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Abstract

We propose a probabilistic model for cellular processes, and an algorithm for
discovering them from gene expression data. A process is associated with a set of
genes that participate in it; unlike clustering techniques, our model allows genes to
participate in multiple processes. Each process may be active to a different degree
in each experiment. The expression measurement for gene � in array � is a sum,
over all processes in which � participates, of the activity levels of these processes
in array � . We describe an iterative procedure, based on the EM algorithm, for
decomposing the expression matrix into a given number of processes. We present
results on Yeast gene expression data, which indicate that our approach identifies
real biological processes.

1 Introduction

A living cell is a complicated system that performs multiple functions and has to
respond to a variety of signals. To organize this complex web of activity, the cell
tends to compartmentalize its activity into distinct processes, or modules. This global
organization cannot be discerned by studying the properties of isolated components.
Genome-wide measurements of mRNA expression level across multiple experimental
conditions provide us with a global picture of the cell’s activities, and provide the
potential for a high-level understanding of its behavior.

Clustering techniques are the most common approaches to identifying functional
groups in gene expression data. These approaches generate clusters of genes that have
similar expression profiles over a range of experimental conditions [6, 4, 14]. However,
these approaches group genes into mutually exclusive clusters, and are thus limited in
their ability to represent the true underlying biological system: many genes are known
to be multi-functional, and thus should belong to more than one functional group.

In this paper, we introduce a probabilistic framework for discovering biological
processes from expression data. Each process is associated with a set of genes that
participate in it; unlike clustering methods, our model allows genes to participate in
multiple processes. Each process might be more active in some conditions and less
active in others. Thus, our model defines for each experiment the extent to which each
process is active in that experiment. In our model, the expression measurement for
gene � in array � is a sum, over all processes in which � participates, of the activity
levels of these processes in array � . Thus, we decompose the entire expression matrix
as a sum of the expression levels of all the active processes.

Our model resembles the Plaid model proposed by Lazzeroni and Owen [11]. The
Plaid model also decomposes the expression data as a sum of overlapping “layers”;
each layer is associated with a set of genes and experiments that define the expression
of that layer. There are several differences between our model and Plaid. Of these, the
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Figure 1: (a) PRM for the process model. (b) An instantiation of the PRM to a particular dataset with 2
genes, 2 arrays and 3 processes.

most important is that Plaid uses a greedy sequential approach to perform the decom-
position, attempting, in each step, to explain as much of the unexplained expression
data as possible. Once a layer has been learned, it remains unchanged and is subtracted
from the expression data. In contrast, our model is trained as a unified whole, allowing
the association of genes with processes to change as the process models become more
refined, and the process models to change as the set of assigned genes changes. As
we demonstrate in our experimental results, our approach discovers much “cleaner”
processes than does Plaid: The set of genes associated with a process by our approach
often contains a very high fraction of genes that are known to share a functional role.
By contrast, Plaid layers are much larger and more heterogeneous, and do not corre-
spond as neatly to a biological process.

We provide an iterative algorithm for learning the model from gene expression
data, based on the expectation maximization (EM) algorithm [5]. Once a model has
been learned, we can read the processes directly from it. For each process, we read
both the genes that participate in it as well as the levels of activity of each process in
all experiments. We describe encouraging results on real data, providing evidence that
our approach identifies real biological processes. Specifically, we show a high cor-
relation between the gene sets constructed and known biological processes. We also
show significant DNA binding sites in the promoter regions of the genes in the process.
Finally, we show cases where our learned activity levels for processes had extremely
high correlations with the expression levels of known regulators of those processes;
importantly, these regulators were not part of the input data given to our program, in-
dicating that our program reconstructed the levels of activity of these processes.

2 Probabilistic Model

In this section we present our probabilistic model. Our approach is based on the
language of probabilistic relational models (PRMs), as described in [10, 7]. For lack
of space, we do not review the general PRM framework, but focus on the details of the
model, which follow the application of PRMs to gene expression in [14]. A simplified
version of our model is presented in Fig. 1(a); we now describe its elements.

The PRM framework represents the domain in terms of the different biological



entities that interact in it: genes, arrays, expression measurements, and biological pro-
cesses. Also, each object may be associated with a set of attributes that are relevant to
the interactions in the domain. Specifically, our model includes a set � of � gene ob-
jects ����� ���	��
�
�
� ����� , a set � of � array objects ����� ������
�
�
�� ����� , and a set � of
expression objects ������� ��� � ��
�
�
�� � �!� � � , one for each gene in each array. Each expres-
sion object � is associated with a gene object ��
 Gene � � , an array object ��
 Array � � ,
and a real-valued attribute ��
 Level denoting the mRNA expression level of ��
 Gene � �
in ��
 Array � � .

In addition, we include a set of " process objects. Our model makes explicit the
notion that genes participate in biological processes and that processes are active to
varying degrees in arrays. Thus, for each gene object � we define a set of binary
attributes, �#
 $%����
�
�
� �#
 $'& , where �#
 $'( represents the gene’s Membership in process) . To represent process activity levels, we associate with each array object � , a set
of continuous attributes �*
,+ � ��
�
�
�� ��
,+ & , where ��
,+ ( represents the aCtivity level of
process ) in array � .

Each expression measurement � associated with gene �-����
 Gene and array �.���
 Array is assumed to be a (stochastic) function of the processes in which � participates
and of the activity level of those processes in the array � . More precisely, let �#
 / be
the set of all � ’s membership variables, and ��
,0 be the set of all � ’s activity level
variables. We assume that ��
 Level is normally distributed with mean 1324��5 ( ��
,$ (76

��
 + ( and standard deviation 8#9 . More precisely::<; ��
 Level =>�@?�A�B C ; ��
 Level DE5 ( ��
,$F( 6 ��
,+>(�=HGI 8 G9 J (1)

where 8 9 is the standard deviation of all expression measurements in array � . Thus,
the expression measurement for gene � in array � can be viewed as the sum over
expression components, with each component being the result of the activity in array

� of some process to which � belongs.
To complete the description of our probabilistic model, we associate with each

process ) a prior probability
:<;

��
,$ ( =>�LK ( , which is the prior probability with which
any gene participates in ) . We also associate with the continuous attribute ��
 + ( a
uniform distribution (over some appropriately bounded range).

Although the description of our model is compact, its instantiation to a particular
data set is quite large. In a specific instantiation of the PRM model we might have
10 processes, 1000 genes and 100 arrays. Thus, we have as many as M�N�N�NPOQMRN�N
expression objects (if all expressions are observed), so the instantiation of our model
to a particular dataset contains a large number of objects and variables that interact
probabilistically. The resulting probabilistic model is a Bayesian network [12], where
the local probability models governing the behavior of nodes of the same type (e.g.,
all nodes ��
,$'( for different genes � in process ) ) are shared. Fig. 1(b) shows a small
instantiation of such a network, for two genes, two arrays, and three processes.

Putting everything together, an instantiation of the PRM model specifies the mem-
bership �#
,$ ( for all genes �TS-� and all processes ) , the activities ��
,+ ( for all arrays

�'SU� and all processes ) , and the expression level ��
 Level for all �VSU� . The joint



distribution over all possible instantiations is given by::<; �F
 / � ����� ������
 0 � � 
 Level =>�	
��
(

	
�
����� :<;

�#
,$ ( =��� C �
9 ��� :<;

��
 + ( = J �� C �
2 ��� :<; ��
 Level � ��
 / � �*
 0 = J (2)

where � �Q��
 ����� ��� and �<�Q��
 � ��� � .
Our model has several desirable properties. First, processes are represented explic-

itly making it easy to “read” off processes from the model: the �#
 $ ( variables tell us
which genes participate in process ) and the ��
,+ ( variables tell us the activity level
of each process ) in each array. Second, the model allows for genes to participate in
more than one process (since we could have �#
,$ ( � M and ��
,$��T� M for different
processes ) and K ), which enables us to model multi-functional genes. Finally, as we
will see in the next section, the probabilistic model allows us to utilize statistical opti-
mization techniques to learn the models from data over several processes jointly.

3 Learning the Model

In the previous section, we described the different components of our probabilistic
model. We now consider how we learn this model from data. We assume that the only
information given is the expression data itself, and the number of processes we wish to
identify. We do not know which genes participate in which processes nor the levels of
activity of arrays processes. Thus, all attributes ��
,$ ( and ��
 +>( are hidden. From the
perspective of the model parameters, the prior probabilities of the different processes
—

:<;
�#
 $ ( = � K ( are also unknown. We assume that the expression level model is

given, as in Eq. (1), and that the distribution
:<;

��
,+ ( = is uniform and fixed for all ��� ) .
The learning problem we have here is quite complex, as it involves a large number

of hidden variables. The main technique we use to address this issue is the Expectation
Maximization (EM) algorithm [5], which allows parameter estimation with incomplete
data. The EM algorithm is an iterative method. Starting from an initial setting for the
parameters, it repeatedly performs two steps. In the E-step, it computes the distribution
over the unobserved attributes �#
,$ ( � ��
,+ ( (for all ��� ��� ) ), given the observed expres-
sion data and the current estimate of the parameters. It uses this distribution to “fill
in” each missing attribute. Two variants of the EM algorithm are soft EM, where the
completion explicitly accounts for the probability over the values of each missing at-
tribute, and hard EM, which simply selects the single most likely assignments to each
attribute. The M-step re-estimates the parameters, using the completion of the missing
attributes as if it were real, using a standard maximum likelihood estimation proce-
dure. The process then repeats, using the new parameters, until convergence. Soft
EM is guaranteed to converge to a local maximum of the likelihood of the observed
data

:<; � 
 Level = ; hard EM is guaranteed to converge to a local maximum of the joint
likelihood of the observed data and the completion —

:<; �F
 / � �-
,0 � � 
 Level = .
In applying either variant of EM to our model, we must deal with the complexities

of the E-step, which require that we compute the distribution over all assignments to



both �F
 / and �.
 0 . As we discussed, our model induces a complex set of interac-
tions. In the experiments we describe below, we have 1010 genes, 173 arrays, and 10
processes. This results in a model with M�M�������N hidden variables. Moreover, the na-
ture of the data is such that we cannot treat genes (or arrays) as independent samples.
Instead, any two hidden variables are dependent on each other given the observations
(see [7] for an elaboration of this point). For example, consider two genes � and � ; � ’s
assignment to processes influences our estimates of the �*
,+ ( variables, which in turn
influence our membership probabilities for � . Due to these dependencies, the exact
computation of the E-step is intractable for large domains.

However, our model is such that if we were given the values of ��
,+ ( for all ��� ) ,
then the assignments of the different genes to processes are rendered independent.
Likewise, given a fixed assignment of genes to processes ( �#
 $ ( ), the activity levels
for each array � can be estimated from these assignments and from the expression data
in � alone, without knowing the activity levels in other arrays.

This key observation suggests the use of hard assignments to the hidden attributes,
rather than a soft assignment. Thus, we use a variant of hard EM. In this case, our
goal in the E-step is to find the maximum probability assignment to the variables�F
 / � �-
,0 , given the current parameter setting. This problem is still intractable, but
we can use our observation to find a very good local maximum.

Specifically, starting from an initial assignment of genes to processes (which could
come from standard clustering methods), we find the most likely activity levels �-
,0 .
We then fix these activity levels, and find the most likely assignment to �F
 / . Each
step increases the joint likelihood

:<; �F
 / � �.
 0 � � 
 Level = given the current parame-
ters, and thus the process is guaranteed to converge. The resulting assignment to these
variables is a fairly strong local maximum: No step that adapts only the gene mem-
berships or the array activity levels can improve the likelihood; however, a step that
adapts both gene memberships and array activities might.

At convergence, the E-step is complete, and we can use the final assignment �F
 /�� ,�.
 0�� to estimate the parameters K ( , using standard maximum likelihood estimation.
More precisely, we compute the expected sufficient statistics:

N �	� 
��� ��� ���������� ; ��
,$ �( � � = (3)

where � is an indicator variable that takes value M when its argument holds and N
otherwise. We then compute the probabilities K ( as:K ( � N �	� 
 �� M �

N �	� 
��� N ��� N ��� 
 2���� 2�� (  M � 
 (4)

The algorithm as a whole is shown in Fig. 2. As we can see, it defines two separate
optimization tasks: finding the most likely memberships of genes in processes given
activity levels (step 2(a)i), and finding the most likely activity levels given the mem-
berships of genes in processes (step 2(a)ii). We discuss the implementation of these
steps in the subsequent subsections.

A critical part of our approach is that our algorithm does not learn the member-
ship and activity of each process in isolation. Rather, our model is learned over all



1. Initialize ��� � using standard clustering techniques.

2. Repeat until convergence

(a) E-step Repeat until convergence

i. Find the assignment to each activity level ��� � that maximizes �	�
��� � � � Level ����� ��� .
ii. Find the assignment to each gene membership ��� � that maximizes �	����� � � � Level ����� � .

(b) M-step Estimate the parameters ��� as in Eq. (3) and Eq. (4).

Figure 2: Full Learning Algorithm

processes simultaneously, allowing information and (probabilistic) conclusions from
one process to propagate and influence our conclusions about another. For instance,
assume that our learning process places a gene � into process ) at some step, and that
this membership explains � ’s expression data very accurately. In this case, � will be
less likely to be a member of other processes, allowing other genes assigned to the
process to have a stronger influence on the activity level profile of the process.

One of our two tasks is to find the most likely activity levels given the memberships
of genes in processes. Here, we assume that we are given, for each gene � , all the pro-
cesses ) in which it participates. Thus, we now need only to find the most likely
assignment to the activity levels of arrays in processes, i.e., ����� �!� A � � " :<; �-
,0 �� 
 Level � �F
 /�= . Using Bayes rule, our assumption of uniform prior over each ��
,+ ( ,
and the model in Eq. (1), we can reformulate our maximization task as� �#�$�%� A � � " :<; � 
 Level �	�.
 0 � �F
 /�=>�� �#�$�!�	A ��� " �9 ��� �2 ���'& ( )�* � + M, I�- 8*9 ?A�B + ; ��
 Level D'1 2=HGI 8 G9 ./.
where ��0 9 is the column of the expression matrix that corresponds to the array � .
Simple algebraic reformulation shows that this problem is, in fact, a standard least
squares problem 132 � +�4 , where: 1 is the standard � O-� expression matrix; � is
an �FO " 0-1 matrix such that � � � & contains a M if gene � is a member in process " and+ is a � O " matrix such that + 9 � ( represents the activity level of array � in process ) .

The matrices 1 and � are both fixed, and our goal is to find the matrix + that
minimizes the squared-error for 152 � +�4 . It is well-known [9] that a least-squares
solution to this system exists, and can be found effectively using standard methods.

We now turn to our second optimization problem, where we are given the activity
levels of all processes in all arrays and our task is to learn the assignments of genes
to processes. Thus, the attributes �#
 $ ( are hidden for all genes � and all processes ) .
However, with all activity levels given, assignments of genes to processes are indepen-
dent across genes and we can find the most likely assignment for each gene separately.

To perform this maximization, we maximize
:<;

�#
 / �3� � � �.
 0 = separately for
each gene � , where � � is the row in the expression matrix corresponding to the gene
� . More precisely, this computation can be done as follows:6 � � �

�
�87 �89;: < :<;

�#
 / � 6'= �	� � � �.
 0 =�� (5)



where:<;
�#
 / � 6 �	� � � �.
 0 = ��� � ( :<;

��
,$F( � � (�= �
2 ����� :<; ��
 Level � ��
 / � 6 � �.
 0 =��

where � ( SU�RN ��M � , and � is a normalization constant. The expression inside the final
term in the product is simply the Gaussian model for the expression level given its
parents, as in Eq. (1).

For models that include a large number of processes, we cannot perform this max-
imization over �#
 / exactly. The number of calculations required for each gene is
exponential in the number of processes, since every possible joint assignment to ��
 /
must be considered. In these cases, we use an approximation. Instead of considering
every possible assignment to ��
 / , we include only a subset ��
 /�� of processes, and
exclude all others �#
 /�� , forcing their value to 0. To select our subset, we relax the
problem and allow each �#
,$ ( to be any real value between 0 and 1. We then maxi-
mize Eq. (5) subject to this relaxation. This problem reduces to a bounded least squares
problem, which we can solve exactly [3]. We then select �#
 / � from ��
 / , by choosing
those variables whose relaxed assignments are closest to 1 (in practice the majority of
the variables are assigned to 0 in the relaxed solution). Finally, we find the most likely�RN���M�� assignment to �#
 /�� with all other variables fixed to 0 by maximizing::<;

�#
 / � � 6 �	� � � �.
 0 � �#
 / � �LN�= �
�

�
( � � :<;

�#
 $F( � � (�= �
2 ����� :<; ��
 Level � �#
 / � � 6 � ��
 / � �@N�� �-
,0 =

4 Model Evaluation

We first evaluated our approach on synthetic data. These experiments test whether
we recover structure known to be present in the data. We generated a synthetic data
set by sampling from a PRM model. To make the data realistic, we used PRM models
learned from real biological data [8]. Specifically, we first learned a model with 7
processes. We then sampled data for 500 genes and 173 experiments (the original data
contained 173 experiments) from the model: assignments of genes to processes were
sampled from the distribution our model had for the �F
 / variables, and expression
data was then derived by computing the expected expression levels (according to our
model of expression) from the sampled assignment of genes to layers and the ��
,0
means which were part of the learned model.

We then hid the true assignments of genes to processes and activity levels in arrays,
as well as the original model parameters K ( , and learned a model with 7 processes from
the synthetic expression data using the algorithm described in Section 3. To test the
robustness of our learning algorithm to noise, we also learned models using various
levels of perturbations, where a perturbation level of

-
corresponds to shuffling

-	�
of

the expression data across all genes and experiments. To gain statistical confidence,
we generated five data sets for each perturbation

-
, and learned a model from each.

All models were evaluated by their ability to recover the “true” assignments of
genes to processes (true assignments are the assignments in the sampled data) by per-
forming a pairwise consistency test: we extracted all gene pairs appearing in the same
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Figure 3: (a) Fraction of learned pairs appearing in the true data and fraction of true pairs in the learned
model for various levels of perturbations. (b) Log-Likelihood on test data achieved for learned models for
various levels of perturbations. (c) Motifs learned by searching for commonalities in the upstream regions
of the genes in each process.

process in our learned model, and computed the fraction of these pairs appearing in
the true data. We also tested the reverse, extracting all the true pairs and computing
the fraction of these pairs appearing in a learned model. The results are summarized
in Fig. 3(a), indicating that our algorithm reconstructs the true structure with very high
accuracy even if 30% of the data is perturbed: gene pairs assigned to the same process
in the true data, are likely to appear in our learned model and vice versa. Note that in
fully randomized data (100% perturbation), a high fraction of the pairs in the learned
model were indeed present in the true data (

� ��� N�
 � � ). This occurs since the random-
ized data contains much weaker patterns and the total number of pairs learned is small,
as can be seen by the poor coverage (

I M�
 �!� I 
 � � ) of true pairs in these models.
As another evaluation, we measured the ability of our learned models to predict

unseen data, by computing the likelihood that each model assigns to held out data.
Specifically, we randomly partitioned the data into five equally sized sets of 100 genes
and learned five models from all five possible combinations of four sets. For each such
model we computed the likelihood it assigned to the held out subset. We compared
these results to the likelihood that the “true” model from which the data was sampled
assigned to the held out test data. These experiments were also performed in the pres-
ence of varying levels of perturbations. The results are summarized in Fig. 3(b). As
can be seen, the test set likelihood is comparable (and even better with very little noise)
for up to 30% perturbations, dropping sharply as more noise is added.

Recall that when the number of processes is large, we resort to the approximation
described in Section 3. To evaluate our approximate algorithm, we learned a 12 pro-
cess model, where we could apply the exact algorithm and compare the results. In our
results, �"�!
 I � of the genes had the same assignment to processes in the approxima-
tion and exact algorithm. However, the training and test set likelihoods of both models
were practically the same, implying that the errors made by the approximation had
little effect.



5 Biological Analysis

We now consider the data set of Gasch et al. [8], who characterized the genomic
expression patterns of yeast genes in 15 different experimental conditions. We selected
1010 genes that had significant changes in gene expression (eliminating the ESR genes
for which clustering is trivial), and the full set of 173 arrays.

We used the model discussed above, with 30 processes. Overall, our model pre-
dicted that 24 genes do not participate in any process, 552 genes participate in only one
process, 257 in two, 119 in three, and 58 in four or more processes. As a comparison,
we also tested a Plaid model with 30 processes, learned from the same data. (We ob-
tained the Plaid software from http://www-stat.stanford.edu/˜owen/plaid/.) The
Plaid model assigned many more genes to layers than our model did, with 0 genes in
no processes, 1 gene in one process, 4 genes in two, 10 genes in three, and 995 genes
in four or more processes. According to Plaid, almost all genes participate in four
or more processes, a situation not supported by current biological understanding. We
note that the running time of our algorithm was 30 minutes on a 700MHZ Pentium 4,
compared to 1 minute for running Plaid on the same machine.

To evaluate whether our assignments are biologically plausible, we checked whether
the genes associated with each process showed any enrichment for known annotations.
To do so, we used the GO [1] and KEGG [2] databases which assign genes to a diverse
set of functional categories and biological pathways, respectively. For each process
and each annotation, we counted the number of genes from the process with that an-
notation, and compared that to the total number of genes in our dataset with that an-
notation. If a process we learned indeed corresponds to known biological processes,
then we expect the learned process to contain a high fraction of the genes with the
corresponding annotation. For each combination of process ) and annotation � , we
can use the hyper-geometric distribution and assign a statistical significance (p-value)
measure, corresponding to the probability that a randomly selected group of genes of
the same size have similar enrichment for � . We performed this evaluation for our
processes, the layers found by the Plaid model, and clusters from a standard clustering
procedure.

The web supplement to this paper (http://cs.stanford.edu/˜eran/psb03) lists
the 30 processes, along with all annotations that were significant with a p-value ofM�� D � or lower in either our model or in Plaid, where we removed some repetitive
annotations from GO. Overall, we discovered highly significant processes relating to a
variety of cellular functions. These included oxidative phosphorylation, various trans-
port processes, protein folding, glycolysis, lipid metabolism, amino acid metabolism,
carbohydrate metabolism, protein membrane targeting, ribosomal biogenesis, and cell
cycle control. Some of the stronger active processes we identified were also present as
Plaid layers, but Plaid layers typically included many extraneous genes, rendering the
patterns less clear. For example, neutral lipid metabolism appears as a process of M �
genes with a p-value of M�
 I�� � D I M in our model, while in Plaid it appeared in a layer
of � M � genes with a p-value of M�
 I�I � D �

. Also, protein folding appeared as a process
of M � genes with a p-value of M�
 � � �4D M � in our model, while the corresponding Plaid
layer had

I � � genes with a p-value of
I 
 � � � D � . Fig. 4(a) shows a scatter plot com-
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Figure 4: (a) Scatter plot of the negative log p-value of different GO and KEGG annotations for layers in
Plaid on the one hand (X axis) and processes in our framework on the other (Y axis). Each point corresponds
to one annotation. (b) Scatter plot of the negative log p-value of different GO and KEGG annotations for
clusters from Pearson clustering on the one hand (X axis) and processes in our framework on the other (Y
axis). (c) Correlation between all genes not included in the analysis and the learned activity levels. For each
gene, the best correlation (or anti-correlation) is plotted as well as the best correlation achieved for that gene
after permuting its expression measurements. The genes are sorted by best correlations.

paring the p-value for the GO and KEGG annotations that came up. We can see that
in most cases (122 of 135 cases for pvalue of MR� D � or lower), the p-value achieved
by our approach was always better and often much better than that achieved by Plaid.
We performed a similar comparison to a standard hierarchical clustering algorithm [6],
where we cut the hierarchy at 30 clusters to allow for a comparison to our model. The
results are shown in Fig. 4(b), where again the majority of annotations appeared with
greater significance in our model.

If genes assigned to the same process indeed participate together in a biological
process, then the cell must have some regulatory mechanism by which it can coordi-
nate their activity. One such mechanism is a shared DNA binding site (or multiple
sites) recognized by a transcription factor (or several). To test whether genes that we
associated with a process share DNA binding sites, we extracted the promoter regions
of all genes (500bp upstream of translation start site) and applied a discriminative mo-
tif finder [13], searching for motifs of length 15. The result of the search is a standard
position specific scoring matrix (PSSM) which can then be used to compute which
genes have the binding site defined by the PSSM and which do not. From this we can
derive a statistical significance measure assessing the uniqueness of the binding site to
the set of genes associated with the process relative to the entire genes in the dataset.
The consensus sequence of the best PSSMs learned along with the statistical signifi-
cance of the PSSM to the process are summarized in Fig. 3(c). Overall, we were able
to find unique binding sites in the set of genes in each process (see web supplement for
full list), often with striking significance, consistent with significant annotations iden-
tified for each process using GO or KEGG. For example, we found a highly unique
DNA binding site (p-value

I 
 � �	� D I N ), occurring in the promoter region of 28 of the
35 genes in the oxidative phosphorylation pathway (process 23), compared to 102 ap-
pearances in the remaining 976 genes in the dataset, suggesting possible regulation of
the pathway by this binding site. Indeed, the core element of this binding site is ��� � �

�
,

which is the known target for the transcription factor regulator of oxidative phospho-



rylation, HAP4.
In addition to the assignments of genes to processes, our approach attempts to

reconstruct the activity levels of each process ) in each array � , as captured by the
posterior mean of �*
,+ ( . For each process, we can thus construct a vector �-
 + ( of the
activity levels of ) across all arrays �USQ� . We examined these activity levels, and
found that they were biologically plausible for their respective processes. For instance,
the process associated with protein folding (process 18) had high activity levels during
heat shock and exposure to diamide, and low activity levels during amino acid and
nitrogen depletion, reflecting accurately the biological function of the process.

Also, genes associated with process ) should have high correlations between �.
,+ (
and their average expression across all experiments. Indeed, a large number of genes
were either highly correlated (286 genes with correlation N 
 � or above) or highly anti-
correlated (13 genes with correlation D N 
 � or below).

Much more exciting is to measure the correlation between the �-
 + ( vectors for all
processes ) and the

� M ��� genes that were not included in our analysis. Due to the way
in which we selected the M�N�M�N genes for our analysis, the genes included are likely
to contain only a fraction of the genes associated with each process. If our model
learned activity levels that indeed correspond to activity levels of real processes, then
we expect to see high correlations between some of the left out genes and our learned
activity levels. Indeed, there were many such genes: 614 of correlation above N�
 � and
252 of correlation below D N 
 � . To test whether this phenomenon could have happened
by chance, we permuted the vector of expression measurements for each gene and
recomputed the correlations. The results are summarized in Fig. 4(c), demonstrating
that it is highly unlikely that our computed correlations could have resulted by chance,
as the most significant correlation achieved for any of the

� M ��� permuted genes wasD N 
 � I . Surprisingly, the distributions of the correlation measurements were identical
between the genes included in the analysis and those not included (data not shown).

Interestingly, there were several cases where the learned process activity levels had
high correlation to the expression of known regulators (e.g., transcription factors) not
included in the analysis. The web supplement lists all regulators with high correla-
tion (or anti-correlation) to any process. Overall, we had � � unique regulators with
correlation above N 
 � , of which MRN had correlation above N 
 � , and � unique regula-
tors with correlation below D N 
 � , of which 5 had correlation below D N�
 � . For M I of
the ��N processes, we learned activity levels that had extremely high correlation with
known regulators. When information about the regulator was available in the litera-
ture, we could verify that the regulator that was highly correlated to a process, indeed
was known to regulate the genes associated with that process. For example, CLB2, a
G2/M phase specific cyclin, had correlation N 
 ��� with process M I , which in turn has
significant cell cycle related annotations. Even when information was not available to
verify our proposed regulation relationships, the regulators were known to be related
to glucose starvation, cell wall stress, cell growth, cyclic AMP, ribosome synthesis,
nitrogen starvation and mating, all processes known to be affected by the conditions in
the Gasch [8] dataset.



6 Conclusions

In this paper, we have presented a probabilistic framework for extracting biological
processes from gene expression data. Unlike most clustering methods, our approach
does not attempt to associate each gene with a single process. Rather, it attempts to
explain each gene’s expression level as a sum of of the activity levels of the processes
to which is belongs. For each process, we learn a set of genes that are associated with
the process, and the extent to which the process is active in each array.

We compared our approach to the Plaid model of [11], that uses a related decompo-
sition, and showed that our approach extracts processes that are more clearly identified
with biological functions. In general, we showed that our approach provides a coherent
global picture of biological processes.

An important advantage of our approach is that it is part of a general probabilis-
tic framework for biological processes, as described in [14, 13]. Thus, it provides
a mechanism by which we can integrate heterogeneous data sources, such as array
annotations, clinical outcomes, or promoter region sequences, into a single coherent
framework. Thus, for example, following [13], we could try to directly identify pro-
cesses based not only on the expression data, but also on the existence of shared motifs
in the promoter region. We intend to explore this extension and others in future work.
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