
ProGreSS: Simultaneous Searching of Protein Databases by Sequence and Structure

A. Bhattacharya, T. Can, T. Kahveci, A. K. Singh, and Y.-F. Wang

Pacific Symposium on Biocomputing 9:264-275(2004)

ProGreSS: SIMULTANEOUS SEARCHING OF PROTEIN DATABASES BY
SEQUENCE AND STRUCTURE

�

A. BHATTACHARYA T. CAN T. KAHVECI
A. K. SINGH Y.-F. WANG

Department of Computer Science
University of California, Santa Barbara, CA 93106�

arnab,tcan,tamer,ambuj,yfwang � @cs.ucsb.edu

Abstract

We consider the problem of similarity searches on protein databases based
on both sequence and structure information simultaneously. Our program ex-
tracts feature vectors from both the sequence and structure components of the
proteins. These feature vectors are then combined and indexed using a novel
multi-dimensional index structure. For a given query, we employ this index struc-
ture to find candidate matches from the database. We develop a new method for
computing the statistical significance of these candidates. The candidates with
high significance are then aligned to the query protein using the Smith-Waterman
technique to find the optimal alignment. The experimental results show that
our method can classify up to 97 % of the superfamilies and up to 100 % of
the classes correctly according to the SCOP classification. Our method is up
to 37 times faster than CTSS, a recent structure search technique, combined with
Smith-Waterman technique for sequences.

1 Introduction
The industrialization of molecular biology research has resulted in an explosion

of bioinformatics data (DNA and protein sequences, protein structures, gene expres-
sion data and genome pathways). Each of these data present a different type of in-
formation about the functions of the genes and the interactions between them. Most
of the earlier work focuses on only one type of data since each type of data has a
different representation and the means of similarity varies for each data type. Com-
bined learning from multiple types of data will help biologists achieve more precise
results for several reasons: a) The probability of having false positive results due to
errors in data generation decreases since it is less likely for the same error to appear
in all the datasets. b) More than one aspect of the biological objects can be captured
simultaneously.
1.1 Problem definition

In this paper, we consider the problem of joint similarity searches on protein
sequences and structures. A protein is represented as an ordered list of amino acids,
where each amino acid has a sequence and a structure component (the terms amino
�

Work supported partially by NSF under grants EIA-0080134, IIS-9877142, DBI-0213903, and IRI-
9908441.

acid and residue are used interchangeably). The sequence component of an amino
acid is its residue name indicated by a one letter code from a 20 letter alphabet. The
structure component consists of the Secondary Structure Element (SSE) type of that
residue (� -helix, � -sheet, or turn), and a 3-D vector which shows the position of its
carbon-alpha (���) atom.

1.2 Related work

It has been one of the most important goals in molecular biology to elucidate the
relationship among sequence, structure and function of proteins 	�
 �
 � . A handful of al-
gorithms and tools have been developed to analyze sequence and structure similarities
between the proteins. These methods are usually focused on either sequence (Smith-
Waterman (SW) � , BLASTP ��
 � , PSI-BLAST �) or structure information (VAST � ,
DALI � , CE 	�� , PSI 	�	 , CTSS 	��) for finding similarities between different proteins.

On the other hand, a few tools have been developed for providing integrated en-
vironments for analyzing the sequence and structure information together. Protein
Analyst 	�� , 3DinSight 	�� , and the integrated tools by Huang et al. 	�� are among those
tools. They provide a combination of separate (but cooperating) programs for inte-
gration of sequence and structure analysis under a single working environment. The
components of these systems are usually run one after another, with one’s results be-
ing the input to the other. Although these tools provide integration of multiple types
of data, they perform search on only one type of data at a time. We believe that in-
tegration of multiple data sources at indexing and search level would provide more
precise and efficient tools.

1.3 An overview of our method

We extract a number of feature vectors on sequence and structure components
of each protein in the database by sliding a window. Each feature vector maps to a
point in a multi-dimensional space. Thus, a protein is represented by a number of
points. This multi-dimensional space consists of orthogonal dimensions for sequence
and structure. Later, we partition the space with the help of a grid and index these
points using Minimum Bounding Rectangles (MBRs).

Given a query, our search method runs in three phases:
Phase 1 (index search): Feature vectors (i.e., points) are extracted from the query

protein. For each of these query points, all the database points that are within ��� and
��� distance along the sequence and the structure dimensions are found using the index
structure. Each such point casts a vote for the protein to which it belongs as in geo-
metric hashing 	�� .

Phase 2 (statistical significance): For each database protein, a statistical signifi-
cance value is computed based on the votes it obtained in Phase 1 and its length.

Phase 3 (post-processing): The top � proteins of highest significance are selected,
where � is a predefined cutoff. The optimal pairwise alignment of these � proteins to
the query protein are then computed using the SW technique. Finally, the � � atom of

the matching residues are super-positioned using the least-squares method by Arun et
al. 	�� to find the optimal RMSD (Root Mean Square Distance).

We name our method ProGreSS (Protein Grep by Sequence and Structure) since
it enables queries based on sequence and structure simultaneously.

The rest of the paper is organized as follows. Section 2 discusses our index
structure for proteins. Section 3 explains our search algorithm. Section 4 presents the
experimental results. We end with a brief discussion in Section 5.

2 Feature vectors and index construction
In this section, we develop new methods to extract features for protein structures

and sequences. Feature vectors for structures are computed as the curvature and tor-
sion values of the residues in a sliding window. Curvature and torsion values provide
a necessary and sufficient condition for the isomorphism of two space curves 	�� . For
a detailed explanation of how curvature and torsion are computed, refer to CTSS 	�� .
Feature vectors for sequences are computed using a sliding window and a score ma-
trix that defines the similarity between all the amino acids. We also propose a novel
index structure to provide efficient access to these features.
2.1 Feature vectors for structure

We slide a window of a prespecified size, ! , on the proteins (i.e., each positioning
of the window contains ! consecutive residues). We will discuss the choice of ! later.
Figure 1(a) depicts two positionings of the window. For a given window, the curvature
and torsion values for each residue in that window is computed. The resulting vector
contains 2 ! values since two values are stored per residue in the window. This vector
maps to a point in a 2 ! -dimensional space. Having a large number of dimensions
increases the cost for computing the similarity 	�� and the cost for storing the vectors.
Therefore, we reduce the number of dimensions to a smaller number, "#� , using the
Haar wavelet transformation, at the cost of reduced precision (see 	�� for details on
Haar transformation). We use " � = 2 in our experiments. The transformed vector is
normalized to $ 0,1 %'&)(space. Along with each feature vector, we also store the SSE
types of the residues.

As ! increases, the feature vector contains information about the correlation be-
tween larger number of residues. Thus the similarity between two feature vectors
implies longer matches. On the other hand, very large values for ! may cause false
dismissals since shorter matches may be discarded due to their neighboring residues.
We set ! = 3 for our experiments.
2.2 Feature vectors for sequence

The similarity between two amino acids of protein sequences is usually defined
using score matrices (e.g., PAM and BLOSUM). A score matrix consists of 20 rows
and columns; one for each amino acid. The entries of a score matrix denote the score
for aligning a pair of residues. If two amino acids are similar, then the score for that
pair is large, otherwise it is small.

Given a score matrix * , we call each row of * the score vector of the amino
acid corresponding to that row. Thus, each entry of this vector shows the similarity
of that amino acid to one of the 20 possible amino acids. We define the distance
between two amino acids as the Euclidean distance between their score vectors. This
is justified, because if the score of aligning two amino acids + and , is high in a score
matrix, then they are similar. Therefore, if + is similar (or dissimilar) to another amino
acid - , then , is also similar (or dissimilar) to - .

Similar to protein structures, we extract feature vectors for protein sequences by
sliding a window of length ! (see Figure 1(b) for ! = 3). Each positioning of the
window contains ! amino acids. We append the score vectors of these amino acids
in the same order as they appear in the window to obtain a vector of size 20 ! . This
vector maps to a point in 20 ! -dimensional space. Since the number of dimensions
is too large for efficient indexing even for small values of ! , we reduce the number
of dimensions to a smaller number, " � , using Haar wavelets. Similar to the structure
component, we recommend ".� = 2 for optimal quality/time trade-off. The resulting
vector is then normalized to $ 0,1%/&�0 space. We again choose ! = 3.

2.3 Indexing feature vectors

So far we have discussed how to extract feature vectors for structure and sequence
components of the proteins separately. In this section, we will discuss how to build
an index structure on these feature vectors.

In order to search the protein database based on both sequence and structure, we
need to combine the feature vectors for these two components. Since the same win-
dow size is used for both the components, every positioning of the window produces
one "1� -dimensional feature vector for its structure component and one " � -dimensional
feature vector for its sequence component. We append these two vectors to obtain a
single (" � + "2�)-dimensional vector. The resulting vector is called the combined fea-
ture vector. Since the entries of each of the feature vectors are normalized to the $ 0,1%
interval, the combined feature vector resides in a $ 0,1%3& (34 & 0 search space.

The index structure is built by first partitioning the search space into 5 equal
pieces along each dimension. The resulting grid contains 56& (34 & 0 cells of length 798:5
along each dimension. We will discuss the choice of 5 in Section 3.1. Once the
space is partitioned, a window of length ! is slid on each protein in the database. For
each positioning of the window, the combined feature vector is computed. Each such
vector maps to a point ; in one of the cells of the grid. For each such point, we check
whether that cell is empty. If it is empty, we construct an MBR that contains only
; . Otherwise, we find the MBR < in that cell whose volume becomes the smallest
after extending it to contain ; . If the volume of < , after its expansion, is less than a
precomputed volume threshold, = , then we extend < and insert ; into < , otherwise
we create a new MBR that covers only ; . = affects only the performance, not the
quality of the search. We chose = = (1/2 5) &)(4 &�0 experimentally. Figure 2 presents

(x2, y2)(x1, y1)

[(curvature1, torsion1), ..., (curvature3, torsion3)]

[(curvature2, torsion2), ..., (curvature4, torsion4)]

Haar

(a)

Va = a1, a2, ..., a20

Vr = r1, r2, ..., r20

Vn = n1, n2, ..., n20

A R N A V T K

[Vr, Vn, Va]

(x2, y2)

Haar

[Va, Vr, Vn]

(x1, y1)

(b)

Figure 1: Feature vectors for (a) protein
structure, and (b) protein sequence.

/* Let > be a dataset that contains proteins,? be the window size,@
be the volume cutoff. */

Procedure CreateIndex(> , ? ,
@

)
for each protein ACBC>

for each positioning of window of length ?DFE G combined frequency vector for current window;H E G cell that contains D ;
if
H GJI thenKML

Lower E GND ;KML
Higher E GOD ;

Insert
K

into
H

;
elseK E G argmin PRQ9SUT volume V KJW D1X3Y ;

if volume V KZW D[X6\ @ thenK E G KZW D ;
elseK�L

Lower E G]D ;K�L
Higher E GND ;

Insert
K

into
H

;
endif

endif
endfor

endfor

Figure 2: Algorithm for building the index structure.

the algorithm that constructs the index structure. Figure 3 depicts a layout of a 2-D
search space and the MBRs built on the data points for 5 = 4. Here, "2�_^`" � = 1.

3 Query method
Given a query acbOde��fde� � d�gih , where b is a query protein, ���kjl$ mnd�7% and � � j

$ m.d�7�% are the distance thresholds for sequence and structure respectively, and g is the
boolean value regarding the use of SSE information, our search algorithm runs in
three phases: 1) index search, 2) statistical significance computation, and 3) post-
processing. In this section, we will discuss each of these phases. We will assume that
the index structure is built using a user specified score matrix for sequence (e.g., PAM
or BLOSUM), and ! for the window size.
3.1 Index search

Each residue of the query protein b consists of a sequence component and a
structure component. We extract combined feature vectors from b by sliding a win-
dow of length ! on it. Each of these combined feature vectors defines a query point in
the search space. Figure 4 shows a sample query point in a 2-D search space, where
the horizontal axis is the structure dimension and the vertical axis is the sequence di-
mension. In this figure, the search space is split into 16 cells numbered from 0 to 15.
The query point falls into cell 10. We want to find the database points that are within

se
qu

en
ce

0 1 2 3

7654

8 9 11

15141312

10

structure0 1

1

Figure 3: A layout of the MBRs and data points
on the search space for o = 4 in 2-D.

se
qu

en
ce

ε q

ε q

ε tε t

0 1 2 3

7654

8 9 11

15141312

10

structure0 1

1

Figure 4: A sample query point and its query
box for o = 4 in 2-D.

an ��� distance along the structure dimensions and � � distance along the sequence di-
mensions from the query point. In Figure 4, we are interested in the points in the
shaded region. Note that if g = true, then we only consider the database points that
have the same SSE type as the query point.

For each query point, we construct a query box by extending it by �� and by � �
in both directions along the structure and the sequence dimensions respectively (see
Figure 4). Next, we find the cells in the search space that overlap the query box. If a
cell does not overlap the given query box, then it is guaranteed that it does not contain
any database points that are in the query box. A cell can overlap a query box in two
ways: 1) it is contained in the query box (e.g., cell 10 in Figure 4), or 2) it partially
overlaps the query box (e.g., cells 5, 6, 7, 9, 11, 13, 14, and 15 in Figure 4).
1) If a cell is contained in the query box, all the points in that cell are guaranteed to
overlap the query box. Therefore, we increment the vote to the database proteins that
contains a data point in that cell for each such data point (if g = true, then the vote is
added only for the points that have the same SSE type as the query point).
2) If a cell partially overlaps the query box, then we check all the MBRs in that cell.
If an MBR is contained in the query box (e.g., the MBR in cell 10), each point in that
MBR contributes a vote. If an MBR partially overlaps the query box (e.g., the MBR
in cell 15), then we find the points in that MBR that are in the query box to find the
votes. If an MBR does not overlap the query box (e.g., the MBR in cell 6), we ignore
all the points in that MBR. This method is more precise than geometric hashing 	�� ,
because for a given query point it inspects the neighboring cells in addition to the cell
into which that query point falls.

The number of partitions 5 in the search space affects the run time of the index
search. As 5 decreases, each cell contains more MBRs. Therefore, if a query box
partially overlaps a cell, then more MBRs need to be tested for intersection with the

query box, thus increasing the search time. On the other hand, having too many par-
titions have two disadvantages: 1) most of the cells will be sparse or empty incurring
space cost. 2) the volume of the boxes will be very small since each cell will get
smaller. This increases the total number of MBRs, and hence the number of MBRs
for intersection test. From our experiments we recommend 5 = 10 for optimal results.
3.2 Statistical significance computation

Once the index structure is searched, we obtain a number of votes for each protein
in the database. The total number of votes for a protein + shows the number of
query points that are close to + ’s points. We define the p-value of a match as the
unexpectedness of that result. Smaller p-values imply better matches.
Definition 1 Given a protein + with p points in the index structure and q votes for a
given query, the p-value of + for that query is defined as the probability of having at
least q votes for a randomly generated protein with p points in the search space.

Next, we discuss the computation of p-values. Consider a protein in the database
that is represented in the search space using p points (p = length of protein – window
size + 1). Let the protein receive q votes for a given query. Let r be a random variable
representing the number of query boxes that overlap with a randomly selected point
in the search space. Let sut and vR�t be the mean and the variance of r . The total
number of query boxes that overlap with p randomly selected points can be computed
as rxwx^yr{z|r}z�~�~�~�z|r (exactly pNr s). Since r s are independent and identically
distributed random variables, using Central Limit Theorem, one can show that rJw is
normally distributed with mean s t�� ^�p�~:s t and variance vR�t � ^�p�~�vi�t . Thus,
if sRt and vi�t are known, one can compute the distribution of r�w using a normal
distribution. Since the protein has q votes, its p-value can be computed as �x�'rJw���q2� .

The computation of p-values requires the values of s t and v �t . The distribution
of r depends on the distribution of query points, and the distance thresholds � � and
��� . We compute the values of sut and vi�t by generating a large number of random
points in the search space and counting the number of query boxes that it overlaps. In
our experiments, we generate 10,000 random points for this estimation.
3.3 Post-processing

After the statistical significances of all the proteins are computed, top � proteins
with the highest significance are selected as candidates for post-processing, where �
is a predefined cutoff. The purpose of post-processing is to find the optimal alignment
between the query protein and the most promising proteins. Let � be the query pro-
tein. For every protein + in the candidate set, post-processing runs in two steps:

Step 1: We build a � +U����� �.� score matrix, * str, for structure component, where
� +U� and � �.� are the number of residues in + and � , as follows: For each residue in +
and � , we construct a 2-D vector as its curvature and torsion. Each entry of * str
is then computed as the negative of the Euclidean distance between the a curvature,
torsion h -vector of the corresponding residues. For the sequence component, we cre-

ate another � +U�n��� �.� score matrix, * seq, such that �6�)d�� the entry * seq $ �)d��[% is equal

to the score of aligning the � th letter of + with the � th letter of � in the underlying
score matrix (e.g., BLOSUM62). The matrices * seq and * str are normalized and a
combined score matrix * com = ��7_��� � ��~)* str + ��7_���)���i~�* seq is computed. Here,
the weights ��7M������� and ��7���� � � represent the importance that the user gives to each
of the components. The optimal alignment between + and � is then found by running
the Smith-Waterman dynamic programming using * com.

Step 2: The alignment obtained in Step 1 defines a one-to-one mapping between
a subset of residues of + and � , and is optimal with respect to * com. Finally, we find
the 3-D rotation and translation of + that gives the minimum RMSD to � by using a
least-squares fitting method 	�� .
4 Experimental evaluation

We used single domain chains in our experiments. We downloaded all the protein
chains in PDB (http://www.rcsb.org/pdb) that contain only one domain ac-
cording to VAST � and SCOP �e� classifications. We only considered proteins that are
members of one of the following SCOP classes: all � , all � , � + � and � / � . We iden-
tified the superfamilies (according to SCOP classification) that have at least 10 repre-
sentatives in this dataset. There are 181 such superfamilies. We created a database �
of size 1810 proteins by including 10 proteins from each of these superfamilies. We
formed a query set, �O� , by choosing a random chain from each of the 181 superfam-
ilies in � . � � is large enough to sample � since it contains one protein from each
superfamily. We ran a number of experiments on these sets to test the quality and the
performance of ProGreSS. The tests were run on a computer with two AMD Athlon
MP 1600+ processors with 2 GB of RAM, running Linux 2.4.19.

In the rest of this section, we use ! for the window size, � for the cutoff, ��
and � � for the structure and sequence distance thresholds, g for the SSE type match
choice, and 5 for the number of partitions. We employ the BLOSUM62 score matrix
for sequences in all of our experiments. The number of dimensions "n� and " � for
sequence and structure are both set to 2.
4.1 Quality test

Our first experiment set inspects the effect of various indexing and search param-
eters on the quality of our index search results. We classify a given query protein into
one of the superfamilies and classes using the � best seeds as follows. The logarithms
of the p-values of the matches in top � results in each superfamily are accumulated.
The query protein is classified into the superfamily that has the largest magnitude of
this sum. We use the same technique to classify the query protein to one of the four
SCOP classes: all � , all � , � + � and � / � . Since the queries are selected from the
database, in order to be fair, we do not take into account the query protein itself if it
is among the top � results. We will only report the results for g = true, since it usually
produced slightly better results than g = false.

2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

Cutoff (c)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns
SF:ε

t
=ε

q
=0.010

SF:ε
t
=ε

q
=0.020

CL:ε
t
=ε

q
=0.010

CL:ε
t
=ε

q
=0.020

Figure 5: Percentage of query proteins correctly
classified for different values of � .

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (ε
t
=ε

q
)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

SF
CL

Figure 6: Percentage of query proteins correctly
classified for different values of distance thresh-

old when ��� = ��� .
Figure 5 shows the percentage of query proteins correctly classified to classes

(CL) and superfamilies (SF) for different values of � , where �� = � � = 0.01 and 0.02,
and ! = 3. In all these experiments, we obtained the best results for � = 2 and 3.
We achieved up to 96 % and 94 % correct classification for classes and superfamilies
respectively. As � increases, our method starts retrieving proteins from other classes
and superfamilies. We set � = 3 for the rest of the experiments.

Figure 6 plots the percentage of correctly classified proteins for varying distance
thresholds when �)� = � � and ! = 3. The purpose of this experiment is to understand
what a good distance threshold should be when sequence and structure have equal
importance. The graph shows that the accuracy of ProGreSS increases when distance
threshold increases from 0.005 to 0.01. At � � = �)� = 0.01, ProGreSS achieves 96 % and
94 % correct classification for classes and superfamilies. As the distance threshold
increases, ProGreSS starts retrieving distant proteins and its accuracy drops.

Figure 7 shows the percentage of correctly classified superfamilies for different
values of ��� when � � is fixed and for different values of � � when ��� is fixed, for ! =
3. This experiment shows the effect of distance threshold for each of the structure
and sequence components separately. When ��� is fixed, as � � decreases, the classi-
fication quality of ProGreSS increases. This implies that our method can find better
results when the distance threshold is small. The highest accuracy obtained is 62 %.
For � � = 1.0 (i.e., when the sequence component is ignored), ProGreSS performs the
worst. This is an important result since it shows that searches based on structure alone
would incur more false positives than the searches based on both sequence and struc-
ture. When �)� is fixed, as � � decreases, ProGreSS classifies more proteins correctly.
In this case, 94 % of the proteins are correctly classified into their superfamilies. Our
method performs the worst when � � = 1.0. This result leads to two important conclu-
sions: 1) Searching by sequence information alone is worse than searching based by

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (ε
t
 or ε

q
)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns
SF:ε

q
=0.05,ε

t
∈[0,1]

SF:ε
q
=1.00,ε

t
∈[0,1]

SF:ε
t
=0.05,ε

q
∈[0,1]

SF:ε
t
=1.00,ε

q
∈[0,1]

fixed structure,
varying sequence

fixed sequence,
varying structure

sequence
alone

structure
alone

Figure 7: Percentage of query proteins correctly
classified for different values of � � (� �) when � �

(���) is fixed.

0 5 10 15 20
10

20

30

40

50

60

70

80

90

100

Window size (w)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

SF:ε
t
=0.05,ε

q
=0.01

CL:ε
t
=0.05,ε

q
=0.01

Figure 8: Percentage of query proteins correctly
classified for different values of ? .

sequence and structure simultaneously. 2) For purposes of classification, our extrac-
tion of feature vectors for sequence is better than those for structure.

Figure 8 plots the effect of window size on the classification quality of ProGreSS.
The best results are achieved at ! = 3. At this window size, ProGreSS can classify
100 % and 97 % of the classes and superfamilies correctly. ProGreSS performs worse
for smaller window sizes since correlations between the consecutive residues are not
reflected to the index structure. As ! becomes larger than 3, ProGreSS starts to miss
some of the good results since shorter local matches are not preserved for large ! .

Finally, Figure 9 compares the accuracy of our technique with CTSS, a recent
algorithm that considers structure alone. We show the number of correct proteins
(those from the same superfamily as the query protein) for different values of � . CTSS
finds 3 out of 10 correct proteins in the first 100 candidates. On the other hand, our
method finds the same number of proteins within the first 4 candidates.
4.2 Performance test

In this experiment set we compare the performance of our method to CTSS. In
order to have fair results, we run CTSS in two phases: 1) the top � candidates are
found using the original CTSS code and each candidate is aligned to the query by
using SW based on its structure score matrix. 2) The optimal sequence alignment of
all the database proteins to the query are determined using SW alignment. For CTSS
and ProGreSS, we choose � = 100 and 4 respectively. This is because the quality of
their candidates are similar for these values of � (see Figure 9). We run queries for all
of the 181 proteins and align only the candidate proteins to each of the query proteins.

Figure 10 shows the average time spent by CTSS and our method. The run times
for CTSS and SW are 38 and 18 seconds respectively. The graph for CTSS+SW is
flat since these methods are independent of 5 . ProGreSS runs faster than CTSS+SW
for all values of 5 . For 5 = 10, ProGreSS runs in only 1.5 seconds (i.e., 37 times faster

0 50 100 150
1

2

3

4

5

6

7

Cutoff (c)

N
um

be
r

of
 P

D
B

s
fr

om
 th

e
sa

m
e

su
pe

r
fa

m
ily

ProGreSS
CTSS

Figure 9: Number of proteins found from
the same superfamily as the query protein for
ProGreSS and CTSS for different values of � .

 1

 10

 100

 0 2 4 6 8 10 12 14 16

T
im

e
 [

s
e

c
]

Number of partitions

CTSS + SW
ProGreSS

Figure 10: Comparison of running times of
ProGreSS and CTSS+SW.

than CTSS+SW). As 5 gets smaller, ProGreSS runs slower. This is because when
a query box partially overlaps a cell, more MBRs are tested for intersection. As 5
becomes larger than 10, the performance of ProGreSS drops since the total number
of MBRs in the index structure increases.

5 Discussion

In this paper, we considered the problem of joint similarity searches on protein
sequences and structures. We proposed a sliding-window–based method to extract
feature vectors on the sequence and structure components of the proteins. Each fea-
ture vector is mapped to a point in a multi-dimensional space. We developed a novel
index structure by partitioning the space with the help of a grid, and clustering these
points using Minimum Bounding Rectangles (MBRs). Our search method finds the
number of feature vectors that are similar to the feature vectors of a given query for
each database protein. We also proposed a new statistical method to compute the
significance of the results found at the index search phase. The results are sorted
according to their significance and the most promising results are aligned using the
Smith-Waterman (SW) method � and the least-squares method by Arun et al. 	�� to find
the optimal alignment.

According to the experimental results on a set of representative query proteins,
ProGreSS classified all of the classes and 97 % of the superfamilies correctly. Our
method ran 37 times faster than CTSS, a recent structure search technique, combined
with the SW technique for sequences.

Combined learning from multiple data sources is an important research problem
since each data provides a correlated yet different type of information about the pro-
tein. ProGreSS provides the user a wide flexibility of search parameters to assign
weights on each of these data types. We believe that, the methods discussed in this

paper are an important step in understanding the functions of proteins better, and will
be widely applicable in the area of proteomics. In the future, we would like to include
other features into our index structure such as expression arrays and pathways.

References
1. T. C. Wood and W. R. Pearson. Evolution of Protein Sequences and Structures. J. of Mol. Biol,

291(4):977–995, 1999.
2. H. Hegyi and M. Gerstein. The Relationship between Protein Structure and Function: a Compre-

hensive Survey with Application to the Yeast Genome. J. of Mol. Biol., 288(1):147–164, 1999.
3. J. M. Sauder, J. W. Arthur, and R. L. Dunbrack Jr. Large-scale comparison of protein sequence

alignment algorithms with structure alignments. Proteins: Structure, Function, and Genetics,
40(1):6–22, 2000.

4. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J. of Molecular
Biology, March 1981.

5. S. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. Basic local alignment search
tool. J. Molecular Biology, 215(3):403–410, 1990.

6. W. Gish and D.J. States. Identification of protein coding regions by database similarity search.
Nature Genet., pages 266–272, 1993.

7. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl.
Acids. Res., 25(17):3389–3402, 1997.

8. T. Madej, J.-F. Gibrat, and S.H. Bryant. Threading a database of protein cores. Proteins, 23:356–
369, 1995.

9. L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices. Journal
of Molecular Biology, 233:123–138, 1993.

10. H.N. Shindyalov and P.E. Bourne. Protein structure alignment by incremental combinatorial ex-
tension (CE) of the optimal path. Protein Engineering, 11(9):739–747, 1998.

11. O. Çamoğlu, T. Kahveci, and A. K. Singh. Towards Index-based Similarity Search for Protein
Structure Databases. In CSB, 2003.

12. T. Can and Y. F. Wang. CTSS: A Robust and Efficient Method for Protein Structure Alignment
Based on Local Geometrical and Biological Features. In CSB, 2003.

13. M. A. S. Saqi, D. L. Wild, and M. J. Hartshorn. Protein Analyst - a distributed object environment
for protein sequence and structure analysis. Bioinformatics, 15:521–522, 1999.

14. J. An, T. Nakama, Y. Kubota, H. Wako, and A. Sarai. Construction of an Integrated Environment
for Sequence, Structure, Property and Function Analysis of Proteins. Genome Informatics, 10:229–
230, 1999.

15. C. C. Huang, W. R. Novak, P. C. Babbitt, A. I. Jewett, T. E. Ferrin, and T. E. Klein. Integrated
Tools for Structural and Sequence Alignment and Analysis. In PSB, pages 227–238, 2000.

16. H.J. Wolfson and I. Rigoutsos. Geometric hashing: An introduction. IEEE Computational Science
& Engineering, pages 10–21, Oct-Dec 1997.

17. K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squares fitting of two 3-D point sets. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5):698–700, September 1987.

18. K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is ”Nearest Neighbor” Meaning-
ful? In ICDT, pages 217–235, 1999.

19. R.M. Rao and A.S. Bopardikar. Wavelet Transforms Introduction to Theory and Applications.
Addison Wesley, 1998.

20. A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of
proteins database for the investigation of sequences and structures. J. Mol. Biol., 247:536–540,
1995.

