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We will introduce a way how we can achieve high speed homology search by
only adding one off-the-shelf PCI board with one Field Programmable Gate Array
(FPGA) to a Pentium based computer system in use. FPGA is a reconfigurable
device, and any kind of circuits, such as pattern matching program, can be real-
ized in a moment. The performance is almost proportional to the size of FPGA
which is used in the system, and FPGAs are becoming larger and larger following
Moore’s law. We can easily obtain latest/larger FPGAs in the form off-the-shelf
PCI boards with FPGAs, at low costs. The result which we obtained is as fol-
lows. The performance is most comparable with small to middle class dedicated
hardware systems when we use a board with one of the latest FPGAs and the per-
formance can be furthermore accelerated by using more number of FPGA boards.
The time for comparing a query sequence of 2,048 elements with a database se-
quence of 64 million elements by the Smith-Waterman algorithm is about 34 sec,
which is about 330 times faster than a desktop computer with a 1GHz PentiumIII.
We can also accelerate the performance of a laptop computer using a PC card
with one smaller FPGA. The time for comparing a query sequence (1,024) with
the database sequence (64 million) is about 185 sec, which is about 30 times faster
than the desktop computer.

1 Introduction

In the past several years, there has been a rapid increase in genetic and ge-
nomic database, and the pattern matching problems in bioinformatics require
huge time for the computations. Many algorithms4,5,6 and dedicated hardware
systems11,12,13 have been developed. The result obtained there is a trade-off
of quality, time and cost. With desktop computer systems, it is unrealistic to
check all pattern matching possibilities within a reasonable time. Therefore,
simplified (but still very effective) algorithms have been designed and used on
the systems. With dedicated hardware systems, the computation time can be
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drastically improved, and all the possibilities can be checked, because most of
the pattern matching problems have many parallelism in them. However, the
cost of the systems are very expensive.

Field Programmable Gate Array (FPGA) is a reconfigurable device de-
signed for rapid prototyping, and any kinds of circuits can be realized on the
FPGA in a moment by downloading configuration data from host computers
or dedicated memories. The performance is almost proportional to the size
of the FPGA because the parallelism of computation is limited by the size.
FPGAs are becoming larger and larger following Moore’s low (the number of
transistors in a fixed size (namely the size of FPGAs) become twice in every
18 months). We can easily obtain the latest/largest FPGAs in the form off-
the-shelf PCI boards with FPGAs, which are now being shipped from many
companies 7, and we can obtain many kinds of these boards at low cost. FP-
GAs begin to be used as accelerators in many application areas 8,9,10 and also
used in some dedicated hardware systems11,13 for bioinformatics.

We will show that we can achieve high performance in homology search
by only adding one off-the-shelf FPGA board to a Pentium based computer
system in use. The performance can be furthermore accelerated by using more
number of FPGA boards. In our approach, the search is divided into two
phases because the FPGAs do not have enough hardware resources for the
pattern matching problems in bioinformatics. Therefore, different configura-
tion data (namely different circuits) are downloaded from the host computer
in each phase in order to make up for the limited hardware resources. The
configuration data can be easily modified for new FPGA boards, because they
are generated from the programs written in hardware description languages
without assuming any special hardware resources on the FPGA boards.

This paper is organized as follows. Section 2 describes the overview of
our approach, and the details of the approach is given in section 3. Then,
experimental results of the approach are shown in section 4. In section 5,
current status and future works are given.

2 Overview of the Approach

Our current target problems are homology search problems, and the Smith-
Waterman algorithm1 is used in all comparison between query sequences and
database sequences. In this section, we describe the overview of our approach.

2.1 Hardware and Software for our Approach

We need the followings as components of the hardware platform (Figure 1).
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1. one off-the-shelf FPGA board (with PCI bus interface), and

2. one host computer (a Pentium based computer, because driver programs
for most FPGA boards run only under WINDOWS or LINUX).
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Figure 1: Required Components of Hardware Platform

The softwares which are necessary for our approach are

1. drivers programs to control FPGA boards from the host computer, which
are developed by the board maker and attached to the FPGA boards,
and

2. CAD tools for the FPGA, only if we need to modify the configuration
data for new FPGA boards.

Among the components shown above, what we have developed are

1. the programs for the circuits which are implemented on the FPGA, and

2. interface programs which run on the host computer.

In our programs for the circuits, only the two memory banks to transfer
data between the FPGA and the host computer are assumed. Most FPGA
boards have at least two memory banks in order to receive data from the host
computer while the FPGA is running using another memory bank. Therefore,
configuration data for new FPGA boards can be easily generated by only
changing some parameters in the programs (FPGA size, memory size in FPGA,
I/O pin assignment and so on).

The interface programs need to control FPGA boards using the driver
programs. The structure of driver programs depends on the boards, and we
need to modify a part of the programs for each board.

2.2 Advantage and Disadvantage of the Approach

Before describing the details of our approach, we would like to summarize
the advantage and disadvantage of the approach compared with the dedicated
hardware systems.

First, the advantages of our approach are as follows.
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1. Many kinds of FPGA boards are shipped from many companies7, and
the costs of the boards are relatively low. We can choose FPGA boards
according to our requirements and budgets. For example, the cost of our
largest FPGA board is several times the cost of a Pentium based desktop
computer system, while the cost of PC card with a smaller FPGA is less
than a half of the cost of a laptop computer.

2. It is easy to obtain the boards with latest FPGAs (namely larger FPGAs)
as soon as the FPGAs are shipped, which is very important because the
performance of the approach is almost proportional to the size of FPGAs.

3. It is possible to replace the FPGA board and the host computer inde-
pendently.

4. By making the configuration data and the programs for the configuration
data open, many users can accelerate their search by only purchasing one
off-the-shelf FPGA board.

On the other hand, the disadvantages are as follows.

1. In general, off-the-shelf FPGA boards do not have enough hardware re-
sources for homology search. Especially memory size and memory band-
width are not sufficient. Furthermore, we assume only two memory banks
on the board for data transfer between the host computer and the FPGA,
and only the internal memory on the FPGA is used for the homology
search in order to maintain portability of our circuits. Because of this
limited memory size and memory bandwidth,

(a) Query sequences can not be compared with long database sequences
at once. Therefore, query sequences are always compared with sub-
sequences of the database sequences (automatically divided during
the search), and results against only the fragments in the subse-
quences can be shown (the length of the fragments can be specified
by users).

(b) Some parts of the database sequences are processed twice, and the
size of the parts is almost proportional to the length of the query
sequences. Therefore, the performance becomes worse as the query
sequences becomes longer, though it is negligible if we can use large
size FPGAs.

(c) With smaller FPGAs, the length of query sequences is limited (long
query sequences can not be processed). For example, with our PC
card with one Virtex XCV300, the maximum length of the query
sequence is 1024.
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2. Software environment is still poor. Its improvement is one of the our
future works.

2.3 Scalability

The performance is almost proportional to the number of FPGA boards when

1. the query sequence is compared with many database sequences which are
stored in different hard disks, or

2. each database sequence is divided into subsequences which are stored in
different hard disks,

because the database sequences or the subsequences can be compared with the
query sequence independently. However, the data transfer rate of the PCI bus
is limited, and many FPGA boards can not be attached to one host computer.
We have not evaluated the performance when we use more than one FPGA
board, but according to our estimation, more than two boards should not be
attached to one host computer.

By connecting more hardware platforms by Ethernet, we can easily accel-
erate the performance furthermore. The performance is almost proportional
to the number of hardware platforms. Then, the total performance can be
comparable with large size dedicated hardware systems.

3 Details of the Approach

In this section, we describe the details of our approach. The features of our
approach are :

1. multi-thread computation in order to achieve high performance, and

2. two phase search in order to make up for limited memory bandwidth.

3.1 Parallel Processing of Dynamic Programming

Before describing the details, we would like to introduce the dynamic pro-
gramming algorithm. As shown in Figure 2, a query sequence and a database
sequence are compared inserting gaps. Scores for each matching of the elements
and inserting gaps are given by score matrices2,3. The computation order of
pattern matching by dynamic programming is m × n when the length of the
query sequence and database sequence are m and n respectively. Therefore,
it is unrealistic to use dynamic programming algorithm against long database
sequences on desktop computer systems.
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Figure 2: Parallel Processing of Dynamic Programming

With dedicated hardware systems, or reconfigurable devices such as FP-
GAs, we can process matching of elements in parallel. Figure 2 shows how the
matching of the elements is processed in parallel. In the right-hand side part in
Figure 2, elements on each diagonal line are processed at once. Therefore, the
order of the computation can be reduced to m+n−1 from m×n if m elements
can be processed in parallel. If the size of the hardware is not large enough
to compare m elements at once, the first p elements (suppose that the hard-
ware process p elements in parallel) of the query sequence are compared with
the database sequence at once, and the scores of all p-th elements are stored
in temporal memory. Then, the next p elements of the query sequence are
compared with the database sequence using the scores stored in the temporal
memory.

3.2 Structure of Processing Unit and Multi-thread Computation

Figure 3 shows a structure of our processing unit for dynamic programming.
It consists of four stages, and takes four clock cycles to compute scores on each
cell on the dynamic programming array (Figure 2). However, by overlapping
the computation, we can start to compute the scores of elements on the next
diagonal line (Figure 2) in every two clock cycles.
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Figure 3: Implementation of a Processing Unit

Figure 4 shows how a database sequence whose length is n, is compared
with a query sequence whose length is m. In the figure, each circle represents
a processing unit. If the length of the query sequence (m) is not larger than
the number of processing elements on the FPGA (p), the query sequence can

Pacific Symposium on Biocomputing 7:271-282 (2002) 



be processed at once as shown in Figure 4. In this case, it takes 2× (m+n−1)
cycles to compare the two sequences, because the processing units have to wait
for one clock cycle to compare elements on the next diagonal lines as described
above, which means that the units are idle for one clock cycle in every two
clock cycles.
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Figure 4: Sequential Execution of Dynamic Programming

Suppose that the length of the query sequence (m) is longer than the
number of processing units on the FPGA (p). Then, in the naive approach :

1. first, the first p elements of the query sequence are compared and the
intermediate results (all p-th scores on lower edge of upper half in Figure
5(a)) are stored, and

2. then, the next p elements of the query sequence are compared using the
intermediate results.

In this case, it takes 2× 2× (p + n − 1) cycles to compare the two sequences,
and processing units become idle for one clock cycle in every two clock cycles
as described above.

We can reduce the computation time by the multi-thread computation
method. In the multi-thread computation :

1. first, p elements on the diagonal line in upper half in Figure 5(b) are
processed, and the score of p-th element is stored on temporal registers,
and

2. then, the next p elements on the diagonal line in lower half are processed
without waiting for one clock cycle using the intermediate result.

By interleaving the processing of elements in upper half and lower half,
we can eliminate the idle cycles of the processing elements. The clock cycles
become 2 × (p + n − 1) + 2 × p, which is almost equal to 2 × n because n is
much longer than p in most cases.

When the length of the query sequence (m) is longer than twice the number
of the processing units (2p), the multi-thread computation shown in Figure 5(b)
is repeated according to the length of the query sequence. In this case, when
the first 2p elements in the query sequence are processed, scores of all 2p-th
elements are stored in memories (all n scores are stored in total), and used for
the computation of the next 2p elements.
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Figure 5: Multi-thread Execution of Dynamic Programming

3.3 Two Phase Search

First Phase

In the first phase, database sequences are divided into sub-sequences, because
the size of the intermediate results described above is very large, and can not
be stored in the internal memory of the FPGA at once.

Figure 6(a) shows how a long database sequence is compared with the
query sequence. The database sequence is divided into sub-sequences of size s
(s is decided based on the size of the internal memory of the FPGA). Then,
each sub-sequence is compared with the query sequence by the multi-thread
method. As shown in Figure 6(a), first, 1 and 1′ are processed, and then 2 and
2′ are processed.

In Figure 6(b), in each comparison with the sub-sequences, scores on upper
edge (position αe to αm) are sampled and compared with scores on lower edge
(position βe to βm). The score at position αf is compared with the score at
position βm. The difference of the scores are stored in the two memory banks on
the FPGA board, and then sent to the host computer. The host computer sorts
the differences, and shows them with the positions on the database sequence.
Thus, in our approach, the query sequence is compared with all fragments of
the size k × l, and the scores against each fragment by the Smith-Waterman
algorithm are shown to the users. The interval of the sampling k and the
distance between the two scores k × l can be specified by users. However, if
the k is too small, many data have to be sent to the host computers, and the
performance will go down. We assume that the length of the fragment (k × l)
is from twice to four times the query sequence.

In this division to the sub-sequences, some parts whose length is k× (l−1)
are overlapped in order to compare the query sequence with all fragments of
length k × l (Figure 6(a)). These parts are compared twice, and become the
major overhead in the first phase. The length of the overlapped area (k×(l−1))
is decided based on the length of the query sequence in general. Therefore,
this overhead is almost proportional to the length of the query sequence. This
overhead becomes larger as the length of the query sequence becomes longer,
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Figure 6: First Phase Execution

and becomes relatively larger as the size of the internal memory of the FPGA
becomes smaller (namely the size of the FPGA becomes smaller).

In order to achieve higher performance in the first phase, we need to im-
plement more processing units on the FPGA. The size of the processing unit
is proportional to its data width. Therefore, we can implement more units by
reducing the data width. However, with narrower data width, the scores may
cause overflow or underflow during the comparison with the sub-sequences.
In order to avoid the over/underflow, we need to make the size of the sub-
sequences smaller too, but this means that more areas have to be overlapped.
Therefore, we need to find good balance between the sub-sequence size and the
parallelism. In the current FPGAs, the size of the internal memory is not so
large, and it gives the best performance when we decide the data width base
on only the size of the internal memory size of the FPGA.

Second Phase

In order to display optical alignments, we need to find the path from the upper
left position to the lower right position which gives the best score as shown
in Figure 2 (in the first phase, only the best score is computed, and all the
information about the path is discarded during the computation). We need 2
bits for each cell on the array in Figure 2 to distinguish where the path comes
from (from upper, upper left or left). Therefore, the number of elements which
can be processed in parallel (namely the performance of the second phase) is
decided by the FPGA’s data width to the memory banks on the FPGA board,
not by the size of the FPGA. If the width is 2×p, p elements can be processed
in parallel. In the second phase, only the information about the path is output,
because the score is already obtained in the first phase.

However, the number of the fragments that we need to display their align-
ments, is not so many and the performance of this phase is not so important.
If the length of the query sequence is less than a few thousand, we can obtain

Pacific Symposium on Biocomputing 7:271-282 (2002) 



the optical alignments against one fragment within 1 sec by a desk computer.

4 Experiments

We have tested the performance of our approach under two environments, a
desktop computer with a FPGA board and a laptop computer with a PC card.

4.1 Desktop Environment

One FPGA board (RC1000-PP by Celoxica) 14 is used to evaluate the per-
formance on desktop environment. The board has four memory banks, and
two of them are used for data transfer between the FPGA board and the host
computer. The FPGA (Xilinx XCV2000E) on the board is one of the largest
FPGAs that we can obtain now. We could implement 144 processing elements
for the first phase of the homology search, and they run at 40 MHz. The
size of the internal memory of the FPGA is 640 Kbits, and the length of the
subsequence becomes 32768 elements. Therefore, the overhead caused by the
overlapped area becomes about 5 - 10% when the length of the query sequence
is 2048 and the size of the fragment is several times of the query sequence.

Figure 7 shows the relation between the time of the first phase and the
length of the query sequence, when the length of the database sequence is 64
million. The slope of the search time becomes slightly larger as the length of
the query sequence becomes larger, because the percentage of the overhead
by the overlapped area will gradually increase. The speedup compared with a
PentiumIII 1GHz under LINUX (kernel version 2.2.5 and gcc-2.91.66) is 327
times when the length of the query sequence is 2048.

25

50

75

100

125

150

175

0
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Query Sequence (a number of elements)

First Phase of Laptop Environment
(FPGA: about 300,000 system gates)

16 parallel
 (x 2, multithread)

time(sec.)

Database Sequence
(64 milion elements)

Dedicated Systems

32

1088 1152 1216 1280 1344 1408 1472 1536 1600 1664 1728 1792 1856 1920 1984 2048 2112

First Phase of Desktop Environment
(FPGA: about 2,500,000 System Gates)

144 parallel
 (x 2, multithread)

288

Figure 7: Comparison between Desktop and Laptop Environment

As for the second phase, we can process 32 elements in parallel, because we
can write 64 bits to the memory banks on the board at once. The computation
time for a query sequence of 2048 elements and a fragment of 8192 elements is
about 13 msec. This is about 102 times faster than the PentiumIII 1GHz.
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4.2 Laptop Environment

One PC card (Wildcard by Annapolis Micro Systems, Inc.)15 with one FPGA
(XCV300 by XILINX) is used to evaluate the performance on laptop environ-
ment. The PC card has two memory banks (32bits width and 256KB per each
block), and these banks are used to transfer data between the PC card and
the host computer. The size of the FPGA XCV300 is about one seventh of the
FPGA XCV2000E.

In this case, we could implement 16 processing units on the FPGA, and
they run at 40 MHz. The size of the internal memory of the FPGA is 64 Kbits,
and the length of the subsequences becomes 4096 elements. The overhead
caused by the overlapped area becomes about 25 to 50% when the length of
the query sequence is 1024 and the size of the fragment must be several times
of the query sequence. Therefore, we can not compare query sequences longer
than 1024.

Figure 7 shows the relation between the time of the first phase and the
length of the query sequence, when the length of the database sequence is 64
million. The slope of the search time becomes larger according to the size of the
query sequence, because the percentage by the overhead for the overlapped area
will increase. The computation time is about 30 times faster than a PentiumIII
1 GHz under LINUX (kernel version 2.2.5 and gcc-2.91.66) when the length of
the query sequence is 1024.

As for the second phase, we can process 16 elements in parallel, because we
can write 32 bits to the memory bank on the card at once. The computation
time for a query sequence of 1024 elements and a fragment of 4096 elements is
about 7 msec. This is about 50 times faster than the PentiumIII 1GHz.

5 Current Status and Future Works

We have developed the circuits for homology search, and showed that we can
achieve high performance using off-the-shelf FPGA boards. The performance
is almost comparable with small to middle class dedicated hardware systems
when we use one board with one of the latest FPGAs (Xilinx XCV2000E). The
time for comparing a query sequence of 2048 elements with a database sequence
of 64 million elements by the Smith-Waterman algorithm is about 34 sec, which
is about 330 times faster than a desktop computer with a 1GHz PentiumIII. We
can also accelerate the performance of a laptop computer using one PC card
with one FPGA (Xilinx XCV300). The time for comparing a query sequence
(1024) with database sequence (64 million) is about 185 sec, which is about 30
times faster than the desktop computer.
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We are now evaluating the performance for the translated nucleotides.
When we need to translate the sequences during the comparison, the size of
each unit on the FPGA becomes about 10% larger and the parallelism in the
first phase will go down to 120 from 144 (about 20% performance down). We
are now improving the circuits of the unit to achieve higher performance.

Some parts of the programs for the homology search are still under de-
velopment, and we also need to improve other parts. We are also developing
softwares for parallel processing of the homology search with more number of
pairs of FPGAs and host computers connected by Ethernet.

We are also planning to accelerate other pattern matching problems in
bioinformatics with FPGAs.
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