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This paper is concerned with evaluating the performance of the model and algo-
rithm in 5 for detecting lateral gene transfers events. Using a Poisson process to
describe arrival times of transfer events, a simulation is used to generate “syn-
thetic” gene and species trees. An implementation of an efficient algorithm in 5 is
used to estimate the minimum number of transfers necessary to explain disagree-
ments between the generated gene and species trees. Our first result suggests that
the algorithm can solve realistic size instances of the problem. Our second result
suggests that the mean error and variance are low when saturation does not occur.
Additionally, certain plausible evolutionary events allowed by our model of evolu-
tion used to generate gene and species trees but not detectable by the algorithm
occur rarely implying the framework should work well in practice. Our third, sur-
prising result suggests that the number of optimal scenarios is on average low for
realistic input sizes.

1 Introduction

Recent findings have reinforced the view that evolutionary relationships be-
tween taxa (i.e. the species tree) cannot be inferred from a single gene family
(i.e. a single gene tree) due to genomic events such as gene duplication, gene
loss, gene convergence, and lateral gene transfer (a.k.a. horizontal gene trans-
fer) 3,4,5,6,7,8,9,10. In essence, these events cause gene trees to not be equal
to the species tree; that is, they “disagree”. To explain such disagreements,
various models have been developed that assume a simplified evolutionary
process restricted to a subset of these genomic events. A natural computa-
tional problem is to find the most parsimonious scenario that explains how,
via these events, the disagreements between the gene tree and species tree
arise.

A well studied model is the duplication, loss model 4,9. Here a species tree
S and a gene tree T are given. Via a (computationally easy) least common
ancestor mapping from the vertices of T to the vertices of S, it is possible



to identify all vertices in T that correspond to duplication events and locate
where they occur in the evolution represented by S. In a manner analogous
to the duplication, loss model, the authors of 5,6 construct a model for lateral
gene transfer. Here we are given a (hypothetically correct) species tree S and
a (hypothetically correct) gene tree T . The goal is to find a most parsimonious
scenario that explains disagreements between the two trees using lateral gene
transfer events. This work extends previous work on the subtree transfer 7,8

and network 10 models in that the resulting scenarios are biologically sound.
The price of this biological realism is an increase in complexity of the model
itself - it is difficult to study analytically the behavior of the system.

This paper is concerned with evaluating experimentally the performance
of the model and algorithm in 5 for detecting lateral transfers. Our exper-
imental technique is analogous to those commonly used by the phylogenetic
community. We begin with a method for simulating evolution with lateral
transfer events. Using a Poisson process with rate parameter λ to describe
the arrival times of transfer events, we use a discrete event simulation to prob-
abilistically generate “synthetic” gene trees w.r.t. the species tree and λ. Next,
using an implementation of the algorithm in 5 for what is termed activity level
1 (at most one gene per gene family may exist in a genome at any point in the
evolution of the taxa), the minimum number of transfers necessary to explain
disagreement between the gene and species tree is estimated.

The simulation of evolution is pessimistic in the sense that biologically
plausible evolutionary events can occur that are not detectable by the algo-
rithm. The first such event termed a useless transfer is analogous to a “back
substitution” in molecular sequence evolution. Useless transfers will not be
detected in a parsimony-based framework and hence the algorithm from 5 will
underestimate the true number of transfers. The second type of degenerate
event is termed a transfer-loss event. In certain cases, a transfer event followed
by a gene loss event can cause the algorithm from 5 to grossly under-estimate
or over-estimate the true number of transfer events for a gene and species tree.
It is conjectured that such events, although biologically plausible, occur with
low frequency. Furthermore, the authors of 5 conjecture that any algorithm
that does detect such transfer-loss events would be computationally infeasible
for even small instances of the problem. One of the primary goals of this pa-
per is to test the frequency of harmful transfer-loss events under a reasonable
model of evolution.

We answer several questions concerning the model from 5. Our first result
suggests that, although the running time of the algorithm is high, it is fast
enough to solve instances one expects to encounter in practice. On a desktop
machine, we managed to compute minimum cost scenarios when the number



of leaves of the species tree (taxa) n is 300 and the number of transfers τ is 20.
The algorithm from 5 has a worst case running time of O(24τn2) and consists
of two phases. Although it is possible to construct examples where both phases
are required, in over 10, 000 experiments we did not find a single example of
a scenario that required the second phase (cycle removal). This suggests that
the first phase of the algorithm is sufficient for realistic data sets and implies a
more optimistic O(22τn2) running time for such data sets. Our second result
suggests that the mean error (actual number of transfers used minus minimum
cost of scenario found) and variance are low for all realistic values of n, τ and λ.
This indicates that the number of harmful transfer-lost and other degenerate
events are negligible and the framework should work well in practice. When
λ is sufficiently large as to cause low levels of saturation, the algorithm still
gives reasonable estimates of the number of transfers. Our third, surprising
result suggests that the number of valid minimum cost scenarios is on average
low for realistic values of n, τ and λ.

2 Definitions

We consider rooted directed trees where the arcs are directed from the root
towards the leaves and a vertex has out-degree at most 2. We call such a tree
a rooted tree. For such a tree T , V (T ) denotes the set of vertices and A(T )
denotes the set of arcs. The internal vertices of T are V (T ) \ L(T ). The root
of a tree T is denoted r(T ). For u ∈ V (T ), any vertex v reachable from u by a
directed path is a descendant of u (this means that u is a descendant of u). We
denote this by v ≤T u. We also say that u is an ancestor of v (u ≥T v). We
say that v is a proper descendant (proper ancestor) of u, if v ≤T u (v ≥T u)
and v $= u and denote this relationship by v <T u (v >T u). Both a gene
tree T and a species tree S are binary rooted directed trees. We assume that
n = |L(S)| ≥ |L(T )|. By a rooted forest we mean a union of disjoint rooted
trees. The set of leaves of a rooted forest F is denoted L(F ). For a vertex
u ∈ V (F ), let Fu be the rooted subtree of F consisting of the vertices of V (F )
reachable by directed paths from u. Let T be a rooted tree. For X ⊆ L(T ),
the least common ancestor of X in T , written lcaT (X), is defined as follows:
if X = {v}, then lcaT (X) = v; otherwise, lcaT (X) is the vertex v such that
X ⊆ L(Tv) but X $⊆ L(Tu) for each proper descendant u of v. Let T be a
gene tree and let F , F ⊂ T , be a forest. The mapping λF,S : V (F ) → V (S)
is defined as follows: λF,S(v) = lcaS(L(Fv)). A mixed graph G is a graph
containing arcs as well as undirected edges. The arcs of G are denoted A(G),
the edges E(G), and the vertices V (G). If G is a mixed graph and A is a set of
arcs, then G∪A is used to denote the mixed graph with arcs A(G)∪A, edges



E(G), and vertices V (G). For a set of edges E, G ∪ E is defined similarly.
A directed mixed cycle is a mixed graph where each vertex has total degree
2, which contains arcs and edges, and where the cycle can be traversed in a
direction that respects the arcs but edges may be traversed in either direction.
If A is a set of arcs, then E(A) denotes the underlying undirected edges, i.e.
E(A) = {(u, v) : 〈u, v〉 ∈ A}. For u, v ∈ V (T ), let PT

u,v be the unique directed
path between u and v in T . Let length of PT

u,v, |PT
u,v|, be the number of arcs

in PT
u,v.

3 Lateral Transfer Scenarios

The following section gives a simplified version of the model and an intuitive
explanation of the algorithm that appeared in 5 for lateral transfer scenarios.
A more detailed description of this work can be found in 6.

Figure 1. (i) The gene tree (thin lines and vertices) is drawn within the species tree (thick
pipes). We do not explicitly direct the thick pipes of the species tree; however, note that
the species tree is also rooted and directed. Here the gene tree and species trees agree.
That is, the root of the species tree and the root of the gene tree both have A and BC (the
ancestor of B and C) as their children. In (ii), the gene tree disagrees with the species tree
since the root of the gene tree has C and AB as children. If we postulate a lateral transfer
event from either v to child A or v to B, the resulting scenario would then be 1 active (see
H-moves below). At any point during the evolution represented by the shaded region in
(ii-iii), there exist two copies of the gene in the genome of these ancestral organisms. These
examples are said to be 2 active. A second example of how activity levels > 1 can arise is
depicted in (iii). Here two lateral transfer events have occurred prior to the root of ABCD.
(iv) Two examples of useless transfers. (v) A harmful transfer-loss event.

The λT,S mapping from a gene tree T to a species tree S places each vertex
of the gene tree at its least common ancestor in the species tree. Figure 1
graphically depicts gene and species trees that agree (i) and trees that disagree
(ii-iii). The model from 5 is built upon the assumption that: Since A and B
are siblings in the gene tree, either the ancestral gene AB must have been
present in the ancestor of A and B in the species tree (i.e. the lcaS(A,B))



or a lateral transfer event has occurred from the A lineage to the B lineage
(or vice versa). The postulated transfer thus explains why the gene tree has
the sibling pair A and B. To capture this mapping of gene trees into species
trees, we introduce the notions of lateral transfer schemes and scenarios.
Definition 1 A lateral transfer scheme (or, simply scheme) for a species tree
S is a pair (S′, A′) where S′ is a subdivision of S and A′ ⊆ {〈x, y〉 : x, y ∈
V (S′) \ V (S), x $= y} such that: (1) the mixed graph S′ ∪ E(A′) does not
contain a directed mixed cycle, (2) the tail of each arc in A′ has in-degree 1
and out-degree 2 in S′ ∪ A′, and (3) the head of each arc in A′ has in-degree
2 and out-degree 1 in S′ ∪A′.

Figure 2 gives an example of a scheme. In order for our scenario for a
gene tree T and species tree S to be biologically meaningful, it must satisfy
the following constraints.
Definition 2 A lateral transfer scenario (or simply scenario) for a species
tree S and a gene tree T is a triple (S′, A′, g) where (S′, A′) is a scheme for
S and g : V (S′) → V (T ) such that: (1) g(r(S′)) = r(T ); (2) if v1 and v2 are
children of v0 in T , then there exists x0 with children x1 and x2 in S′ ∪ A′
(where x1 $= x2) s.t. vi = g(xi), for i = 0, 1, 2; (3) for each v ∈ V (T ), the
vertices {x ∈ V (S′) : g(x) = v} induce a directed path in S′; (4) g(l) = l, for
all l ∈ L(S).

Figure 2. An example of a scenario for gene tree T and species tree S. S′ represents a
scheme for S. In S′ there is only one transfer (between x1 and w in S) and this arc is
included in A′.

The cost of (S′, A′, g) w.r.t. T is simply |A′|. The cost of S and T , denoted
τ(S, T ), is the minimum cost of any scenario (S′, A′, g) for S and T . A detailed
justification of each of these conditions along with a more in-depth discussion
of mixed cycles in given in 5,6. It is easy to verify that Figure 2 depicts a
scenario for the gene tree T and species tree S with cost |A′| = 1. We note
that Definition 2 is a simplification of a more general definition in 5,6. In
particular, the above definition holds only for what is termed activity level 1.
Figure 1 (ii-iii) give an intuitive explanation of activity level.

The input to the τ-Transfer Problem is a species tree S, a gene tree



T , and an integer τ . The output is a τ ′ lateral transfer scenario for S and
T , τ ′ ≤ τ . Let T ′ ⊆ T . The two basic operations the algorithm performs are
H-moves and I-moves. In 6, the authors prove that these moves are sufficient
to find all optimal scenarios.
Definition 3 (H-fat) A vertex x ∈ V (S) is H-fat for T ′ iff there exist u, v ∈
λ−1

T ′,S(x) such that: (1) v is ≤T -minimal in λ−1
T ′,S(x), (2) u has out-degree 2

in T ′, and (3) v <T u. If x is H-fat for T ′, then the two outgoing arcs of v
(call them e1 and e2) are H-moves at x in T ′.

Figure 3. (i) An H-fat vertex x. (ii) one of 2 alternative H-moves at x. (iii) An I-fat vertex
x, (iv) one of 4 alternative I-moves.

Definition 4 (I-fat) A vertex x ∈ V (S) is I-fat for T ′ iff, for a child y
of x, there are arcs 〈u1, v1〉, 〈u2, v2〉 ∈ A(T ′) such that: λT ′,S(vi) ≤S y
for i ∈ {1, 2}, λT ′,S(u1) = x, x ≤S λT ′,S(u2), and ui is ≤T -minimal in
λT ′,S(λ−1

T ′,S(ui)) for i ∈ {1, 2}. Notice that the latter implies that there are
arcs 〈u1, w1〉, 〈u2, w2〉 ∈ A(T ′) \ {〈u1, v1〉, 〈u2, v2〉}. If x is I-fat for T ′, then
the arcs 〈u1, w1〉,〈u2, w2〉, 〈u1, v1〉, and 〈u2, v2〉, defined as above, are I-moves
at x in T ′.
Figure 3 depicts graphically (i) an H-fat vertex, (ii) one of the two H-moves,
(iii) an I-fat vertex, and (iv) one of the four I-moves.

A vertex is fat for T ′ iff it is H-fat for T ′ or I-fat for T ′. A candidate
F where F ⊆ T is a directed forest without isolated vertices such that out
degree ≤ 1 for all v ∈ V (F ).

The algorithm proceeds in two phases. Phase I (given below) consists of
repeatedly picking a fat vertex and making the appropriate H- or I-moves,
until there are no longer fat vertices. The resulting set of candidates is then
examined for mixed cycles in phase II. Let C be a queue initially equal to
one empty forest F = ∅ and let X = ∅. Phase I outputs X when the queue C
is empty.

1. Dequeue F from queue C; Let T ′ ← T \F . Compute λT ′,S . Pick a vertex
x of S which is fat for T ′.

2. If x is H-fat, let F1 and F2 be the candidates obtained from F by making
the H-moves e1 and e2 respectively;



3. else if x is I-fat, let F1, F2, F3, and F4 be the candidates obtained from
F by making the I-moves e1, e2, e3, e4 respectively.

4. If there does not exist a fat vertex in T ′ \Fi, then let X ← X ∪ {Fi} else
enqueue Fi in C.

Although each candidate F ∈ X found in phase I is guaranteed to be
1-active, it may be the case that a mixed cycle is present. (In 6, an example
of a gene and species tree is given where a cycle will exist after phase I).
Phase II of the algorithm involves examining each candidate F and finding
a minimal set of transfers to make the resultant candidate F ′ acyclic. The
algorithm that enumerates these sets and tests if F ′ has no mixed cycle has
time complexity 4|F |n2. The overall running time of the algorithm is therefore
24τn2.

4 Simulations

We sketch how “synthetic” gene and species trees are generated for use in the
experiments and detail a number of degenerate events that the simulation can
generate.
Tree Generation. Species Trees. We begin by creating a random species
tree S on n leaves as follows. Starting with a forest of n singleton vertices and
stopping when only one tree exists, we remove two distinct trees x, y from the
forest, create an internal vertex z with children x and y, and placed z back
in the set. We verified experimentally that the trees had expected Θ(lg n)
depth, as predicted analytically. Since species trees reflect the true evolution-
ary relationships between taxa, they are ultrametric and the weights on arcs
correspond to time. The weight of a root to leaf path in S is always 1. Let an
ultrametric species tree S be a binary rooted directed tree that is arc-weighted
by w : A → [0..1). For vertex u ∈ V (S), let w(u) = Σ(p,p′)∈P S

r(S),u
w(p, p′).

In order to randomly assign weights between [0..1) to the arcs of S s.t. every
root to leaf path has total weight 1, we use the following routine in a root to
leaf fashion on S:

1. Let u ∈ V (S). Let l be a leaf in L(Su) that maximizes |PSu
u,l | and such

that no arc in PSu
u,l has yet been assigned a weight. Let P = PSu

u,l be the
path u = p0, p1, . . . , p|P | = l.

2. Pick uniformly variates ρ1, . . . , ρ|P | from interval [w(u)..1); sort
ρ1, . . . , ρ|P | and assign the resulting weight ρ′i+1 − ρ′i to arc 〈pi, pi+1〉.

We experimented with several alternative approaches for generating ultra-
metric species trees and found that this produces trees that minimize the



difference between arc weights under the L∞ norm. This is important during
the gene tree creation phase as it tends to “distribute” the lateral transfer
events more evenly throughout the species tree.
Gene Trees. Using an ultrametric species tree S with n leaves generated as
described above, we create a gene tree via a discrete event simulation. We
assume that lateral transfer events occur according to a Poisson process with
rate parameter λ. The four essential events in the simulation are speciation,
termination, transfer, and loss. We start at the root of S (a speciation event
at time 0) and work towards the leaves (termination events at time 1). For
vertex x0 ∈ V (S) with children x1, x2, we generate the appropriate expo-
nential variates for the arrival time of a transfer event along arc 〈x0, x1〉. If
the variate is less than w(x0, x1), we schedule the transfer event and check
for additional arrivals in the remaining interval along 〈x0, x1〉. Otherwise, a
speciation event for x1 is scheduled. The process is repeated for arc 〈x0, x2〉.
When a transfer event is encountered at time t along an arc (call it 〈x, y〉),
a second (distinct) arc is chosen uniformly randomly from all other arcs that
exist at time t. In other words, only those arcs 〈x′, y′〉 where w(x′) ≤ t and
w(y′) ≥ t are considered.

Suppose that arc 〈x, y〉 is the tail and 〈x′, y′〉 is the head of the lateral
transfer. If there already exist events scheduled for time t′, t′ ≥ t, along arc
〈x′, y′〉, then all such events are aborted. The gene lineages associated with
these events are lost. This corresponds to the foreign gene “knocking out” the
resident gene in the genome of the organism. Such a protocol is necessary if
we are to guarantee the 1-activity constraint of the scenario.
Degenerate Events. The simulation of evolution is pessimistic in the sense
that the resulting scenarios may contain evolutionary events that are bio-
logically plausible but not detectable by the algorithm. In this sense, the
simulation is more general than our model for identifying transfer events.
These events have varying effects on the ability of the algorithm to identify
the correct number and location of lateral transfer events. We classify these
events into two categories: useless transfers and transfer-loss events.
Useless Transfers. Consider Figure 1 (iv). At the point of evolution marked
by X, there is a lateral transfer between two arcs in the species tree that share
a common parent. Clearly, the gene tree is not changed by such transfers. In
other words, the root of the species tree has children ABC and DEF and
the root of the gene tree has children ABC and DEF even though a transfer
has occurred at X. In the subtree labeled Y of the species tree, we show
an example of two useless transfers that together do not cause the gene tree
to disagree with the species tree. This subtree of the species tree has the
ancestor AB and C as siblings. In the gene tree, A remains closer to B due



to the “later” lateral transfer and C remains being a sibling with the ancestor
AB via the “earlier” lateral transfer.
Transfer-Loss Events. Consider Figure 1 (v). At the point marked Z ′ in the
diagram, a lateral transfer occurs from taxon n to taxon 2. Between point
Z ′ and Z, this lineage is lost. Note that one child of the vertex of the gene
tree at point Z ′ is a transfer event and one child is a loss event; we term
this a transfer-loss event. Let T be a gene tree and S be a species tree and
let τ be the true number of lateral transfer events that occurred during the
period of evolution (the true number of lateral transfer events generated by
our simulation of evolution). Let τ ′ be the minimum cost of a scenario for
T w.r.t. S (the minimum cost scenario found by our algorithm). When a
transfer-loss event occurs, it may be the case that τ ′ < τ , τ ′ = τ or τ ′ > τ .
We term these helpful, harmless, and harmful resp. The example in Figure 1
(v) shows that a single harmful transfer-loss event can cause the algorithm to
require Ω(n) lateral transfers to explain the disagreement between the gene
and species tree. It is easy to verify that the minimum cost scenario for this
particular example requires n− 2 transfer events. It is equally easy to create
examples of helpful and harmless transfer-loss events.

5 Experimental Results

For the remainder of this section, let n represent the number of leaves in
the species tree, and Ω represent the number of repetitions performed for
each experiment. Let τ represent the true number of lateral transfer events
generated by a simulation and τ ′ represent the minimum cost scenario found
by the algorithm. Let λ represent the rate parameter in our Poisson process.
A trial is a species tree and gene tree pair generated by the simulation for a
specified λ and n.

The largest gene and species tree for which we can compute the minimum
cost scenario has τ = 20 transfers and n = 300 leaves. The computation takes
approximately 3 days on a standard desktop PC. For τ = 10 and n = 20, the
computation takes approximately 30 seconds on a standard PC.

In Figure 4 (a), we see that the number of transfers in a simulation rises
linearly as a function of λ for a fixed n. This is consistent with a Poisson
process and our species tree generation routine. As the rate parameter λ
grows, the number of transfers τ will eventually become sufficiently large so
that no further transfers will be detected be the algorithm. This is trivially the
case if τ exceeds n− 2 for a species tree with n leaves. Figure 4 (b) plots the
average estimated number of transfers τ ′ versus the λ. As τ ′ is consistently less
than τ , we may conclude the majority of transfers are not harmful transfer-



Figure 4. (a) Average τ versus λ. (b) Average τ ′ versus λ. Ω = 300, n = 80.

loss events. When λ = 0.6, the average value for τ is approximately 11
and τ ′ is 8.6 with variance 2.11. Note that for λ > 0.6, one can see slight
saturation occurring. To test the saturation point (defined informally as the
point where average τ ′ stops increasing), we generated a large set of random
trees. Using half of the set as species trees and the other half as gene trees,
the average value of τ ′ is computed. This should give a very good estimate of
the saturation point. For n = 11, the trial requires an average of 5.81 lateral
transfers with variance 0.65. For n = 21, this average is 13.27 with variance
0.87. Trials for trees with larger n suggest that the saturation point is slightly
above n/2 (graph not shown). At this time, our computational power does not
give us an accurate estimate of where this converges. However, it allows us to
say with some confidence that any scenario for a gene and species tree, where
the cost of the scenario is > n/2 transfers, does not represent a meaningful
explanation of disagreements between the trees.

When 10 transfers occur in a species tree of size n = 20, the algorithm
under-estimated the number of transfers by 4.4 with variance 0.85. We note
that such a 1 : 2 ratio of transfers to leaves is unrealistic for real-world data
sets. We (informally) conjecture that a ratio of 1 : 10 might be more accurate.
If such a ratio were true, our algorithm would tend to predict 9 transfer events
in a 100 taxa tree where the true transfer number is 10.

Figure 5 and additional graphs available on-line reaffirm that harmful
transfer-loss events are very rare and, when they do occur, their effect is
negated by the occurrence of useless transfers and the effects of saturation or
via the existence of alternative scenarios with approximately the same overall
cost. In under 1% of all trials, the algorithm did not find a valid scenario with
cost ≤ τ . Without exception, every trial had a scenario with cost ≤ τ + 3.

We also note that over some 10, 000 trials, we did not find a scenario that



Figure 5. Error versus τ versus logarithm
of the number of leaves.

Figure 6. Average number of minimum cost
scenarios versus τ ′′ − τ ′. Ω = 300, n = 20.
λ = 0.3

required cycle elimination (Phase II of the algorithm). Although it is possible
to construct an example where the algorithm will require this phase, it appears
that these scenarios are extremely rare or the rate of useless transfers and
helpful transfer-loss events is sufficiently high that a scenario with cost τ ′ ≤ τ
is created. Readers familiar with Hannehalli-Pevzner theory might note that
this result is similar to that found for hurdles 1.

Figure 6 captures how many minimum and near minimum cost scenarios
exists for a gene and species tree trial. Consider a gene and species tree where
τ is the actual number of transfers that occurred during the simulation. Let
τ ′ be the minimum cost over all scenarios found by the algorithm. For this
graph, only trials where τ ′ ≤ τ were used for simplicity. Let k range from
0 to 3. The x-axis of this graph shows the number of scenarios (with cost
τ ′′ = τ ′+k) found on average. For n = 20 and λ = 0.3, we would expect that
τ ≈ 5 (see Figure 4 (a)). When k = 0 (τ ′′ = τ ′), there exist on average 2.09
scenarios with cost τ ′. Approximately half of the time (probability 0.46), the
scenario is unique. When k = 3, (τ ′′ = τ ′ + 3), the number of scenarios with
cost τ ′′ is 51.32 with variance 34.52. It is surprising that so few scenarios
exist given that is extremely easy to construct gene and species trees by hand
that have exponentially many minimum cost scenarios. We repeated this
experiment with various values of n and λ in such a way that the τ : n ratio
was preserved, however the curve did not change significantly.



6 Conclusions and Open Problems

This paper demonstrates the feasibility of the model and algorithm presented
in 5 and provides empirical evidence of the relative frequency of degenerate
events. Our experiments suggest that transfer-loss events which cause the
algorithm to over-estimate the true number of transfer events occur with small
probability. Furthermore, the algorithm provides near-optimal scenarios when
λ, the rate parameter for lateral transfers, is low enough as to not cause
saturation. For realistic size instances of the problem, it was the case roughly
half of the time that the minimum cost scenario was unique. In over 10, 000
trials, we did not find a single example of a scenario that required the cycle
elimination phase of the algorithm. This suggests that the first phase of the
algorithm is sufficient for realistic data sets and implies a O(22τn2) running
time.

It is important to consider various extensions to this framework. It would
be interesting to combine this model with gene order-based models such as
those for gene reversals, since gene order will provide important clues as
to where and when lateral transfers have occurred. In collaboration with
L. Graur’s group, we are now extending our framework to included species
trees where the arcs are labelled with time. Lastly, for a fixed n and λ, it
seems feasible that one could analytically compute the expected number of
lateral transfer events needed for a random species tree and random gene tree.
A first step would be to do this for, e.g., a balanced species tree and a random
gene tree. An implementation of our algorithm and additional experimental
results are available at www.cs.mcgill.ca/ ∼laddar/lattrans.
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