
EULER-PCR: FINISHING EXPERIMENTS FOR REPEAT

RESOLUTION

ZUFAR MULYUKOV, PAVEL A. PEVZNER

Department of Computer Science and Engineering,

University of California, San Diego, CA 92093, USA

Genomic sequencing typically generates a large collection of unordered contigs or
scaffolds. Contig ordering (also known as gap closure) is a non-trivial algorith-
mic and experimental problem since even relatively simple-to-assemble bacterial
genomes typically result in large set of contigs. Neighboring contigs maybe sepa-
rated either by gaps in read coverage or by repeats. In the later case we say that the
contigs are separated by pseudogaps, and we emphasize the important difference
between gap closure and pseudogap closure. The existing gap closure approaches
do not distinguish between gaps and pseudogaps and treat them in the same way.
We describe a new fast strategy for closing pseudogaps (repeat resolution). Since
in highly repetitive genomes, the number of pseudogaps may exceed the number
of gaps by an order of magnitude, this approach provides a significant advantage
over the existing gap closure methods.

1 Introduction

Large scale sequencing projects always require a finishing phase, i.e., designing
and conducting additional experiments for closing gaps and establishing the
overall order of contigs. The design of such finishing experiments still requires
extensive human intervention using interactive tools, such as sequence editors
(Gordon et al., 1998 1). A typical DNA sequencing project generates a large
collection of unordered contigs or scaffolds. Ordering such contigs is a major
effort and often a bottleneck in sequence finishing. Contig ordering is usually
done by PCR experiments that correspond to the queries ”Are the contigs
A and B neighbors?” A naive approach to such ”The twenty questions game”
requires PCR experiments for every pair of contigs and is very time-consuming.
Sorokin et al., 1996, 2 Tettelin et al., 1999, 3 and Beigel et al., 2001 4 suggested
multiplex PCR approach that uses pooling strategy to ask more complicated
queries ”Given sets of contigs A and B, do they contain contigs A ∈ A and
B ∈ B that are neighbors?”.

Contig ordering is closely related to gap closure. Neighboring contigs
maybe separated either by gaps in read coverage or by repeats. In the later
case of repeat-induced gaps we say that the contigs are separated by pseu-
dogaps. For example, in the Neisseria meningitidis (NM) project (Parkhill
et al., 2000 5), Phrap generates 160 contigs, but only half of them are sepa-
rated by gaps, while the other half is separated by pseudogaps (Pevzner et al.,
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2001 6). The existing contig ordering algorithms do not distinguish between
gaps and pseudogaps and treat them in the same way. This approach is in-
efficient, since it ignores information available for pseudogaps, such as repeat
length and contig sequences adjacent to a particular repeat. Therefore, an
algorithm that employs a separate approach to resolving pseudogaps provides
a significant advantage over the existing gap closure methods. We describe a
new algorithm, EULER-PCR, that significantly reduces the number of finish-
ing experiments for repeat resolution. EULER-PCR software is available by
contacting Z.M.

2 Repeat graph

Long repeats present a problem in DNA sequencing since they often lead to
multiple solutions of the fragment assembly problem. Figure 1(a) illustrates
the “repeat problem” caused by perfect triple repeat that leads to two pos-
sible sequence assemblies. The classical “overlap-layout-consensus” approach
(Kececioglu and Myers, 1995 7) to the assembly problem is based on the no-
tion of the overlap graph (Fig. 1(b)). Every read corresponds to a vertex
in the overlap graph and two vertices are connected by an edge if the corre-
sponding reads overlap. The DNA sequence corresponds to a path traversing
the consecutive reads in this graphs. The fragment assembly problem is thus
cast as finding a path in the overlap graph visiting every vertex exactly once,
a Hamiltonian path problem. However, repeats complicate the overlap graph
since repeated regions create edges between non-consecutive reads. The Hamil-
tonian path problem is NP-complete and the efficient algorithms for solving
this problem in large graphs are unknown. This is the reason why fragment
assembly of highly repetitive genomes is a notoriously difficult problem. My-
ers et al., 2000 8 suggested to mask most of multi-copy repeats, thus breaking
the assembly into a large number of contigs. A better approach would be to
use the information about repeated regions and try to reduce the number of
contigs.

Pevzner et al. 2001, 9 and Pevzner and Tang 2001 6 developed a new
fragment assembly algorithm (EULER) based on the Eulerian path approach.
Instead of masking repeats and breaking DNA sequence into a set of contigs,
EULER constructs a repeat graph, which represents the repeat structure better
than the overlap graph does. Given a DNA sequence, the repeat graph can
be visualized by glueing together all identical repeated regions (Fig.1(c)). One
can see that the repeat graph (Fig.1(c)) is a much simpler representation of
repeats than the overlap graph (Fig.1(b)).

To construct the repeat graph from the set of sequencing reads, EULER
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Figure 1: (a) DNA sequence with a triple repeat R and four unique segments A, B, C,
D. Due to the repeat R, the same set of sequencing reads (shown by short lines under
assembled DNAs) can be assembled either as ARBRCRD (upper assembly) and ARCR-
BRD (lower assembly), which differ by transposition of B and C. (b) Overlap graph for
“overlap-layout-consensus” approach. Two Hamiltonian paths, corresponding to two possi-
ble fragment assemblies, are shown by dashed (for ARBRCRD) and dotted (for ARCRBRD)
lines. (c) Repeat graph where three copies of the repeat R are “glued” into a single edge.
Every Eulerian path in this graph corresponds to a valid solution of the fragment assembly
problem. Two Eulerian paths, corresponding to two possible fragment assemblies, are shown
by dashed (for ARBRCRD) and dotted (for ARCRBRD) lines.
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breaks the reads into short k-mers (continuous strings of length k). One can
view such k-mers as a result of hybridization of reads with a very large virtual
DNA chip. These k-mers are represented by edges of the de Bruijn graph,
while the set all (k − 1)-mers from set of sequencing reads are represented by
vertices of the graph. Two vertices v and w are joined by a directed edge if
there is a k-mer in which first (k − 1) nucleotides coincide with v, and last
(k− 1) nucleotides coincide with w (see example in Fig.2). We emphasize that
the fragment assembly is now cast as finding a path visiting every edge of the
graph exactly once, an Eulerian path problem. In contrast to the Hamiltonian
path problem, the Eulerian path problem is easy to solve even for graphs
with millions of vertices since there exist linear-time Eulerian path algorithms.
This is the fundamental difference between the EULER algorithm (Pevzner et
al., 2001) and the “overlap-layout-consensus” approach. The repeat graph is
obtained from de Bruijn graph by collapsing paths in the de Bruijn graph into
single edges (see Pevzner et al. 2001 9 for details).

In this new approach contigs, which would be disconnected if repeats were
masked, are represented by edges of a connected graph. We can compute repeat
copy numbers by assigning minimal (nonzero) multiplicities to the graph edges
that balance in-flow and out-flow on every vertex (Pevzner and Tang, 2001 6).
For example in Fig. Fig.1(c), repeat edge R has multiplicity 3. Edges with
multiplicity higher than one represents a repeat, while edges with unit multi-
plicity represent conventional contigs. Note, that every repeat corresponds to
a single edge in the repeat graph rather than to a collection of vertices in the
layout graph. The DNA sequence in Fig.1(a) consists of four unique segments
A,B,C,D and one triple repeat R. The corresponding repeat graph (Fig.1(c))
consists of 4+1=5 edges. Two edges X and Y in the repeat graph follow each
other if and only if segment X follow segment Y in the DNA sequence. For a
repeat edge e = (v, w), edges entering the vertex v are called entrances into a
repeat, and edges leaving the vertex w are called exits from a repeat.

Gaps in read coverage break DNA sequence into a set of Lander-Waterman
islands (Lander and Waterman, 1988 10) and cause sequencing reads to be
assembled into a set of contigs. The repeat graph for a continuous DNA
sequence has a single source and a sink vertices, which correspond to the
beginning and the end of the DNA sequence. On the other had, the repeat
graph for a set of contigs has multiple sources and sinks, corresponding to
contig end-points. Fig.3 shows the fragment assembly problem similar to Fig.1
with some reads missing thus leading to two islands in the read coverage. In
this case the the repeat graph corresponds to two contigs and there are two
possible solutions of the fragment assembly problem: contigs ARB and CRD,
or contigs ARD and CRB. A single finishing PCR experiment would resolve
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Figure 2: Example of a de Bruijn graph for sequence ATGCTTGCGTGCA, with edges
being all 3-mers from this sequence, and vertices being all 2-mers. Due to the repeat TGC
there is another sequence ATGCGTGCTTGCA corresponding to another Eulerian path in
same de Bruijn graph (compare with Fig.1).
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Figure 3: (a) Gap in read coverage breaks DNA sequence into two islands ARB and CRD (B
and C correspond to the shortened versions of segments B and C from Fig.1). (b) The repeat
graph for these two islands is similar to the repeat graph in Fig.1 with “broken” edges B
and C. (c) Another solution of the fragment assembly problem with islands ARD and CRB
(instead of ARB and CRD).
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the repeat and delineate the correct assembly.

The above examples illustrate that the repeat graphs are valuable tools
providing important new insights into the repeat structure, as well as guiding
finishing experiments.

3 Repeat resolution

EULER (Pevzner et al., 20019) typically resolves all repeats except long perfect
ones that are not contained inside any sequencing read and therefore cannot
be resolved without double barreled data. Similarly EULER-DB (Pevzner and
Tang, 2001 6) typically resolves all repeats that are shorter than the clone
length. In a repeat graph such repeats are represented by edges with multi-
plicities greater than one. Multiplicities of the repeat edges define the repeat
copy numbers. Figure 4(a) shows the largest connected component of the re-
peat graph for the Neisseria meningitidis (NM) sequencing project. It is not
obvious which edges in this graph correspond to repeats and what are their
multiplicities. Pevzner and Tang, 2001 6 described EULER-CN algorithm that
find multiplicities of edges in the repeat graph by iteratively balancing the
Kirchhoff flow on every vertex.

While Fig. 4(a) looks complicated, it tells us what contigs are possible
neighbors and how they are oriented with respect to each other. The tradi-
tional sequence assembly algorithms do not output this information, leaving
finishers in the dark during the gap closure process. Comparison of figures 4(a)
and 4(b) illustrates the advantages of generating a repeat graph instead of a
large set of disconnected contigs. For a set of disconnected contigs (Fig. 4(b)),
a straightforward way to order them is to conduct PCR experiments for all
possible pairs of contigs (combinatorial PCR). This results in an extensive
finishing effort requiring over 30,000 PCR experiments. The repeat graph in
Fig. 4(a) eliminates the need for exhaustive test of every contig pair and sug-
gests conducting PCR experiments only for edges entering and exiting a repeat.
Even such simple approach, which tests all possible pairs of edges entering and
exiting a repeat one-by-one (graph-based combinatorial PCR), requires only
195 PCR experiments to resolve all repeats in the graph in Fig. 4(a) for NM
sequencing data.

Tettelin et al., 1999 3 suggested optimized primer pooling for multiplex
PCR to minimize number of experiments for gap closing. However unlike in
the case of gap closure, in the case of pseudogap closure the repeat graph
provides information about the length of a repeat to be resolved, as well as
entrance and exit sequences for the repeat. This information enables us to
resolve all pseudogaps in sequencing data in significantly smaller number of
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Figure 4: (a) Largest connected component of the repeat graph for Neisseria meningitidis

project (Parkhill et al., 2001 5) as assembled by EULER (Pevzner et al., 2001 9). Red edges
indicate repeats as determined by EULER-CN. (b) Masking repeats breaks the repeat graph
into an unordered set of contigs.
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multiplex PCR experiments as compared to resolution of gaps. EULER-PCR
uses the repeat graph to select primers pools for multiplex PCR experiments.
For NM project, EULER-PCR reduces number of PCR experiments to 21
reactions, which can be run concurrently.

Fig.5 shows an example of a repeat of multiplicity 3, with 3 edges entering
and 3 edges leaving the repeat. In this case the sequencing reads do not
provide information on which of exits X, Y, Z follow the entrances A, B, C.
The sequence reconstruction requires determining 3 correct pairings among 9
possibilities: A-X, A-Y, A-Z, B-X, B-Y, B-Z, C-X, C-Y, and C-Z. This can be
accomplished by generating PCR products spanning the repeat. To generate
such products, one has to choose unique PCR primers on entrance and exit
edges. If we are able to choose such positions for forward and reverse primers,
so that all possible PCR products will have lengths that are sufficiently different
from each other, we can deduce the correct pairings from a single multiplex
reaction by measuring the PCR products lengths. Assuming a conservative
estimate of the length measurement accuracy for long-range PCR product to
be about 10%, the relative pairwise length differences of possible PCR products
should be at least 10%. Fig.5 demonstrates that a repeat with 3 entrances and
3 exits can be resolved in a single multiplex PCR experiment using only 3
forward and 3 reverse primers. A single reaction tests all 9 possible pairings
between entrance and exit edges.

Repeats can follow each other in the graph, therefore a divide-and-conquer
strategy is employed to find edges on which primers to be placed. The repeat
graph is partitioned into set of smaller subgraphs which contain one or more
repeats as follows: if all entrance and exit edges of a repeat have unit multiplic-
ity, such repeat, along with entrance and exit edges constitutes a single simple
subgraph; if some entrance of exit edges or a repeat are repeats on their own,
subgraph is expanded to include entrance and exit edges of all repeats in the
subgraph until every terminal edge in the subgraph has unit multiplicity. PCR
primer pairs will be placed only on edges with unit multiplicity (the terminal
edges of the subgraph). This procedure minimizes the number of multiplex
PCRs, as well as number of primers, necessary to resolve the repeats.

An example of a repeat subgraph from NM sequencing data is given in
Fig.6. The structure of this repeat subgraph reveals that central region of the
repeats overlap, while some smaller repeats are completely contained inside
larger ones. Thus the repeat graph generated by EULER can provide insights
into the history of duplication events in genomes.

After finding the set of repeat subgraphs, EULER-PCR selects such set of
primers per reaction tube that will test maximal number of pairings between
entrance and exit edges of the repeat subgraphs given the constraint on maxi-
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Figure 5: An example of primer placement on edges entering and exiting a repeat. Length
of the repeat is 1 kb. Forward primers A, B, and C are placed on distances 0 kb, 3 kb, and
6 kb, respectively, “upstream” from the vertex starting the repeat. Reverse primers X, Y,
and Z are placed on distanced 0 kb, 1 kb, and 2 kb, respectively “downstream” from the
vertex ending the repeat. With such primer arrangement all nine possible PCR products
will have length differing by 10% or more from each other. Lengths of PCR product between
primer pairs: A-X, A-Y, A-Z, B-X, B-Y, B-Z, C-X, C-Y, and C-Z varies from 1 kb to 9 kb
respectively. One possible outcome of multiplex PCR is shown by dashed lines.
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Figure 6: A complex repeat subgraph containing multiple repeats (thick edges). Numbers
next to thick edges indicate repeat multiplicities. Thin edges have unit multiplicity.
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Table 1: “Combinatorial PCR” and POMP columns show the number of finishing PCR
experiments for gap closure. “Graph-based Combinatorial PCR” and EULER-PCR columns
show the number of repeat resolution experiments.

Genome Number Number Number of experiments
of contigs of contigs Combina- Multiplex Graph- Multiplex

before after torial PCR with based EULER-
repeat repeat PCR primer Combina- PCR

resolution resolution pooling torial PCR
(POMP)

CJ 18 15 630 90 16 3
LL 53 8 5,565 490 305 24
NM 123 69 30,135 1800 195 21

mal length of PCR product Lmax. Primers sequences chosen by EULER-PCR
are of length 20 bases or longer. Those sequences are selected in accordance
with standard requirements for primer selection (Haas et al., 199811) regarding
uniqueness in the genomic sequence, melting temperature requirements, G or
C for 3’ base, etc.

Last two columns in the Table 1 show the number of repeat resolution
experiments by straightforward graph-based combinatorial PCR and by opti-
mized EULER-PCR. For comparison, though indirect, the table also presents
the number of finishing experiments for gap closure by combinatorial PCR
and by pipette optimized multiplex PCR (POMP) suggested by Tettelin et
al.,1999. 3 The results are presented for Campylobacter jejuni (Parkhill et al.,
2001 12) , Lactococcus lactis (Bolotin et al., 2001 13), and Neisseria meningitis
(Parkhill et al., 2000 5) sequencing projects. First two methods deal with dis-
connected contigs and, while closing both gaps and pseudogaps these methods
require fairly large number of experiments. For N contigs, combinatorial PCR
simply tests all

(

2N

2

)

primer pairs. Optimized multiplex PCR method tests
for presence of PCR products between pairs of primer pools, instead of pairs
of primers. The number of initial reactions using POMP with pool size

√
2N

if given by
(

√

2N

2

)

(Tettelin et al.,1999 3). However, up to 2
√

2N additional
reactions are needed for each initial PCR product to determine which primers
in the pair of pools are mates. Thus, number of POMP reactions is estimated

as
√

2N
(

√

2N

2

)

. Note, that even straightforward approach to conduct PCRs,
using the repeat graph and choosing primers on all possible pairs of edges
entering and exiting repeats, requires relatively small number of reactions to
resolve repeats. Results for EULER-PCR are generated for long-range PCR
setup with relative pairwise difference between PCR products ε = 0.1, and
maximal PCR product length Lmax = 10kb. Average number of primers per
reaction suggested by EULER-PCR is 6 for CJ, 11 for LL, and 9 for NM.
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Resolving repeats before gap closure significantly reduces number of fin-
ishing experiments. This reduction is especially significant for highly repetitive
genomes like Lactococcus lactis. Number of contigs after repeat resolution re-
duces from 53 to only 8 for LL, thus requiring only few gap closing experiments.
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