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Single nucleotide polymorphisms (SNP) may be genotyped for use in case-control designs to
test for association between a SNP marker and a disease using a 2 × 3 chi-squared test of
independence. Genotyping is often based on underlying continuous measurements, which are
classified into genotypes. A “no-call” procedure is sometimes used in which borderline
observations are not classified. This procedure has the simultaneous effect of reducing the
genotype error rate and the expected number of genotypes observed. Both quantities affect the
power of the statistic. We develop methods for calculating the genotype error rate, the
expected number of genotypes observed, and the expected power of the resulting test as a
function of the no-call procedure.  We examine the statistical properties of the chi-squared test
using a no-call procedure when the underlying continuous measure of genotype classification
is a three-component mixture of univariate normal distributions under a range of parameter
specifications. The genotype error rate decreases as the no-call region is increased. The
expected number of observations genotyped also decreases.  Our key finding is that the
expected power of the chi-squared test is not sensitive to the no-call procedure. That is, the
benefits of reduced genotype error rate are almost exactly balanced by the losses due to
reduced genotype observations. For an underlying univariate normal mixture of genotype
classification to be analyzed with a 2 × 3 chi-squared test, there is little, if any, increase in
power using a no-call procedure.

1 Introduction

Single nucleotide polymorphisms (SNPs) genotypes are often determined by
scoring technologies that first report the genotypes by one or more quantitative
measurements1,2. Since the continuous measurements must be reduced to one of
three genotypes (in this work, denoted by AA, AB, BB), some values may have
ambiguous classification. One possible treatment of such classification is a “no-
call” response; that is, no genotype is returned for the subject. For example, van den
Oord et al.3 comment that “technicians will not score points [genotypes] when the
are segregated from the group”.  Throughout this work, we shall distinguish
between the terms no-call and “all-call”, where the latter indicates a procedure
where all subjects are assigned a genotype, even if a subset are incorrect.

Some technologies classify genotypes using a mixture of univariate2,4 or bivariate
normal distributions1,5. For example, the Perkin Elmer software SNPscorer5 uses an
ellipsoidal model that they label “Ellipsoidal model of equal dimensions at constant



orientation”. This bivariate model could be reduced to modeling a mixture of
univariate normal distributions by an appropriate projection. That is, the univariate
data or the bi-variate data after projection follows the pattern shown in figure 1.

One standard use of SNP genotypes is a case/control genetic association analysis
using the 2 × 3 chi-squared test of independence. We have previously investigated
the effects of genotyping errors on the power of this test6,7. The major finding was
that an increase in genotype error rates always resulted in a loss of power. The
rationale for a no-call procedure is that the gain in power due to reduction of
genotype error rates more than offsets the inevitable loss of power due to decrease
in the number of genotype observations. In this work, we develop a method of
computation to investigate this tradeoff. Specifically, we calculate both the
genotype error rates and the reduction in expected sample size as a function of the
no-call procedure. We then use these quantities to calculate the power of the test as
a function of the no-call procedure.

2 Materials and Methods

2.1 Notation

The following notation is used through the remainder of this work:

Count variables:
= Number of cases assuming no misclassification of genotypes (fixed)

UN = Number of controls assuming no misclassification of genotypes (fixed)
nc
AN  = Number of cases adjusted after allowing no-call regions (random variable)
nc
UN  = Number of controls adjusted after allowing no-call regions (random variable)

Probability parameters:

aP  = Allele frequency of SNP marker B allele in the case group (affecteds)

uP  = Allele frequency of SNP marker B allele in the control group (unaffecteds)

ijP  = Frequency of SNP marker genotype j assuming no misclassification of

genotypes ( i = 0 for affected, i = 1 for unaffected, j=1 for AA genotype, j = 2 for AB
genotype, j= 3 for BB genotype)
'
ijP  = Probability of  calling ij  under no-call rule ( i = 0 for affected, i = 1 for

unaffected, j =1 for AA genotype, j = 2 for AB genotype, j = 3 for BB genotype),
'
ijP <1

Expected proportion of subjects genotyped under the no-call rule:



 = '
01P  + '

02P  + '
03P  ,1<  with no-call rule.

'
controlP  = '

11P  + '
12P  + '

13P ,1<  with no-call rule.

nc
ijP  = Probability of  calling ij  under no-call rule after adjustment ( i = 0 for

affected, i = 1 for unaffected, j =1 for AA genotype, j = 2 for AB genotype, j = 3 for
BB genotype)
These probabilities sum to one and are the genotype frequencies of each genotype
conditional on the set of genotypes that are called.

Three component normal mixture parameters (see figure 1):
X = continuous measurement that is the underlying datum for classification into
genotype

Ld = Mean of left-most (i.e., AA) genotype measurement, 0<Ld

Rd = Mean of right-most (i.e., BB) genotype measurement, 0>Rd
(Note: we set the mean of the heterozygote (i.e., AB) genotype measurement to be 0
and the variance of each component to 1)

= Half-width of the left no-call region

Rγ = Half-width of the right no-call region

Lc = Classification division point between AA and AB genotype with no-call; a

subject is reported to have genotype AA when 
LcX < -

Rc = Classification division point between AB and BB genotype with no-call; a

subject is reported to have genotype BB when 
RcX > + Rγ

(Note: a subject is reported to have genotype AB when 
RRLL cXc γγ −<<+ )

) (Φ  = Cumulative distribution function of standard normal random variable

) (φ = Probability density function of standard normal random variable

Error model functions:

The error rates are functions of the half-width parameters and Rγ .

),(12 RL γγε  = Pr (AA incorrectly coded as AB using no-call rule)

),(13 RL γγε  = Pr (AA incorrectly coded as BB using no-call rule)

),(21 RL γγε  = Pr (AB incorrectly coded as AA using no-call rule)

 = Pr (AB incorrectly coded as BB using no-call rule)

),(31 RL γγε  = Pr (BB incorrectly coded as AA using no-call rule)

),(32 RL γγε  = Pr (BB incorrectly coded as AB using no-call rule)

Cost functions:



Similarly, the cost of each type of error is a function of the half-width parameters
and Rγ .

),( RLijC γγ  = Cost of misclassifying ith genotype in ordered list { AA, AB, BB}as jth

genotype in same list using no-call rule. For example:
),(12 RLC γγ  = Cost of misclassifying AA as AB using no-call rule

),( RLf γγ  = Fractional increase in sample size required to maintain asymptotic

power.
),( RLf γγ  = ),(),(),(),(),(),( 212113131212 RLRLRLRLRLRL CCC γγεγγγγεγγγγεγγ ++

      + ),(),(),(),(),(),( 323231312323 RLRLRLRLRLRL CCC γγεγγγγεγγγγεγγ ++

K = Random variable that is ratio of controls to cases after no-call rule.

(Note:  is a fixed aspect of design,
nc
U

nc
A

N

N
K = is a random variable with mean

approximately equal to k , nc
AN  is a binomial random variable on AN  trials with

probability of call , and similarly nc
UN  is a binomial random variable.)

2.2  Computation of genotype error rates and genotype frequencies with no-call
region

The error rates for the genotype classification with no-call regions assuming a three-
component univariate normal mixture are:

),(12 RL γγε  = )()( LLLRLR dcdc γγ +−Φ−−−Φ

),(21 RL γγε  = )( LLc γ−Φ

),(23 RL γγε  = )(1 RRc γ+Φ−

),(32 RL γγε  = )()( LRLRRR dcdc γγ +−Φ−−−Φ

),(13 RL γγε  = 

),(31 RL γγε  = )( LRL dc γ−−Φ

In the results section, we present computations of the error rates as functions of the

no-call region half-widths Lγ and Rγ  (see discussion of figure 2 in Results). Note

as mentioned above that the error rates are functions of the means and cut-points.

2. 3   Probability of calling each genotype in the presence of errors with no-call
half-width
'
01P  = )()()( 030201 RLLLLLLL dcPcPdcP −−Φ+−Φ+−−Φ γγγ



'
02P = )}()({01 LLLLRR dcdcP −+Φ−−−Φ γγ )}()({02 LLRR ccP γγ +Φ−−Φ+

)}()({03 RLLRRR dcdcP −+Φ−−−Φ+ γγ

= )}(1{)}(1{ 0201 RRLRR cPdcP γγ +Φ−+−+Φ− )}(1{03 RRR dcP −+Φ−+ γ
'
11P  = )()()( 131211 RLLLLLLL dcPcPdcP −−Φ+−Φ+−−Φ γγγ
'
12P = )}()({11 LLLLRR dcdcP −+Φ−−−Φ γγ )}()({12 LLRR ccP γγ +Φ−−Φ+

)}()({13 RLLRRR dcdcP −+Φ−−−Φ+ γγ
'
13P = )}(1{)}(1{ 1211 RRLRR cPdcP γγ +Φ−+−+Φ− )}(1{13 RRR dcP −+Φ−+ γ

We rescale each probability by  and '
controlP  so that 1030201 =++ ncncnc PPP  and

.  That is,

ncP01  = 
'

'
01

caseP

P , ncP11  =
'

'
11

controlP

P , ncP02  = 
'

'
02

caseP

P , and so forth. Note that these probabilities are

conditional probabilities.

2.2 Non-centrality parameter

The non-centrality parameter for the all-call situation is
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The non-centrality parameter for no-call, ),(2
nc
U

nc
A NNλ , is a random variable; that is,

it is a function of the random variables nc
AN  and nc

UN given by:
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Using the “delta method”8, )),(( 2
nc
U

nc
A NNE λ is approximately equal to:
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We define expected power to be the power of the chi-squared test using the
expected non-centrality parameter.

2.3 Cost function with symmetric no-call regions

When , the cost function )(),( γγγ ff RL =  is:
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)}(1{)()}()({ 132112 γγγγ +−Φ−+−Φ++−Φ−−−Φ= LRLLLLR dcCcCdcdcC

     )}()({)}(1{)( 322331 γγγγ +−Φ−−−Φ++Φ−+−−Φ+ RLRRRRL dcdcCcCdcC ,
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Research Approach

We evaluate three functions: (1) the error rates for the genotype classification with
no-call regions (figure 2); (2) the expected proportion of subjects genotyped, 

and '
controlP , under the no-call procedure (also figure 2); and (3) the expected power

under the no-call procedure (figure 3). Note that all three are functions of the no-call
region half-widths 

Lγ and 
Rγ  (see discussion of figure 2 in Results).

Our main question is: is there a setting of the no-call region half-widths 
Lγ and

Rγ that maximize the power of the chi-squared test? We investigate this question

for the parameter settings 500== UA NN , 15.0,2.0 == ua PP with both groups in

Hardy Weinberg equilibrium, 2=−= LR dd , , 
2
L

L

d
c = , and level of

significance 0.05. We note that, while we assume symmetric means and cut-points
for our examples, our methodology is completely general and may be applied to
non-symmetric means and cut-points as well.

3 Results



The error rates decrease as the half-width of the no-call regions increase. Figure 2
presents the error rates for the genotype classification with no-call regions and the
expected proportion of subjects genotyped, and '

controlP , under the no-call rule,

when the means are symmetric (i.e., LR dd −= =2), the cut points are half way

between the means (i.e., , 
2
L

L

d
c = ) and the no-call half-widths are equal

(i.e, Lγ = 
Rγ =γ ). Note that under these conditions 12ε = 32ε and 21ε = . This figure

documents that genotype error rates decrease as the no-call half-width γ increases,

and that simultaneously, the expected proportion of subjects genotyped under the
no-call rule decreases. In the extreme case, when the half-width of the no-call
regions is indefinitely large, the probabilities of misclassification are zero, but no
observations are genotyped. The power of the 2 x 3 chi-squared test on genotypes
generated using a no-call rule with indefinitely large half-widths is zero. Thus, we
search for a setting of γ that maximizes the expected power of the chi-squared test.

In figure 3, we plot the expected power of the chi-squared test using the parameter
settings described above (Methods – Research Approach) to understand the trade-
off between lowered probability of misclassification using larger γ ’s and the

lowered sample size due to the decrease in the number of observations. In general,
the power is not sensitive to the choice of half-width. That is, the gain from the
reduction in the probabilities of misclassification is almost exactly balanced by the
loss in the number of observations genotyped for the 2 x 3 chi-squared test. In some
situations, there is a small gain in power due to using an optimal choice of half-
width. For example, setting Lγ =0.25 and 

Rγ = 0.0 for the scenario in figure 3

returns an expected power of 0.481, an increase of 0.02 over the all-call rule. A
choice of half-width other than the optimal half-widths for a situation is associated
with a small loss of power.

While we do not report the findings here, we note that we performed the above-
mentioned analyses for a range of settings for the parameters Lγ , 

Rγ , 
LR dd , , 

ua PP ,

and k. Our results for different parameter settings were essentially the same as the
ones presented here (data not shown).

Discussion

Use of a no-call rule lowers the probability of misclassification but also lowers the
number of observations classified. With respect to the expected power of the 32×
chi-squared test of equality of genotype frequencies in cases and controls, the gain
in power from the reduction in the probabilities of misclassification almost exactly
matches the loss in power due to the reduction in the number of observations used
for the parameter settings we investigated. The use of Occam’s razor suggests that a



no-call rule not be used when the data generated are analyzed with the 32× chi-
squared test. That is, any gain in power from using a no-call rule will be small
compared to the power of the chi-squared test based on using all observations,
and there may well be a net loss in power due to reduction in sample size. The extra
effort in using a no-call procedure produces no clear-cut gain in power when the
chi-squared chi-squared test is used.

We hypothesize that a similar finding holds for other tests, such as Armitage’s test
for trend in proportions9. The question can be answered by following the steps in
this analysis.

The results presented in this paper use situations with considerable symmetry. For
example, in figure 2, component means were symmetric ( LR dd −= ), cut-points

were symmetric ( , 
2
L

L

d
c = ), and half-widths of the no-call regions were

equal ( Lγ = 
Rγ =γ ). This setting was made to reduce the dimensionality of the

graphics so that they focused on the essence of the findings. In figure 3, for
example, the half-widths of the left and right no-call regions ranged over all
possible values in the specified ranges. Space limitations preclude presenting a
comprehensive set of graphs. These graphs are available on our website
(http://linkage.rockefeller.edu/derek/psb2004.html).  

Also, we note that SNP genotype assignments can be modeled with by a mixture of
three bi-variate normal distributions1. In such a model, the probability of
misclassifying one homozygote as another may be non-negligible. Since such errors
are much more costly10, there may well be situations in which use of a no-call rule is
in fact advantageous. The techniques in this paper can be readily applied to such a
situation, and we are currently performing such calculations. Another issue
regarding the transformation from a mixture of bi-variate distributions to a mixture
of univariate distributions is that the order of genotypes may be different from the
order presented in figure 1 (e.g., the two homozygote distributions may be
adjacent). However, for the references that we have investigated1,5, a projection onto
a line CByAx =+ , where A, B > 0, will always result in an ordering of genotypes as

we have presented in figure 1.
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