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Single nucleotide polymorphisms (SNP) may be used in case-control designs to test for
association between a SNP marker and a disease. Such designs may assume that the genotype
data are reported without error. Our goal is quantifying the effects that errors have on sample
size for case-control studies with haplotypes formed by a disease locus and a SNP marker
locus in the presence of linkage disequilibrium (LD). We consider the effects of a recently
published error model on 2×3 chi-square analysis. We study the joint relation of LD and
errors with sample size for three specific genetic disease models and two settings each of
marker allele frequencies (total of 6 studies). Minimal sample size necessary for fixed
asymptotic power is estimated as a 4th degree polynomial in the variables S (error) and D’ (LD
measure) via a backward step-wise regression.

We find that increased error rates lower power. In all studies, we observe that LD
and errors interact in a non-linear fashion. In particular, regression analyses shows that several
higher order interaction terms have coefficients significantly different from 0 in each study,
with fraction of variance explained greater than 0.9999. Finally, the increase in sample size
necessary to maintain constant asymptotic power and level of significance as a function of S is
smallest when D’ = 1 (perfect LD). The increase grows monotonically as D’ decreases to 0.5
for all studies.

1 Introduction

Single nucleotide polymorphisms (SNPs) may be used in case-control designs to
test for genetic association between marker and disease. Such designs usually
assume that genotype data are reported without error. In statistical genetics, errors in
genotyping or phenotyping (incorrectly assigning a case to be a control, or vice
versa) can significantly affect linkage and genetic association studies. A number of
authors have studied such effects1-10. Sobel et al. 11 summarize results to date. Major
findings are that errors lead to inflation in genetic map distances, an increase in type
I error or a decrease in power for statistical methods designed for gene localization,
and biased estimates of parameters such as the recombination fraction among loci
and the amount of linkage disequilibrium (LD) between two loci.

For case-control studies of genetic association, researchers12,13 have found
that, for a particular error model (not presented here), errors lead to a loss in power
to detect association between a disease and a locus. However, to our knowledge,
there has been no quantitative assessment of the relation between errors and LD in
genetic case-control association studies for multiple disease models, although other



authors6,14-17 have developed methods that allow for errors in genetic linkage and/or
association analyses.
 The purpose of this work is therefore a quantitative assessment, in terms of
increased sample size, of error rates in genetic case-control association studies. The
data we consider is haplotype data for cases and controls from a SNP marker locus
that is in LD with a disease locus. The SNP marker is observed, and the disease
locus is unobserved. The test statistic considered is the standard 2χ on 2 × 3 tables.

We compute asymptotic power analytically by means of a non-centrality parameter.
Errors affect the power of such statistics by deviating genotype frequencies in cases
and controls away from their true values. Furthermore, determining sample size for
fixed power level is equivalent to determining power for a fixed sample size, and it
is this first question that we study in this work.

For three particular genetic disease models and two different settings of
SNP marker allele frequencies (a total of 6 studies), we compute genotype
frequencies for cases and controls in the presence of errors, and compute the sample
size necessary to maintain constant asymptotic power and level of significance for
different values of the error model parameters. Finally, we perform model fitting by
regressing the minimal sample size necessary to maintain constant power on a 4th

degree polynomial in the variables S (error parameter) and 'D  (LD parameter).

2 Materials and Methods

2.1 Notation

The following notation is used through the remainder of this work:

Count parameters:
NA = number of cases
NU = number of controls

Frequency parameters:
p1 = allele frequency of SNP marker 1 allele
p2 = allele frequency of SNP marker 2 allele = 1- p1

pd = allele frequency of disease locus d allele
p+ = allele frequency of disease wild-type allele = 1- pd

pAij= frequency of SNP marker genotype ij in the case population (ij∈{11, 12, 22})
pUij= frequency of SNP marker genotype ij in the control population (ij∈{11, 12,
22})
Disequilibrium parameters:



D= disequilibrium (non-standardized as defined in Hartl and Clark18) [Note: max (-
p1 p+, -p2 pd) ≤ D ≤ min (p1 pd, p2 p+)]

maxD  = min (p1 pd, p2 p+) (we assume in this work that disequilibrium is positive)

D’ = proportion of total disequilibrium (or standardized disequilibrium 19)
     = D/ maxD

Penetrances:
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Conditional probabilities:
pA11 = Pr(11 genotype at SNP locus | affected)
pA22 = Pr(22 genotype at SNP locus | affected)
pU11 = Pr(11 genotype at SNP locus | unaffected)
pU22 = Pr(22 genotype at SNP locus | unaffected)

Prevalence and other parameters:
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(Note: We assume Hardy-Weinberg equilibrium (HWE) at the disease locus; no
such assumption is made for the marker locus)

hij = haplotype frequency of i allele at disease locus (i = + or d) and j allele at
marker locus (j = 1 or 2) (see Methods)

Error model parameters:

1ε = Pr(true heterozygote incorrectly coded as a homozygote),

2ε = Pr(true heterozygote has one allele misread),

3ε = Pr(jointly misreading both alleles of a genotype),

4ε = Pr(falsely adding an allele to a true homozygote),

5ε = Pr(pre-gel error).

Sobel et al. 11 describe these parameters more completely. It should be noted that,
for a di-allelic locus, the parameter 02 =ε , since it is not possible for one

heterozygote to be incorrectly read as another heterozygote for a di-allelic locus.

When considering the 2χ statistic on 2 × 3 tables, the sample size

determination for fixed asymptotic power and significance level is completely
determined by the non-centrality parameter λ, which is a function of the genotype



frequencies in the case and control populations and the ratio of cases to controls. In
section 2.2, we demonstrate how to compute genotype frequencies in each
population as a function of the genetic model parameters (penetrance values, disease
allele frequency), an LD parameter and the SNP marker allele frequency. In section
2.3, we present an error model and compute precisely how genotype frequencies
determined in section 2.2 are altered for general settings of the error model
parameters

2.2  Computation of genotype frequencies

We assume that we know the following six parameter values: the penetrance values
f0, f1, f2, the SNP marker allele frequency p1, the disease allele frequency pd, and the
standardized disequilibrium D’. Using the definition of conditional probability, we
calculate all such values Pr(ab at SNP marker locus | affection status)20,21. For
example, we have the following case genotype frequency expressions:
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To compute the corresponding genotype frequencies for controls, replace φ by 1-φ

and each if by if−1 in each expression. The haplotype frequencies are functions of

the parameters ,,,, 21 dpppp +  and D’. Using the notation defined above, we

have:
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To obtain the genotype frequency expressions as functions of LD, substitute the
haplotype relations above in the genotype frequency expressions.

2.3  Error model

Recently, Sobel, Papp, and Lange11 proposed a model to describe how errors affect
genotypes, in terms of the probabilities Pr(observed genotype is ab | true genotype
is cd) (where 22} 12, ,11{},{ ∈cdab ). We call these probabilities error penetrances.



While their model generalizes to a marker locus with any number of alleles, we
present in table 1 the error penetrances for a di-allelic locus.

Table 1 – Error penetrances for a SNP marker locus using the Sobel-Papp-Lange
error model

True Genotype
Observed
Genotype

11 12 22

11 )543(1 εεε ++− 2/)51( εε + 2/53 εε +

12 2/54 εε + )51(1 εε +− 2/54 εε +

22 2/53 εε + 2/)51( εε + )543(1 εεε ++−

Using table 1, we compute the observed genotypes for either cases or controls when
errors are present. If table 1 is thought of as a 3 × 3 matrix M, we can compute the
vector of observed case genotype frequencies in the presence of

errors, ( )TAAA pppA 221211 ,,= , (here, T is the transpose operator) by performing the

matrix multiplication AM × . For example,
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Note that the observed genotype frequencies are a function of both the error rates
and the LD parameter. While the Sobel-Papp-Lange error model assumes 5
parameters, in order for us to present 3-dimensional plots of the interaction between
LD and errors, we must reduce it to a single parameter. Therefore, we use fixed
multiples of the settings: 0025.0,01.0,005.0,0,0125.0 54321 ===== εεεεε from 0

up to 6 (increments of 0.5) from this point forward. Sobel et al. give these settings
as the default settings for their error model parameters when considering a di-allelic

locus 11. The notation S represents the sum ∑
=

5

1i
ik ε , where k =0.0, 0.5, 1,0, …, 6.0.

2.4 Non-centrality parameter

Using the notation above and a general result proved by Mitra22, Gordon et al.23

found that that the non-centrality parameter λ for the test of genotype frequency
differences among cases and controls is given by:
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This formula provides us with the sample size for a fixed value of the non-centrality
parameter. Assuming a fixed power and significance level, the non-centrality is



known. It is then possible to solve equation (1) for sample sizes. We compute this
solution for all genetic models presented in the next section.

2.5 Genetic models

Here we present values for the parameters in section 2.2. Each set of genetic model
parameters (penetrances + disease allele frequency) comes from a genetic disease
model in which the disease prevalence is 0.03 and the disease allele frequency is
0.2. In all studies, the non-centrality parameter is set to 15.4408, which corresponds
to a fixed asymptotic power of 0.95 at the 0.05 level of significance for

a 2χ distribution with 2 degrees of freedom. Also, the LD parameter 'D  is varied

between 0.5 and 1.0 in increments of 0.05. Finally, the SNP marker 1-allele
frequency 1p is set at both 0.2 and 0.5 in all studies. The genetic model parameter

values are:

(Dominant model)
2.0,07.0,07.0,004.0 210 ==== dpfff

(Additive model)
2.0,042.0,028.0,014.0 210 ==== dpfff

(Multiplicative model)
2.0,071.0,028.0,011.0 210 ==== dpfff

2.6 Regression analysis

As a further means of describing the quantitative relationship among sample size,
LD, and errors, we perform a backward step-wise regression analysis. For each
setting of error parameter S and the LD parameter 'D , the value of the dependent
variable is the sample size necessary for asymptotic power 0.95 at level of
significance 0.05. The general form of the fitted regression equation (i.e., the upper
model) is:
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where Ŷ is the fitted sample size (in terms of case individuals) corresponding to a

given setting of S and 'D , and the terms ji,β̂  are the parameters of the regression

(regression coefficients) that minimize the sum of squares of differences between
the fitted values for settings of S and 'D (using equation 1) and the observed values
for the same settings. The regression coefficients are determined using the S-PLUS
6.0 software (see Electronic Database Information).



3 Results

We have three main results. Our first is that, for the genetic models considered in
section 2.5, there is multiplicative interaction between the error parameter S and the
standardized LD 'D . This interaction is documented graphically in figures 1 and 2
and quantitatively in our regression analysis results (Table 2).

Table 2 – Regression coefficients for all genetic model studies and SNP allele
frequency settings

 Genetic Modela/SNP allele frequency

Exponent pair (i,j) for term

SiD’j
Dom/0.5 Dom/0.2 Mult/0.5 Mult/0.2 Add/0.5 Add/0.2

(0,0)(intercept) 6476 1837 17826 4906 46617 12518

(1,0) 7889 2753 21147 8932 54787 21280

(0,1) -25030 -7134 -68367 -18727 -179104 -48223

(2,0) 5030 0 17624 1931 48206 7670

(0,2) 39822 11466 108940 30051 285705 77505

(1,1) -23081 -8256 -61853 -25499 -160530 -61320

(0,3) -29568 -8605 -81041 -22564 -212776 -58192

(3,0) 6946 3022 3924 6915 9685 12864

(2,1) -10598 0 -33696 -3566 -93658 -17031

(1,2) 24739 8797 66397 26550 172977 64664

(0,4) 8449 2482 23195 6520 60972 16805

(2,2) 6365 0 16655 2312 47213 10279

(3,1) -7629 -2834 0 -7629 0 -12526

(1,3) -9269 -3209 -24737 -9625 -64782 -23796
a(Dom = Dominant, Mult = Multiplicative, Add = Additive)

Figures 1 and 2 present the minimal sample size necessary to maintain constant
asymptotic power of 0.95 at the 0.05 significance level for our dominant model with
SNP 1-allele frequency of 0.5 and our additive model with SNP 1-allele frequency
of 0.2, respectively. The sample size, as indicated above, is a function of S and 'D .

We comment that in table 2, the non-zero coefficients, when tested  (using
the t-test) for being non-zero, are all significant at the 0.001 level (data not shown).
The observations that several interaction terms in table 2 are significantly non-zero
and that the fraction of variance (multiple R2 value) for each regression is at least
0.9999 (data not shown) indicate that, for these error models, sample size is well fit
by a high degree polynomial in the variables S and 'D , and hence there is significant
interaction between these two variables in explaining the sample size increase.



Our second result is that the general trend of sample size increase as a
function of the two variables S and 'D  is robust to genetic model specification for
the models we consider here. This result may be observed quantitatively by noting
that, for each monomial term in table 2, the sign of the regression coefficient for the
non-zero coefficients is the same across genetic models and SNP allele frequency
specifications, and may be observed graphically by studying figures 1 and 2. We
comment the shape of the surfaces in figures 1 and 2 is identical to the shape of the
surfaces for those figures determined by all other genetic model and SNP allele
frequency specifications (data not shown).

The third result is that, for all values of S , sample size increase as a
function of S is smallest when 'D  = 1, and is largest when 'D  = 0.5 (table 2; figures
1 and 2). This result suggests that high levels of LD, in addition to increasing power
for genetic case-control studies, may have the additional benefit of mitigating the
effects of errors in data in the sense of requiring the smallest possible increase in
sample size for a given error setting.

4 Summary and Discussion

In this work, we have demonstrated that it is possible to compute analytically
sample size requirements for genetic case-control studies in the presence of errors.
In sections 2.2-2.5, we have described how these computations are done for the test
of genotypic association using the 2 × 3 contingency table. Further, we have shown
that, for our genetic model, error model, and LD parameter settings, sample size is
accurately predicted by a polynomial of high degree in the variables S and 'D .
From the viewpoint of marker selection, we have documented that high levels of LD
have the smallest cost, in terms of increased sample size, for a given setting of error
parameters. This result should be reassuring to researchers who are planning
association studies and who are concerned about errors in their data.

This work generalizes to an analytic method for sample-size calculations in
the presence of errors when the observed data are haplotypes or multi-locus
genotypes. One only needs to specify multi-locus error models. Perhaps the simplest
and most reasonable model is one in which errors in individual marker loci are
independent of errors in other marker loci. Also, this work is not restricted to just
di-allelic loci; it can also be extended to markers loci with any number of alleles.
The analytic price is that one has to specify multiple LD parameters and multiple
allele or haplotype frequency parameters for the marker loci.

 We have considered the question of interaction between errors and LD
over a larger set of values for the genetic model parameters specified in section 2.2;
our observation is that the interaction between S and D’ is robust to genetic model
specifications. That is, the shape of figures 1 and 2 is repeated for every set of
genetic model parameters considered (data not shown).



An important question for this work regards parameter estimation. We are
currently working on methods to determine genotyping error rates. Also, LD
parameters can be estimated using inter-marker LD patterns. With traits for which
the genetic model parameters are difficult to estimate, one can specify genetic
model-free parameters23 rather than the genetic model-based parameters we have
specified in this work.

Software performing these calculations will be available from our website
http://linkage.rockefeller.edu/pawe/ by January 2003. The program is called PAWE
(Power of Association Tests With Errors).
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Figure 1. Minimum sample size necessary to maintain 0.95 
power at 0.05 significance level for dominant genetic model, 

SNP 1 allele frequency = 0.5

Minimum  Sample Size: 146, for D'=1, S=0
Maximum Sample Size: 1056, for D'=0.5, S=0.18
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Figure 2. Minimum sample size necessary to maintain 0.95 
power at 0.05 significance level for additive genetic model, 

SNP 1 allele frequency = 0.2

Minimum Sample Size: 416, for D'=1, S=0
Maximum Sample Size: 2376, for D'=0.5, S=0.18




