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Recognition of protein-binding sites from the upstream regions of genes is a highly
important and unsolved problem. In this paper, we present a new approach for
studying this challenging issue. We formulate the binding-site recognition prob-
lem as a cluster identification problem, i.e., to identify clusters in a data set that
exhibit significantly different features (e.g., density) than the overall background
of the data set. We have developed a general framework for solving such a cluster
identification problem. The foundation of the framework is a rigorous relationship
between data clusters and subtrees of a minimum spanning tree (MST) representa-
tion of a data set. We have proposed a formal and general definition of clusters, and
have demonstrated that a cluster is always represented as a connected component
of the MST, and further it corresponds to a substring of a linear representation of
the MST. Hence a cluster identification problem is reduced to a problem of find-
ing substrings with certain features, for which algorithms have been developed.
We have applied this MST-based cluster identification algorithm to a number of
binding site identification problems. The results are highly encouraging.

1 Introduction

One of major challenging problems in systems biology is to understand the
mechanisms governing the regulation of gene transcriptions. Microarray gene
expression chips allow researchers to directly observe the dynamics of transcrip-
tions of many genes simultaneously. A gene’s transcriptional level is regulated
by proteins (transcription factors), which bind to specific sites in the gene’s
promoter region, called binding sites 1. Identification of genes that share com-
mon protein-binding sites can provide highly useful constraints in modeling of
gene-transcriptional machineries 2.

Typically, a protein-binding site is a short (contiguous) fragment located
in the upstream region of a gene. The binding sites by the same protein
for different genes may not be exactly the same, rather they are similar on
the sequence level. Computationally, the binding-site identification problem
is often defined as to find short “conserved” fragments, from a set of genomic
sequences, which cover many (or all) of the provided genomic sequences.

Because of the significance of this problem, many computer algorithms
have been proposed to solve the problem 1,3. Among the popular computer
software for this problem are CONSENSUS 4 and MEME 5. The basic idea



among many of these algorithms/systems is to find a subset of short fragments
from the provided genomic sequences, which show “high” information content
1 in their gapless multiple sequence alignmentsa. While many good algorithms
have been proposed, this highly challenging problem remains not fully solved.

We have recently developed a new approach for the binding-site identi-
fication problem. Different than the previous methods, we have treated this
problem as a clustering problem. Conceptually, we map all the fragments,
collected from the provided genomic sequences, into a space so that similar
fragments (on the sequence level) are mapped to nearby positions and dissimi-
lar fragments to far away positions. Because of the relatively high frequency of
the conserved binding sites appearing in the targeted genomic sequence regions,
a group of such sites should form a “dense” cluster in a sparsely-distributed
background. So the computational problem becomes to identify and extract
such clusters from a “noisy” background. It is worth mentioning that this
problem is different from classical clustering, which partitions all the elements
of a data set into clusters.

Here we present a new framework for solving such a cluster identification
problem. The foundation of this framework is a representation of a data set
as a minimum spanning tree. We have demonstrated that no essential in-
formation is lost for the purpose of clustering with this representation. The
simplicity of the minimum spanning tree structure allows us to deal with the
clustering problem in a rigorous and efficient way. The main contribution of
this work can be summarized as follows. We proposed a rigorous definition of
a cluster, which we believe captures the essence of the concept of clusters that
people frequently use but without a formal definition. This definition allows
us to establish rigorous relationships between data clusters and subtrees of a
minimum spanning tree, which further allow us to deal with the binding-site
identification problem in a rigorous manner. Preliminary application results to
three binding sites are highly encouraging. Though minimum spanning trees
(MST) have long been used for data classification and clustering 6,7, we have
not seen the kind of in-depth study of minimum spanning trees versus data
clustering as what we present in this paper.

2 Minimum Spanning Trees versus Clusters

Let D = {di} be a data set. We define a weighted (undirected) graph G(D) =
(V,E) as follows. The vertex set V = {di|di ∈ D} and the edge set E =

aVery few closely related binding sites differ by an insertion/deletion due to the specific
binding configuration of the transcrition factor on the DNA sequence.



{(di, dj)| for di, dj ∈ D and i �= j}. Each edge (u, v) ∈ E has a distanceb,
ρ(u, v), between u and v of V . Here distance is a binary relationship, which
does not have to be a metric. A spanning tree T of a (connected) weighted
graph G(D) is a connected subgraph of G(D) such that (i) T contains every
vertex of G(D), and (ii) T does not contain any cycle. A minimum spanning
tree (MST) is a spanning tree with the minimum total distance. In this paper,
any connected component of a MST is called a subtree of the MST.

Prim’s algorithm represents one of the classical methods for solving the
minimum spanning tree problem 8. The basic idea of the algorithm can be
outlined as follows: the initial solution is a singleton set containing an arbitrary
vertex; the current partial solution is repeatedly expanded by adding the vertex
(not in the current solution) that has the shortest edge to a vertex in the current
solution, along with the edge, until all vertices are in the current solution. A
simple implementation of Prim’s algorithm runs in O(‖E‖ log(‖V ‖)) time 9,
where ‖ · ‖ represents the number of elements in a set.

Our first goal is to establish a rigorous relationship between a minimum
spanning tree representation of a data set and clusters in the data set. To do
this, we need to a formal definition of a cluster.
Definition 1: Let D be a data set and ρ(u, v) denote the distance between
any pair of data u, v in D. The necessary condition for any C ⊆ D to be a
cluster is that for any non-empty partition C = C1∪C2, the closest data point
d ∈ D − C1 to C1 (measured by ρ) must be from C2. �

Note that the distance between a point to a data set means the distance
between the point and its closest data point in the set. Here we provide only
the necessary condition of a cluster since we believe that the sufficient condition
of a cluster ought to be problem-dependent. We believe that this definition
captures the essence of our intuition about a cluster: that is distances among
neighbors within a cluster should be smaller than any inter-cluster distances.
Theorem 1: For any data set D and a distance measure ρ defined on D, let
T be a MST representing D with its edge distances defined by ρ. If C ⊆ D is
a cluster by Definition 1, then C’s data points form a subtree of T .

The proof of Theorem 1 can be found in our previous paper 10. This
theorem implies that a clustering problem can be rigorously reduced to a tree
partitioning problem since each cluster is represented as a subtree of the MST
representation of the data set. Note that a MST may not be unique for a given
graph, and the non-uniqueness of MSTs does not affect the correctness of this
theorem.

bFor the simplicity of proofs and discussions, we assume that no two edges have the same
distance. The proofs stay correct when edges are allowed to have the same distance.
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Figure 1: Examples of clusters in the an approximately uniformly-distributed background.
(a) Three clusters with higher density than the background. (b) A ring-shaped cluster with

higher density than the background.

3 Minimum Spanning Trees versus Cluster Identification

A clustering problem is typically defined as to partition a given data set into
K clusters to optimize some objective function, that generally requires that
the data points of the same cluster are “similar” and data points of different
clusters are “dissimilar”, for some K > 1. We have recently developed a set
of MST-based clustering algorithms for solving this type of clustering problem
10,11. A basic assumption for a clustering problem is that data points can be
divided into clusters. However in real applications, it is often the case that data
points of well-defined clusters may not appear in a vacuum but rather appear in
a more general background. Figure 1 shows two such examples. Now we define
a more general clustering problem. A cluster identification problem is defined
as to partition a data set D as D = B ∪ D1 ∪ ... ∪ Dp such that B is a data
set that is approximately uniformly distributed, and each Di forms a cluster
in D, i ∈ [1, p]. A data set D is uniformly distributed in a bounded space G if
for any region A ⊆ G, the number of data points of D in A is approximately
proportional to the volume of A. We found that many biological data analysis
problems can be modeled as cluster identification problems.

Before we present our algorithm for solving the cluster identification prob-
lem, we give an equivalent definition of a cluster. We continue to use D and ρ
to denote a data set and the distance measure defined on D. For any C ⊆ D,
we define an augmentation operation A(C) = C ∪ {c∗}, where c∗ ∈ D − C is
the closest such element to C. We define A(D) = D, and Ak = A(Ak−1).
Definition 2: The necessary condition for a C ⊆ D forms a cluster if for
any c ∈ C, A‖C‖−1(c) = C. �



This cluster definition is more closely related to the Prim’s algorithm,
which allows us to prove some of our results more easily.
Theorem 2: Definitions 1 and 2 are equivalent. That is, if C ⊆ D is a
cluster under Definition 1, then it is a cluster under Definition 2; and vise
versa.
Proof: It is straightforward to show that Definition 1 implies Definition
2. Hence we omit the proof. We now prove that Definition 2 also implies
Definition 1. It is not difficult to see that all we need to prove is that if C is
a cluster under Definition 2, then for any B ⊆ C, A‖C‖−‖B‖(B) = C.

Let’s assume that this is not true, and let B∗ ⊂ C be the subset that does
not satisfy this equation. So there exists a d0 ∈ A‖C‖−‖B∗‖(B∗)∩ (D−C). We
assume, without loss of generality, d0 ∈ A(B∗) (if not, we can always expand
B∗). Hence there exists a b0 ∈ B∗ such that

ρ(b0, d0) < min
b∈B∗,c∈C−B∗

ρ(b, c). (1)

Since C is a cluster under Definition 2 and b0 ∈ C, we know A‖C‖−1(b0) = C.
However this contradicts the inequality (1) since inequality (1) implies that d0

will be added to A‖C‖−1(b0) before any other elements of C−B∗ can be added.
However we know d0 /∈ A‖C‖−1(b0). This contradiction implies the correctness
of the theorem. �.

Clearly, A represents the basic selection operation in the Prim’s algorithm.
Let (d1, ...., d‖D‖) be the list of elements selected (in this order) by the Prim’s
algorithm when constructing a MST of the data set D and starting from ele-
ment d1 ∈ D. This list maps the data set D (of any dimensions) to a string
d1....d‖D‖, which we call a linear representation of D.
Theorem 3: For any linear representation L(D) of a data set D, any cluster
C of D is represented as one substring of L(D).
Proof: We need to show that after the Prim’s algorithm selects the first
element c0 of C, it will not select any element outside of C until it has selected
every element of C. We assume that this is not the case. Let d0 be the first
element of D−C that gets selected after c0’s selection. We use C ′ to denote the
subset of C that have been selected when d0 is selected. By our assumption,
C ′ ⊂ C. Let (c0, d) be the MST edge that gets c0 selected; similarly (d0, d

′) be
the corresponding edge of d0 (note that d′ ∈ D−C by Definition 2; otherwise
it would contradict the definition). Also let (c1, c2) be the first edge selected
after d0’s selection, with c1 ∈ C ′ and c2 ∈ C −C ′ (note that such (c1, c2) must
exist since elements of C form a subtree of the MST). By the order of their
selections, we have

ρ(c1, c2) > ρ(d0, d
′) > ρ(c0, d).
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Figure 2: Plots of edge-distances in the order of their selection by the Prim’s algorithm.
Each valley is underlined. (a) Edge-distance plot of Figure 1 (a). (b) Edge-distance plot of

Figure 1 (b).

This apparently contradicts the fact that ρ(c1, c2) < ρ(c0, d), implied by the
proof of Theorem 2. So we have proved the theorem. �

A direct application of Theorem 3 is that we can plot the edge distances in
the selection order by the Prim’s algorithm. In this plot, the x-axis is a linear
representation L(D) of data set D, and the y-axis represents the distance of the
corresponding MST edge. By Theorem 3 and the definition of a cluster, each
cluster should form a “valley” in this plot. Figure 2 shows two examples of
such plot. In Figure 2(a), the three (visibly apparent) clusters of Figure 1 (a)
are nicely represented by three valleys. Similarly, the one ring-shaped cluster
of Figure 1 (b) is well represented as a valley in Figure 2(b). This suggests
that we can find clusters from a noisy background through searching a linear
string and finding the substrings with certain properties. The following result
forms the foundation of our search algorithm. For a substring S of a linear
representation L(D) of a data set D, the left-boundary edge of S is defined to
be the corresponding MST edge when the leftmost element of S was added into
the MST. The right-boundary edge of S is defined to be the first MST edge,
linked with the rightmost element of S, that gets selected after the rightmost
element is selected. If the leftmost element of S is a first element of L(D), the
distance of the left boundary edge of S is infinity; similarly if the rightmost
element of S is a last element of L(D), the distance of the right boundary edge
of S is infinity.
Theorem 4: A subtring S of L(D) represents a cluster if and only if (a) S’s
elements form a subtree, TS , of D’s MST, and (b) S’s both boundary edges



have larger distances than any edge-distance of TS .
Proof: Apparently, Theorem 3 implies the only-if condition. The if condition
can be proved easily as follows. Since the right-boundary edge of S is larger
than all tree edges of TS , we know all other edges connecting S with D − S
are larger than the tree edges of TS , possibly except for the left-boundary edge
(because the right-boundary is the first selected such edge after the selection
of the left-boundary edge). Since we also know that the left-boundary edge is
also larger than TS ’s edges, we conclude that S forms a cluster by the proof of
Theorem 2. �

We now present an algorithm for finding clusters in a noisy data set D. The
algorithm goes through all substrings of L(D) and checks if the (a) and (b)
conditions of Theorem 4 are satisfied. We use K to represent the smallest
cluster size we care to identify.

Procedure ClusterIdentification(D,K)

Construct a MST, TD, of data set D, using Prim’s algorithm;
Generate a linear representation L(D) of D;

FOR i = 1; UNTIL i = ‖D‖ − K DO
FOR j = i + K; UNTIL j = ‖D‖ DO

IF (elements of L(D)[i, j] forms a subtree of TD AND
left- and right-boudanry edges of L(D)[i, j] are larger than edges

of TL(D)[i,j])
THEN output L(D)[i, j] as a cluster.

Checking if a subset of vertices of a tree forms a subtree of the tree can
be done in linear time of the number of vertices 12. So this algorithm takes
O(‖D‖3) time to locate all clusters. Improved computing time may be possi-
ble using advanced data structures, but the current running time is adequate
for our applications. Theorem 4 implies that the ClusterIdentification
procedure finds all the clusters (defined by our definition) in the
data set and finds clusters only.

To make the discussion on clusters complete, we have the following re-
sult regarding the structure among all clusters in a data set. The proof is
straightforward.
Corollary: For any data set D and its two clusters A and B, if A ∩ B �= ∅,
then A ⊆ B or B ⊆ A. �



4 Applications

For a given set of upstream regions of genes, possibly collected through finding
genes having correlated expression profiles, our procedure finds the conserved
short fragments, say with k bases, as follows. First, it breaks the genomic
sequences into k-mers (if k is not known we will go through all k’s within
some range provided by the user), denoted as a set S. For two k-mers A =
a1...ak, B = b1...bk ∈ S, we define their distance ρ(A,B) =

∑k
1 σiM(ai, bi),

where M(x, y) = 0 if x = y otherwise 1. Initially, all σi is set to 1/K, where K
is the number of sequences containing at least one of the k-mers A or B. Then
we apply the ClusterIdentification Procedure to identify all clusters, using
ρ as the distance measure. As we discussed earlier, this procedure identifies
subsets of S that satisfy the necessary condition of a cluster (for a particu-
lar distance measure) while the sufficient condition is problem specific. For
the binding site identification problem, the problem-specific conditions should
include the following: (1) the position-specific information content 13 of the
gapless multiple-sequence alignment, among all the sequence fragments rep-
resented by a cluster, should be relatively high; (2) elements of an identified
cluster should not be among long, simple repeats; and (3) the data density
within a cluster should be relatively higher than the one of the overall back-
ground.

To incorporate the information-content constraint into our binding-site
identification procedure, we will do the following. After a cluster is identified
using the procedure of ClusterIdentification, we will measure the position-
specific information content. If the overall information content is lower than
some threshold, we will discard this cluster for further consideration. Oth-
erwise, we will modify our original distance measure ρ() by the calculated
information content as follows. For each position i, we use its information
content as σi in the next iteration of applying ClusterIdentification; and
set M(ai, bi) = 2 − (pi(ai) + pi(bi)) + |pi(ai) − pi(bi)|, where pi(x) represents
the frequency of letter x among all letters in position i. We will iterate this
procedure for a fixed number of iterations. Our observation has been that
for a real binding-site cluster, the procedure converges quickly. Otherwise it
diverges.

To “guarantee” some level of uniformity within an identified cluster, we ex-
amine the edge-distance distribution of the subtree (of the MST) representing
the cluster. If data points are approximately “uniformly” distributed, the edge-
distance distribution should be generally unimodular; a multi-modular distri-
bution typically indicates that there are regions within the cluster, which have
different density levels. Our procedure discards clusters with non-unimodular
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Figure 3: Identification of CRP binding sites. (a) Edge-distance plot. The deepest valley in
the plot corresponds precisely to the subtree of (b). (b) The (sub)tree structure of identified
CRP binding sites. The shaded fragments represent known CRP sites. The edge-distance is

color-coded, ranging from green to yellow, with green being the shortest.

distributions from further consideration.
Our implemented program has a number of parameters, e.g., the minimum

cluster size. The values of these parameters are selected, using a simple search
program to find an ”optimal” performance on a set of genomic sequences with
known regulatory binding sites. We have applied this program to a number of
binding-site identification problems. We present three case studies here. The
computing time for each case took a few minutes on a Unix workstation.

CRP binding sites: This is a widely used testing set from E. Coli for
validating a method of binding-site identification 1. The test set consists of
18 sequences (each of length 105 bps) with 23 experimentally verified CRP
binding sites (22-mers). Our iterative procedure stopped after two iterations.
The only cluster identified is the one shown in Figure 3. The cluster consists of
24 fragments, of which 20 are known CRP sites (out of 23) and the remaining
four may or may not be true CRP sites. This result is at least as good as
results reported previously by other approaches 1,14.

Yeast binding site: The second application example is for the nucleo-
some complex proteins promoter binding sites in yeast 15. There are 8 reg-
ulatory sequences, each containing 1000 bp. By using 9-mers, our method
identified several clusters (see Fig. 4 (a)). The most populated cluster is TTAC-
CACCG, which also connects several other clusters with similar motifs on the
MST (see Fig. 4 (b)). The cluster TTACCACCG and its connected clusters
have high information content and they appear in all 8 regulatory sequences.
It turned out that TTACCACCG is an experimentally verified motif 15.

Human binding sites: We have applied our method to a set of human
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Figure 4: Binding site identification for the yeast data set. (a) Edge-distance plot. (b) The
subtree structure of an identified binding site TTACCACCG.

genomic sequences containing binding sites, collected in 16. The data set has
113 regulatory sequences containing regulatory regions. Each sequence is 300
bp long, with 250 bp upstream and 50 bp downstream of the transcriptional
start site. It is known that the TATA box is one of the binding sites. It
is also believed that other protein-binding sites may exist in the data set,
although no experimental data is available to support this yet. One of the best
identification methods for binding sites17 identified the 6-mer TATAAA as the
only identifiable binding motif consensus. Our method has easily identified this
motif (see Fig. 5 (a)). In addition, it has identified a number of other possible
binding sites, including GCAGCC as shown in Fig. 5 (b). The GCAGCC motif
with at most one mis-match appears in 96 regulatory sequences, even more
frequently than the TATAAA motif, where appears in 66 regulatory sequences
with at most one mis-match. The information content of the GCAGCC motif
is also higher:

TATAAA: 0.819569 0.793079 0.861977 0.869478 0.802716 0.821651

GCAGCC: 0.755810 0.798584 0.692777 0.906340 0.823345 0.849254

where the information content at each position is normalized to the range of 0
to 1. Based on this, we believe that our method is more sensitive in detecting
conserved sites.
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Figure 5: Edge-distance plot for binding site identification for the human data set. (a)
Around the cluster containing the TATAAA binding site. (b) Around the cluster containing

the GCAGCC binding site.

5 Discussion

Based on a formal definition of clusters, we have developed a rigorous frame-
work for identifying and extracting clusters from a noisy background. As we
believe that many data analysis problems can be formulated as a cluster iden-
tification problem or its variant, we expect that this framework will find many
interesting applications. The linear representation of a data set allows us to
“directly” visualize the cluster structures even for high dimensional data sets.
Having such a visualization capability should clearly improve our confidence
in our clustering results, since we can “see” the clusters.

Based on the examples we have tested so far, our method clearly shows
some advantages over the existing methods. The first advantage is that our
method can take advantage of the fact that a regulatory sequence contains the
same motif at the different locations, and it will increase the population of
the cluster containing the binding site. Another advantage of our method is
its sensitivity. Our method is based on a combinatorial approach, which can
identify all clusters of possible binding sites. Existing methods generally use
sampling techniques, which are likely to miss some binding sites that do not
have very strong patterns, as shown in the example of human binding site.

A method is currently being developed for assessing the statistical signif-
icance of each identified cluster based on the “depth” and the “width” of the
valley representing the cluster in the edge-distance plot (unpublished results).
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