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In functional genomics, one important problem is to relate the microarray gene ex-
pression profiles to various clinical phenotypes from patients. The success has been
demonstrated in molecular classification of cancer in which gene expression data
serve as predictors and different types of cancer are the binary or multi-categorical
outcome variable. However, there has been less research in linking gene expression
profiles to other types of phenotypes, in particular, the censored survival data such
as patients’ overall survival or cancer relapse times. In the paper, we develop a
kernel Cox regression model for relating gene expression profiles to censored phe-
notypes in the framework the penalization method in terms of function estimation
in reproducing kernel Hilbert spaces. To circumvent the problem of censoring,
we use the negative partial likelihood as a loss function in the estimation proce-
dure. The functional combinations of the original gene expression data identified
by the method are highly correlated with the patients’ survival times and at the
same time account for the variability in the gene expression levels. We apply our
method to data sets from diffuse large B-cell lymphoma, lung adenocarcinoma and
breast carcinoma studies to verify its effectiveness. The results from these analysis
indicate that the proposed method works very well in identifying subgroups of pa-
tients with different risks of death or relapse and in predicting the risk of relapse
or death based on the gene expression profiles measured from the tumor samples
taken from the patients.

1 Introduction

The recent development of DNA microarrays, which permits the simultaneous
measurements of the expression levels of thousands of genes, raised the pos-
sibility of a powerful, genome-wide approach to the genetic basis of different
types of tumors in the area of molecular classification of cancers, different lev-
els of drug responses in the area of pharmacogenomics, and different patients’
clinical outcomes in the area of clinical phenotype prediction. The problem of
cancer class prediction using the gene expression data has been studied exten-
sively in recent years. 1,2,3,4,5,6 This problem can be formulated as predicting
binary or multi-category outcomes using gene expression data. However, there
has been less development in relating gene expression profiles to other phe-
notypes such as quantitative continuous phenotypes, or the censored survival
phenotypes. Relationship between gene expression profiles with other pheno-
types such as quantitative phenotype or survival phenotypes is also important
in clinical applications. For example, correlating gene expression profiles with



to the drug responses of thousand of potential drug compounds in 60 human
cell lines, researchers were able to identify sets of genes whose expressions are
highly related to drug response of a set of compounds, which will eventually
help development of new drugs. 7 Correlating gene expression profiles obtained
from tumor samples prior to treatment with the time to cancer relapse or death
due to cancer can be very important in clinical practice.

The goal of this paper is to develop new statistical methods for relating
gene expression profiles to censored survival data such as time to cancer re-
currence or death. From the statistical point of view, one challenge is that the
time to cancer recurrence or death is often right censored because during the
course of followups, some patients may still be cancer-free or alive. Another
challenge is that the microarray gene expression data are often measured with
great deal of noise, and that the sample size of tissues or cell lines is usually
very small compared to the number of genes from expression arrays. The prob-
lem of censoring make the problem difficult compared to binary or continuous
phenotypes. One popular approach is to first cluster tumor samples into sev-
eral clusters based on their gene expression patterns across many genes, and
then to use the Kaplan-Meier curves or the log-rank tests to test whether there
is a difference in survival times among different tumor groups. One drawback
of this approach is that the phenotype information is completely ignored in the
clustering step and therefore may result in loss of efficiency. Another approach
is to cluster genes first based on their expression across different samples, and
use the sample averages of the gene expression levels in a Cox model 8 for sur-
vival outcome. Both methods of course depend on the methods of clustering
used. Hastie et al 9 proposed a tree-harvesting approach in which a stepwise
regression approach is used to select genes or clusters of genes that are related
to the phenotypes using the Cox proportional hazards model. This approach
still requires the intermediate results of the hierarchical clustering analysis.
Nyuyen and Rock 10 proposed to generalize the idea of the partial least square
in the framework of the Cox model by using the residuals. However, their
method is limited to linear function of the gene expression levels. In addi-
tion, use of residuals in the estimation of the parameters in the Cox model
is not well-established in the survival analysis literature since there are many
different ways of defining residuals. 11

In the paper, we develop methods for relating gene expression profiles to
censored phenotypes in the framework of the support vector machines (SVMs)
by using kernels. 12. The SVMs technique is a relatively new but popular
methods in machine learning, and was applied successfully in the problem of
tumor classification. 13 The robustness of the methods with respective to the
sparse and noisy data is making them the methods of choice for many prob-



lems in bioinformatics. As demonstrated by Wahba et al 14, the SVM can be
reformulated as a penalization method in terms of function estimation in re-
producing kernel Hilbert spaces, where the objective function can be written as
”loss+penalty”. In this paper, we formulate a kernel Cox regression model for
censored survival data by using the negative partial likelihood in a generalized
Cox model as the loss function.

The rest of the paper is organized as the following. We first present a
general Cox model for relating gene expression profiles to the censored survival
phenotypes. We then present methods for estimating the parameter of the
model in the framework of the kernel Cox regression model and penalization
methods. In Section 3, we present results of analysis of three different cancer
survival data sets. We conclude in Section 4 with a discussion of the results
presented in this paper and offer some directions for future work.

2 Statistical Methods

2.1 A general Cox model for censored survival data

Suppose that we have collected n patients with a particular cancer. For the ith
patients, let (ti, δi) be the observed phenotype, where ti is the survival time
(e.g., time to cancer relapse after treatment) when δi=1, and is the censoring
time (e.g., time of last known being cancer-free) when δi = 0. Let xi =
(xi1, · · · , xip) be the vector of the gene expression levels of p genes for the
ith sample taken from the ith patient. We assume the following general Cox
model, where the hazard function for the ith patient is modeled as

λi(t|xi) = λ0(t) exp(f(xi)), (1)

where λ0(t) is the unspecified baseline hazard function, f(xi) is an arbitrary
function of the gene expression data xi. In this model, the gene expression
profile measured over p genes is related to the risk of death or cancer relapse
through the score function f(x).

2.2 Estimation of the model

Since the dimension of xi vector is usually much larger than the sample size
n, standard methods such as the Cox partial likelihood 8 for estimating the
unspecified function f is unfeasible. To overcome this problem, a regularized
formulation of the Cox regression is considered as a variational problem in a



reproducing kernel Hilbert space 15 (RKHS) HK generated by the kernel K,

minRreg(f) =
1

n

n
∑

i=1

V (ti, δi, f(xi)) + ξ||f ||2HK
(2)

where V (ti, δi, f(xi)) is the loss function which is a functional of f depending
on only the values of f(x) at the data points, {f(xi)}

n
i=1, ||f ||

2
HK

is the norm
defined in HK , and f = b + h with h ∈ HK , b ∈ R, and ξ > 0 is a tuning
parameter. For the general Cox model (1), we propose to use the negative log
partial likelihood 8 as the loss function and reformulate the problem as finding
function f(x) such that

Rreg(f) = −
1

n

n
∑

i=1

δi[f(xi)− log{
∑

j∈Ri

exp(f(xj)}] + ξ||f ||2Hk
(3)

is minimized, where Ri = {j : tj ≥ ti, j = 1, · · · , n} is the set of individuals who
were at risk at time ti. The solution to this problem was given by Kimeldorf
and Wahba 15, and is known as the representer theorem. By this theorem, the
optimal f(x) has the form:

f(x) = b+

n
∑

i=1

aiK(x, xi), (4)

where K is the reproducing kernel of HK . Since b can be absorbed into the
baseline hazard function in model (1), we omit b in the following discussion. For
the simplest case of natural inner product kernel with K(xi, xj) =< xi, xj >,
the function f(x) can be expressed as

f(x) =

n
∑

i=1

aiK(x, xi) =

p
∑

j=1

(

n
∑

i=1

aixij)x
(j) =

p
∑

j=1

βjx
(j) (5)

where x = (x(1), · · · , x(p)) the vector of the gene expression levels over p genes.
Here the parameter βj can be used as a measurement on how the gene ex-
pression level of gene j affects the risk of death or tumor recurrence. Because
of this nice interpretation, this paper uses only this kernel in our analysis of
real data sets. In the case when the data are not linearly separable, one can
choose more general kernel such as the polynomial kernels with K(xi, xj) = (<
xi, xj > +1)

d or the Gaussian kernels with K(xi, xj) = exp(||xi − xj ||
2/σ2

d),
where d and σ2

d are the kernel parameters.



From the representer formula (4), it can be shown that minimizing equa-
tion (3) is equivalent to minimizing over vector a the finite dimensional form:

Ra = −δ
′

(Kaa) + δ
′

log{
∑

j∈Ri

exp(Kaa)}] + ξa
′

Kaa (6)

where a
′

= (a1, · · · , an}, the regressor matrix Ka = [K(xi, xj)]n×n. Here the
matrix Ka is called the kernel matrix.

For a fixed ξ, to find a, we set the derivative with respective to a in Ra

to zero, and use the Newton-Raphson methods to iteratively solve the score
equation. In case of singularity problem in the Newton-Raphson iterations, we
used the downhill simplex algorithm to minimize the function (6). 16

We propose to use the leave-one out method for selecting the tuning pa-
rameter ξ in equation (6). One approach is to choose ξ which minimizes the
cross-validated sum of the square residuals. Another approach is to choose ξ
which maximizes

n
∏

i=1,δi=1

exp(f̂−i(xi; ξ))
∑

j∈Ri
exp(f̂i(xj ; ξ))

where f−i(x; ξ) denote the kernel estimate of the function for a given ξ com-
puted under model when δi is changed from one (uncensored) to zero (cen-
sored). This procedure essentially leaves only the uncensored individuals out
in the cross validation procedure and has been demonstrated to work well for
the problem of subset selection for the Cox regression model. 17

3 Application to real data sets

We applied the proposed methods to three published data sets of three differ-
ent cancers to illustrate the methods and to demonstrate that the proposed
methods work well in separating patients into different risk groups and in pre-
dicting patient’s risk of cancer relapse or overall survival. In all the analysis,
we used the natural inner product kernel and chose the tuning parameter ξ by
residual cross-validation.

3.1 Application to diffuse large B-cell lymphoma data set

Alizadeth et al 1 reported a genome-wide gene expression profiling analysis
for diffuse large B-cell lymphoma (DLBCL), in which a total of 96 normal and
malignant lymphocites samples were profiled over 17,856 cDNA clones. Details
can be found in Alizadeth et al1. None of the patients included in the study has
been treated before obtaining the biopsy samples. After biopsy, the patients



were treated at two medical centers using comparable standard chemotherapy
regimens. Among 42 patients, 40 of them had followup information, including
22 death with death time ranging from 1.3 to 71.3 months (median 10.6) and
18 being still alive with the follow-up times ranging from 51.2 to 129.9 months
(median 74.7).

Alizadeth et al 1 first identified 4026 genes which showed large variations
across all the samples. We further selected 319 genes with the p-value less than
0.05 by using the Cox model for each of these 4026 genes. We used the inner
product kernel to build a general Cox model for the time to death of the 40
patients using the gene expression levels of the 319 genes as predictors. Figure
1 (a) shows the estimated survival curves for patients in two different groups
defined by the scores f(x) > 0 or f(x) < 0, indicating large difference in overall
survival in the two groups. One group of 15 patients with f(x) < 0 were all
alive during the followups, another group of 25 patients with f(x) > 0 includes
22 deaths. The group with f(x) < 0 includes 12 germinal centre B cell-like
DLBCL, and the group with f(x) > 0 includes 18 activated B cell-like DLBCL,
indicating much better overall survival in germinal centre B cell-like DLBCL
patients. Figure 1 (b) shows the estimated coefficient for each of the 319 genes
that were used in estimating the score f(x). Higher expression levels of the
genes with positive coefficients increase the risk of death due to lymphoma,
and higher expression levels of the gene with negative coefficients decrease the
risk of death due to lymphoma.

To further examine how the model predicts the survival time of future new
patient, we performed a leave-one-out cross validation analysis. We left one
patient out each time, and estimated the function f(x) in model (1) with the
rest of the data. We then estimated the score for the patient who was left out
from model building process. Figure 1 (c) shows the plot of the cross-validated
score versus the observed times to death or times at censoring, indicating the
higher the score, the high risk of death from lymphoma. Figure 1 (d) shows the
estimated survival curves based on these cross-validated scores being negative
or positive. This plot suggests that the proposed method works quite well in
predicting future patient’s risk of death.

3.2 Application to lung cancer data set

Garber et al. 4 reported global gene expression profiles for 67 human lung tu-
mors representing 56 patients whose clinical course was followed for up to 5
years. Among these tumors, there were 41 Adenocarcinomas (ACs), of those,
22 patients had survival information available, including 12 death ranging from
0 to 36 months (median 12.5 months) and 10 death-free during the 5 year
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Figure 1: Analysis of lymphoma data set. (a) Survival curves for patients in two groups
based on the estimated scores using gene expression profiles; (b) Coefficients of the gene
effects sorted by the absolute values; (c) Plot of cross-validated scores versus observed data,
where the death times are plotted as positive values on the y-axis, and the censored times
are plotted as negative values on the y-axis; (d) Survival curves for patients in two groups

based on cross-validated scores.

followups (followup times ranged from 18 to 54 months with median of 48
months). The original gene expression data include 23,100 cDNA clones rep-
resenting 17,108 unique genes. Garber et al further reduced this list of gene to
918 cDNA clones representing 835 unique genes with large variabilities cross
samples in different clusters.

There are 131 genes with the Cox score statistic larger than 3.84 (cor-
responding p-values less than 0.05). Using our proposed method with inner
produce kernel, we obtained the estimate of f(x) in the model (1) based on
the 22 patients’s survival information during the followups and the gene ex-
pression levels of 131 genes. Based on the estimated values of f(x) > 0 or
f(x) < 0, we divided the 22 patients into two groups. Figure 2 (a) shows the



overall survival curves for these two groups, indicating that large difference in
lung cancer patients’ survival can be identified based on their gene expression
profiles. Figure 2 (b) shows the estimates of the β coefficients in model (5),
indicating the expression levels of different genes have different effects on pa-
tients’s survival. It is important to note that it is the linear combination of
these gene expression levels that is used for separating patients into different
groups with different risks of death due to lung cancer.

We also performed similar cross-validation analysis as we did for the lym-
phoma example. Figure 2 (c) shows the cross-validated scores for each patient,
plotted against the observed time to death or time to last followups. The
plot indicates that the patients with larger cross-validated scores tend to have
higher risk of being death. Figure 2 (d) show the overall survival curves for
patients with the cross-validated scores greater or less than zero. This exam-
ple further demonstrates that the proposed method can effectively predict the
patient’s risk of death from lung cancer.

3.3 Application to breast cancer data set

Sorlie et al 5 demonstrated the use of the gene expression profiles of breast
carcinomas to distinguish tumor subclass with clinical implications. In the
following analysis, only 49 of the patients from the prospective study of locally
advanced disease and with no distant metastases were used. The gene expres-
sion levels of the 456 cDNA clones (427 unique genes) in the intrinsic gene list
were obtained for tumor samples prior to chemotherapy. The followup infor-
mation including the time to cancer relapse and overall survival was available
for all the 49 patients. During the followups, 24 patients had cancer relapse
at various time ranging from 0 month to 59 months after the treatment, and
25 patients had no relapse during the followup period ranging from 22 to 92
months.

Based on the univariate Cox regression, we first selected 68 genes with the
scores greater than 3.85 (significant at 0.05 level). Based on the gene expression
data of these genes and the patients’ time to relapse data, we fitted the model
(1) and obtained the estimated f(x) function and the score for each patient.
Figure 3 (a) shows the plot of the estimated scores versus the time to relapse
or time to last followups. In general, we observed that the higher the score, the
higher the risk of having relapse after treatment. Based on these scores, we can
divide the patients into high (if f(x) > 0.85), medium (if −1.45 < f(x) ≤ 0.85)
and low risk (if f(x) ≤ −1.45) groups with different risks of relapse. Figure
3 (b) give the relapse-free survival curves for these three groups. Therefore,
based on the scores derived from the gene expression profiles, we are able to
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Figure 2: Analysis of lung cancer data set. (a) Survival curves for patients in two groups
based on the estimated scores using gene expression profiles; (b) Coefficients of the gene
effects sorted by the absolute values; (c) Plot of cross-validated scores versus observed data,
where the death times are plotted as positive values on the y-axis, and the censored times
are plotted as negative values on the y-axis; (d) Survival curves for patients in two groups

based on cross-validated scores.

identify subgroups of the patients with different risks of breast cancer relapse
after the chemotherapy.

In order to examine how well the model performs for predicting the risk of
relapse for a new patient, we performed leave-one out cross-validation analysis,
similar to the previous two examples, in which we left one patient out, and
fitted the model with the rest of the patients, and estimated the score for
the left-out patient. Figure 3 (c) shows the cross-validated scores versus the
observed times to relapse/censoring. Comparing to the estimated scores in
Figure 3 (a), it is less clear that there are three different risk groups for relapse.
However, clear differences in risk of relapse can still been seen for those with
very high or low scores. Figure 3 (d) shows the relapse-free survival curves for



the three groups defined by the cut-off values of -1.45 and 0.85. The cross-
validated results still identified one group of patients with large scores who has
higher risk of cancer relapse. However, the difference of the other two groups
was not significant, which suggests that for predicting cancer relapse risk, there
might only be two distinct groups with different risks.
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Figure 3: Analysis of breast cancer data set. (a) Estimated scores versus the observed
times to cancer relapse or times at censoring, where the relapse times are plotted as positive
values on the y-axis, and the censored times are plotted as negative values on the y-axis;
(b) Survival curves for patients in three groups based on the estimated scores using gene
expression profiles; (c) Cross-validated scores versus the observed times to cancer relapse or
times to censoring; (d) Survival curves for patients in three groups based on cross-validated

scores.

4 Discussion

We have introduced the kernel Cox regression models for relating gene expres-
sion profiles to censored survival data. The method generalizes the idea of the



support vector machine for binary or multi-categorical data to censored sur-
vival data. The model automatically searches for the genes whose expression
levels are related to survival phenotypes and identifies the optimal combina-
tion of the gene expression data in predicting the risk of cancer recurrence or
death. Since the risk of cancer recurrence of death due to cancer might be due
to interplay of many genes in certain way, methods such as our proposed one
are expected to show better performance in predicting the risks. We demon-
strated the applicability of our methods by analyzing time to death or tumor
recurrence of large cell lymphoma, lung carcinoma, and breast carcinoma. In
all the analysis, we used the simple inner cross product kernels and the linear
combination of the gene expression levels as our scores, and obtained satisfac-
tory results. However, it is important to emphasize that our proposed method
is not limited to obtaining only linear scores. One advantage of the method is
that it can handle nonlinear scores easily by using alternative kernels without
introducing any computational difficulty.

Another advantage of the proposed method is that there is no computa-
tional or methodological limitation in term of the number of genes that can
be used in the prediction of patient’s overall survival or time to cancer recur-
rence. One important future research is to examine how different number of
genes used in model affects the results of prediction. Since not all genes will be
important in predicting censored survival phenotypes, we would expect better
prediction results using only genes that are related to the phenotypes. For all
the three cancer data sets we analyzed, we selected these genes by using the
univariate Cox score statistic. An alternative would be to iteratively select im-
portant genes and build predictive models. One approach for this problem is
to iteratively delete those genes with β coefficient smaller than a preset cutoff
values and build predictive model until no such genes can be deleted. We plan
to study this approach in details in the future.

In summary, we formulated the problem of linking gene expression profiles
to the censored survival data in the framework of the kernel Cox regression
model. As demonstrated by applications to several real cancer data sets, the
methods can potentially be useful for identifying important genes that are
related to clinical outcomes and for predicting time to cancer relapse or death
to cancer based on the tumor molecular gene expression profiles.
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