the significance and specificity of these
motifs for muscle−expressed genes using the test and several control sets. The
identified motifs describe potential target binding sites for novel transcription
factors. Using these motifs, we searched the C. elegans genome for genes whose
promoter regions have a high probability of being bound by the regulatory factors.
These genes were considered as potential candidates for muscle expression.
Several identified candidates were known muscle genes (present in both training
as well as test sets). We have tested the expression pattern of some of the other
candidates using GFP technology and found that several of these genes are indeed
expressed preferentially in C. elegans muscle.

The methods described here can be used in identifying regulatory
elements and genes in other tissues and cell types in C. elegans and other
eukaryotic organisms. 

2  Data 

Training set: Upstream regions (−2000 to −1, relative to the translation start) of 19
genes known to be expressed selectively or specifically in C. elegans muscle3,4,5.
Control set 1: Upstream regions of a completely different set of 16 genes known
to be expressed selectively or specifically in the C. elegans muscle3,4,5. 
Control set 2: Upstream regions of 500 genes, randomly selected from the C.
elegans genome.
Control set 3: Upstream regions of 19 genes known to be expressed selectively or
specifically in the C. elegans intestine6,7 (J.D. McGhee, personal communication).
None of these genes have any known expression in muscle. 

Complete gene lists (with additional references) are available at
http://ural.wustl.edu/~dg/PSB02.html. All sequences were downloaded from the
WormBase anonymous ftp server: ftp://ftp.wormbase.org/pub/wormbase/.

3  Methods 

3.1  Identification of regulatory motifs

Two local multiple sequence alignment methods, Consensus8 and ANN−Spec9,
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were run on the training set sequences to identify conserved motifs. Both
Consensus and ANN−Spec use weight matrix models to represent un−gapped
sequence motifs. Since the TF binding sites in a set of similarly regulated
sequences are expected to be conserved to a certain extent, conserved motifs
identified by these programs represent potential regulatory elements. 
Consensus: Consensus8 uses a greedy algorithm and searches for a matrix with a
low probability of occurring by chance, or, equivalently, having a high
information content (I.C.)10. Version 6.c of Consensus was used. The top scoring
results were reported from different runs. Different pattern lengths were tested,
and both strands of the DNA were searched for motifs since TFs can bind to either
strand. Patterns with high I.C. and the lowest expected frequency were considered.
ANN−Spec: ANN−Spec9 uses a simple artificial neural network and Gibbs
sampling11 method to define DNA binding site patterns. The program searches for
the parameters of a simple perceptron network (weight matrix) which maximize
the specificity for binding a positive sequence set (or training set) compared to a
background sequence set. Binding sites in the positive data set are found with the
resulting weight matrix and these sites are then used to define a local multiple
sequence alignment. ANN−Spec Version 1.0 was used. A comparison of ANN−
Spec and other related programs has shown that ANN−Spec is able to identify
patterns of higher specificity when training with background sequences (C.T.
Workman and G.D. Stormo, unpublished observation). Hence, for ANN−Spec, a
background sequence set of upstream regions from 3000 randomly picked genes
was used. Different motif lengths were tried and both strands of the DNA were
searched for motifs. Due to the non−deterministic nature of the algorithm,
multiple training runs are performed (100), with each run iterating 2000 times.
The results were sorted by their best attained objective function values. Weight
matrices corresponding to the ten highest scoring runs were observed. If >5 of
these top scoring ten runs give a motif with one consistent pattern consensus, that
pattern is considered significant. 

3.2  Searching for "sites"in sequences

The Patser program (G.Z. Hertz and G.D. Stormo, unpublished) allows one to
score the words of a sequence against a weight matrix. Once the weight matrices
for regulatory motifs are obtained by Consensus or ANN−Spec, the matrices can
be used as input for Patser to identify high scoring sub−sequences (or "sites") in a
given set of sequences. Patser calculates the p−value (or probability) of observing
a particular score or higher at a particular sequence position12. A "cutoff" score for
eliminating low scoring sub−sequences is also calculated numerically. From an
alignment of sites in a binding site pattern, the program calculates the cutoff score
as follows. The "true" information content of an alignment of sites is given by:

                                                                                              ....... (1)I
sites

= − ∑
b
∑

k 
f(b,k) ln 

f(b,k)

p(b)
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where, f(b,k) is the frequency of observing a base, b, at a particular position, k, in
a binding site, p(b) is the prior probability for base b in the genome, k sums over
all l positions of the pattern (l being the length of the pattern), and b sums over all
four DNA bases. ln(probability) of observing binding sites in a random sequence
is related to this true information content10: ln(probability) ≤ Isites . The "sample
size adjusted" information content of an alignment is the true information content
minus the average information content expected from an arbitrary alignment of
random sites. Patser approximates the target ln(probability) of the cutoff score
(i.e. the probability of observing a score greater or equal to the cutoff score) as
−(sample size adjusted information content); the cutoff score can then be
calculated from this ln(probability)  value.

3.3  Establishing spatial expression pattern of genes

A major advance in the attempts to localize gene expression and proteins is the
recent advent of green fluorescent protein (GFP) as a reporter molecule in living
organisms13. GFP is a protein from jellyfish that emits green fluorescence when
excited by blue light, even when expressed in heterologous organisms. Here, the
promoters (−6000 to −1) of the genes which are predicted to be expressed in
muscle are fused with the GFP−coding sequence using genetic recombination, so
that the GFP is under the regulatory control of the promoter. Suitable DNA
constructs for promoter::GFP are injected into the gonad of the hermaphrodite
worms. A portion of the progeny segregating from the injected animals express
GFP under the control of the promoter of interest. Green fluorescence from the
GFP is observed in the different cells and tissues of these progeny. (Detailed
description of the method is available at: http://ural.wustl.edu/~dg/PSB02.html.)

4  Results 

4.1 Identification of regulatory motifs

One very strong motif with the consensus CCCGCGGGAGCCCG (Motif 1, Figure
1) was obtained using both Consensus and ANN−Spec. Some shorter motifs were
also found which appeared to be parts of the above motif and were ignored.
Instances of this motif (sub−sequences scoring above the Patser cutoff value) were
identified in the training set. These sites were then deleted from the sequences and
Consensus and ANN−Spec programs were re−run which resulted in identification
of several other motifs (motifs 2 through 5, Figure 1). We checked to see if the
motifs found in our analysis were previously reported. Motifs 4 and 5 are very
similar to the G−rich binding sites of the ubiquitous, Sp−1 like, transcription
factor which has been shown to regulate the expression of many different classes
of genes including housekeeping and muscle genes14. Since our objective was to
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identify muscle−specific regulatory elements, we did not consider motifs 4 and 5
any further. Motifs 1, 2, and 3 were novel since they did not have any matches to
any known sites in the TRANSFAC database15.

                            Motif 1                                                Motif 2

                   CCCGCGGGAGCCCG                                  CTCTCAAACCC
                            I.C. 15.1                                                      I.C. 10.9 

                              Motif 3                                             Motif 4

                          AAGAAGAAGC                                        TGGGCGGA
                               I.C. 14.2                                                   I.C. 13.8
                                                          Motif 5

                                                              GGGCGGGA
                                                                 I.C.  14.1
Figure 1: Motifs identified using Consensus and ANN−Spec programs. The motif consensus,
information content of the motifs in bits and sequence logos16 are given. 

4.2 DNA binding probability and significance of identified motifs

A "site" in a sequence is simply a high scoring sub−sequence which is obtained by
the Patser program using the motif weight matrix as an input. A term which is
proportional to the probability of a TF molecule binding to its sites in a sequence
can be obtained from the "site scores" calculated by the Patser program. The free
energy of binding (−∆G) of a TF molecule to a DNA site is proportional to the
score (s) of the site17,18, ∆G = −RTs, where, R is the universal gas constant and T
is the absolute temperature. Let us assume that occupancy of DNA sites by a TF
follows the Boltzmann distribution under the condition of thermodynamic
equilibrium. Then, the probability that a TF molecule occupies a site with score s,
is given by: 

        P(s)  α  e− ∆G/RT                                              ..... (2a)
               or,   P(s)  α  e s                ..... (2b)

This is called the probability proportionality value (pp−value). Since we will use
these pp−values only for the purpose of comparison between different sequences
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(see below), the proportionality constant in equation 2 is of no consequence to us,
and we assume that the constant is equal to 1. For any motif, m, there can be
multiple sites in a given sequence scoring above the Patser cutoff; the pp−value
for binding of a TF molecule to any of its several binding sites in a sequence is
given by the sum of individual terms: 

                   P
m

seq

 
  =       e s                                .... (3)

The average pp−value for a TF, corresponding to motif m, to be bound to a
sequence in a given set of N sequences is:

  < P
m

seq>  =                 e s                                             ..... (4)

We calculate this pp−value for both the training and the random sets (Table 1).  
For efficient gene regulation TFs need to bind effectively to the

regulatory elements in the promoter region i.e. the binding energy (−∆G) of the TF
to the promoter region of the regulated gene should be higher compared to other
(background) sequences. In other words, the probability of binding to the regulated
sequences should be higher compared to background sequences, assuming the
components of the cells are in thermodynamic equilibrium and the binding events
follow the Boltzmann distribution. There are two possible ways in which this may
be achieved. First, the binding energy of the TF to one individual site in the
upstream region of the regulated gene can be very high (Mode 1); alternatively, in
the absence of a very strong binding site, there can be multiple weaker sites, with
lower binding energies (individually), but the combined effect of these sites may
result in high binding probability (Mode 2) (see equation 3). A combination of
both strategies is also possible. We do not know which mode is more suitable for
describing gene regulation by the putative TFs for the identified DNA binding site
motifs. Therefore, we determined several relevant parameters for both modes of
binding (Table 1) for the training set as well as the control set 2 (random set).
First, using Patser, potential binding sites for each motif were determined in both
sets. We then calculated: average number of sites per sequence, average score of
the binding sites, average of the maximum scoring sites from each sequence, and a
measure of the probability of binding of a TF to its sites in a particular sequence.
Parameters were determined from (a) only the highest scoring sites in each
sequence (Mode 1) (b) all sites scoring above the respective Patser cutoff scores
(Mode 2). For the purpose of comparison, we have also shown the parameters for
an unrelated pattern, ACTGATA ("GATA" in Table 1), which is obtained by
Consensus and ANN−Spec from the promoters of a list of genes expressed in the
C. elegans intestine (D. GuhaThakurta, J.D. McGhee and G.D. Stormo,
unpublished observation). Sites corresponding to this motif have been shown to be
important for intestine−specific expression of the ges−1 gene in C. elegans6. 

∑
Sites

∑
Sites

∑
Seqs

1
N
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Table 1:  Potential TF binding site parameters for training and random set. Column 1: average number of
sites per sequence above the Patser calculated cutoff, Column 2: average score per site, Column 3: pp−
value (equation 4) calculated from all sitesscoring above the Patser calculated cutoff value. For columns
4 and 5, the highest scoring sites in each sequence were determined using Patser (highest scoring sites in
some sequences may have scores below the cut−off values). Average of the highest scores from each
sequence is given in column 4. Column 5 shows the pp−value based on only the highest scoring sites in
each sequence. The values in columns 3 and 5 in both sets are to be multiplied by a factor of 10^4.

                Training Set                    Random Set

Motif
Index

Avg.
no. of
sites
per
seq.

Avg.
score
per
site

pp−
val

all
sites >
cutoff

Avg.
highest
score
per
seq.

pp−val

with
highest
scoring
sites

Avg.
no. of
sites
per
seq.

Avg.
score
per
site

pp−val

all sites
>
cutoff

Avg.
highest
score
per
seq.

pp−val

with
highest
scoring
sites

  Ratio    Ratio

  CT
1   CT

2    CT
3    CT

4    CT
5   CR

1    CR
2    CR

3    CR
4   CR

5     RC     RH

1   3.45     10.5       61.9        11.79      47.8    0.69      9.51       2.55         7.1          1.92 24.3 24.9

2   5.15     7.17       4.19         9.36       3.16    2.68      6.84       0.74        7.04         0.49 5.7 6.4

3   1.6      10.32      10.1         9.3         2.68    0.66      9.15       1.60        7.25         0.51 6.3 5.25

GATA   1.6       6.12        1.1          6.1         0.73    2.15      6.38        2.8         6.54         2.19 0.39 0.33

Ratios, RC and RH, are called discrimination factors or R−factors. Given
two sequences, one from the training set and another from the random set, the
discrimination factors show how likely it is for the cognate TF to bind a training
set sequence as opposed to a random sequence. The R−factors are nearly identical
using all sites above the cutoff (RC) or using only the highest scoring sites (RH).
For the cognate TF corresponding to motif 1, it is about 24−25 times more likely
that the TF will bind to a training set sequence. The R−factor for motif 1 is much
higher than that of motifs 2 or 3, which might explain why the motif appeared to
be the most significant one in our first round of Consensus and ANN−Spec runs.
In eukaryotic gene regulation, it is common for multiple TFs to act together and
bind DNA in a cooperative fashion1,2,14,19,20. If this is the case here, then the
combined effect of multiple TFs binding to the sites could be dramatic even
though the individual discrimination factors for motifs 2 and 3 are on the order of
5−6. The R−factor for the unrelated GATA motif is less than 0.4.

4.3 Specificity of identified motifs for muscle genes

The combined pp−value for multiple motifs is calculated for the upstream
sequence of each gene in the C. elegans genome. For lack of more specific
information regarding the mode of TF binding and interaction at this point, we
assume that for selective or specific expression of a gene in the muscle context:
(1) all relevant TFs (corresponding to the motifs 1, 2 and 3) need to bind to the
upstream sequence, and (2) if there are multiple sites scoring above the Patser
cutoff for a particular motif, any one of those binding sites may to be occupied by

CT

3

CR

3

CT

5

CR

5
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the corresponding TF. For a particular upstream sequence, the combined pp−value
for multiple motifs is calculated by taking a product of individual pp−values (from
equation 3) for the different motifs: 

� seq =         P
m

seq                                               ..... (5)

All (19,804) upstream sequences were sorted according to the log of the combined
pp−value, ln(

� � � �
) (equation 5). Two sorted lists were generated, viz. list 1, where

the combined pp−values were calculated for each sequence using only the highest
scoring sites corresponding to the three motifs (Mode 1); and list 2, where the pp−
values for each sequence was calculated using all sites for the three motifs scoring
above the respective Patser cutoffs (Mode 2). Based on the position of the genes in
a sorted list, a "specificity score" can be calculated for a given sequence set.
Suppose the positions of N genes of a given set in the sorted list are: x1, .. xn, .. xN.
The probability that a particular gene is at position xn or higher in the sorted list is
given by: (xn /19,804). The joint probability of observing N genes at positions x1 ...
xN or higher in the list is given by the product of individual probabilities. We
consider the log of this probability, and to have a measure independent of the
number of sequences, we define the specificity score as:

             Specificity Score = −                                                     ...... (6)

We calculate the specificity score for the training and the three control sets. Using
list 1, the specificity score for the training set, and control sets 1, 2 and 3 were
4.76, 2.63, 1.04 and 0.63 respectively. Using list 2 the specificity scores for the
training set and three control sets (in the same order as above) were 4.22, 2.5, 1.01
and 0.8. The specificity scores for the second muscle gene set (control set 1) are
not as high as that for the training set, but still substantially higher than the
random (control set 2) or the intestine (control set 3) gene sets. The higher
specificity scores for the training set and the control set 1, show that the identified
motifs are specific (or, at least selective) for the muscle genes. 

4.4 Selection of candidates for testing muscle expression by GFP

We considered the two sorted lists from section 4.3. Several known muscle genes
were placed high on the lists (within top 25, Table 2); for reference the highest
scoring intestine gene was placed at only 2029 in list 1 and 3943 in list 2. To
select a few genes for GFP−expression testing, we took the top−scoring 25 genes
from list 1, since the specificity score of muscle genes was higher using this list
compared to list 2. To minimize the false positive rate, we checked for the

∑ ln
n

xn

19,804( )[ ]1
N

∏
m=1

3
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presence these genes in the top scoring 50 genes in the list 2. Genes which score
high in both lists were considered good candidates for muscle expression. Several
of these candidates were known muscle genes (training set or control set 1). The
remaining ones were selected for GFP−expression testing (Table 2, Figure 2). 

Table 2: the list of top scoring 25 genes from list 1 (see text, section 4.4). genes which were in the
training set are in bold. genes which were in control set 1 are in italics. all previously known muscle
genes are indicated in column 5 and candidates which have been verified here to have muscle−specific
or selective expression are indicated in column 6.

Pos. in
List 1

Pos. in
List 2

Gene ID Gene name or putative
product

Previously
known
muscle

expression

GFP
verified

expression

in muscle

1 1 F09F7.2 mlc−3 Yes

2 4 ZK617.1b unc−22 Yes

3 13 K10B3.8 gpd−2 Yes

4 9 Y105E8B.c tmy−1 Yes

5 7 F55C7.2 unknown

6 8 Y44A6D.3 unknown

7 12 F08B6.4b unc−87 Yes

8 25 F11C3.3 unc−54 Yes

9 2 C49A1.6 unknown

10 6 F58F6.3 unknown

11 11 B0513.1 gei−5 Yes

12 15 F47F6.1 unknown Yes

13 46 F02E9.2b lin−28

14 10 R08B4.2 transcription  factor No

15 19 F14B8.5a unknown

16 44 F41E7.6 carnitine octanoyltransferase Yes

17 14 T22C1.7 unknown Yes

18 18 W06F12.1a ser/thr kinase

19 41 F29C12.1 unknown

20 40 T22E5.5 mup−2 Yes

21 31 C16C2.2 eat−16 Yes

22 51 C05D11.4 let−756

23 64 C09D8.2 ptp−3

24 36 K12F2.1 myo−3 Yes

25 31 D1081.2 unc−120 Yes
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Figure 2: Experimental verification of candidate genes; expression pattern of two genes are shown
(additional figures are available at http://ural.wustl.edu/~dg/PSB02.html/). Fluorescence (A, C) and
corresponding DIC (differential interference contrast) (B, D) images of transgenic worms expressing
GFP under the control of 6 Kb region upstream of B0513.1 and T22C1.7. A. GFP−dependent
fluorescence is detected in the nuclei (arrows) and in the cytoplasm of bodywall muscle cells. C. GFP
dependent fluorescence is detected in nuclei of the body wall muscle cells close to the outer edge of the
animal. This focal plane shows in−focus nuclei from two quadrants and out−of−focus nuclei are from the
other two quadrants. 

4.5 Identifying spatial expression of candidate genes 

Accurately establishing that a gene is expressed in only one cell type using the
currently available techniques (e.g. in−situ hybridization, GFP) is difficult. This is
in part because the observance of expression of in only one cell type does not rule
out low or transient expression in other tissues. In addition, depending on the
technique used, detection of expression in certain tissues can be problematic.
Hence some of the genes which are described in the literature as muscle specific,
may actually be expressed in a few other tissues.

We determined the spatial expression of candidate genes in adult and
larval worms using GFP−reporter constructs, in which GFP is under the control of
the promoter regions of the candidate genes. Complete identification of the spatial
GFP−expression pattern is difficult and still ongoing, however, general statements
concerning localization can be made. T22C1.7 is expressed predominately in the
bodywall muscle (Fig. 2c) and in cells tentatively identified as pharyngeal, vulva
and intestinal muscle. Thus, this gene could be muscle specific, but we need to
critically identify its expression in other cells before we can make this claim.
B0513.1 is clearly expressed in the bodywall (Fig. 2a) and vulval muscle. Its GFP
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expression also includes a limited set of non−muscle tissue including intestine,
neurons and, probably, hypodermis. F41E7.6 has GFP expression in intestinal
muscle, sphincter muscle and anal depressor muscle. It is also expressed in non−
muscle tissue of the pharyngeal−intestinal valve and a small number of neurons.
Muscle expression of the F47F6.1 gene was observed under a GFP−dissecting
microscope in the initial progeny (F1) of the injected adult worms. However, no
transmitting lines for this gene were established, and therefore further detailed
investigation of this gene was not done. R08B4.2 is expressed predominately in
neuronal tissue. However, its expression in muscle tissue cannot be ruled out for
reasons mentioned above. Transient expression of this gene in muscle during
embryogenesis is possible and we are in the process of characterizing the
expression pattern during development. There was no observed GFP expression
from the promoter regions of genes F58F6.3 and C09D8.2. Possible reasons for
this are: experimental error, low level or transient GFP expression, or these genes
could be pseudogenes that are not expressed. We are continuing with experiments
to determine the expression for the remainder of the genes in Table 2.

5  Discussion

Using computational pattern recognition methods we identified several potential
muscle−specific regulatory elements. These putative regulatory elements were
then used to predict other genes which might be preferentially expressed in the
muscle tissue. Out of the top 25 genes in list 1, 23 score highly (within the top 50)
in list 2. Out of these 23, 6 were from the training set, 4 were known muscle genes
which were not included in our training set, and 4 more have been experimentally
shown to have muscle−selective expression. Thus, checking for consistency in the
two lists gives a high true positive rate for identification of muscle−specific or
selective genes. We are in the process of checking the expression of some lower
scoring genes (e.g. genes at positions 25 through 100). We believe some of these
genes will also show muscle−selective or specific expression.

A number of additional considerations are likely to increase the
efficiency of identification of muscle genes. Here, we started with a partial set of
muscle genes for the purpose of cross validation and evaluation against an
independent test set; including all known muscle genes in our training set could
increase the quality and specificity of the regulatory motif weight matrices and
lead to more efficient detection of other muscle genes. A more thorough
computational study should also be helpful; e.g. a study of the distance
distribution and orientation of the sites can illustrate the possible modes by which
the TFs interact with the DNA sites and with each other. This should lead to
building better models for the TF−DNA interaction and allow us to identify
muscle genes with higher specificity14,19,20,21. In addition we need to initiate
experiments to test whether the predicted regulatory elements are functional and
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guide muscle−selective or specific expression. These studies will not only help in
more efficient identification of muscle−specific genes but facilitate our
understanding of muscle−specific regulatory elements and mechanisms which
guide gene expression in this tissue. Clearly, the studies described here can be
helpful in understanding the underlying regulatory mechanism, and in identifying
new genes which are expressed in other spatial contexts and tissues not only in C.
elegans but also other eukaryotic organisms. This knowledge may also find
applications in gene therapy, where using tissue−specific regulatory elements, one
can design promoters for the purpose of gene delivery to specific tissues22.
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