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Abstract

Protein structure provides insight into the evolutionary origins, functions,
and mechanisms of proteins. We are pursuing a minimalist approach to pro-
tein fold identification that characterizes possible folds in terms of consistency
of their geometric features with restraints derived from relatively cheap, high-
throughput experiments. One such experiment is residue-specific cross-linking
analyzed by mass spectrometry. This paper presents a suite of novel lower- and
upper-bounding algorithms for analyzing the distance between surface cross-link
sites and thereby validating predicted models against experimental cross-linking
results. Through analysis and computational experiments, using simulated and
published experimental data, we demonstrate that our algorithms enable effec-
tive model discrimination.

1 Introduction

Knowledge of protein structure is vital for understanding protein function and evo-
lution. Traditional protein structure determination techniques, X-ray crystallography
and nuclear magnetic resonance spectroscopy, provide atomic detail, but despite many
advances, they remain difficult, expensive, and time-consuming techniques. Recent
reports from labs conducting the high-throughput protein structure initiative1 indicate
that only 10 percent of expressed and purified proteins advance to full 3D structure.
Alternatively, purely computational techniques (homology modeling, fold recogni-
tion, andab initio) are much faster, but due to the inherent difficulty in scoring predic-
tions, they encounter significant ambiguity in reliably identifying correct structures.

We seek a middle ground, verifying predicted structures againstminimalistex-
periments that provide relatively sparse, noisy information relatively quickly and
cheaply. In particular, this paper focuses on developing and applying geometric algo-
rithms for model discrimination using data from residue-specific cross-linking, ana-
lyzed by mass spectrometry (Fig. 1). We assume here that the models have already
been generated and the experimental data have been analyzed to identify a set of cross-
links. We present algorithms for checking the consistency of the identified cross-links
with the structure models, in order to discriminate among the models.
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Figure 1: Cross-linking mass spectrometry protocol. (1) Computationally generate a set of possible struc-
ture models. (2) Specifically cross-link the protein using a small molecule of a fixed maximum length. (3)
Digest the cross-linked protein with a protease. (4) Obtain and interpret a mass spectrum, using identified
cross-links as evidence for spatial proximity and thus for a particular model.

Employing Edman sequencing and mass spectroscopy of cross-links, Haniuet
al. 2 developed a largely correct model of human erythropoietin consistent with the
cross-linking data, although no alternatives were explicitly considered. Later, Young
et al.3 pioneered the use of mass spectroscopy alone to correctly discriminate among
threading models of Basic Fibroblast Growth Factor, FGF-2, in spite of very low
sequence similarity. More recent work employs a “top-down” method to fragment
proteins within a Fourier transform mass spectrometer, so as to focus on only singly
cross-linked protein monomers4. Similarly, cross-linking has been used to determine
tertiary and quaternary arrangements of proteins5, including membrane proteins that
are inherently difficult to crystallize6,7. The minimalist philosophy has also been ap-
plied by other groups in support of approximate structure determination. For example,
a limited number of long-range distance constraints from NMR8,9, mutagenesis fol-
lowed by functional evaluation10,11, chemical modification12, and the pair distance
distribution function from small-angle X-ray scattering13, have all been employed.

While traditional structure determination techniques provide substantial overde-
termination, minimalist experimental methods for rapid confirmation are noisy and
yield only very sparse information. This places a significant burden on computa-
tional analyses to carefully characterize model geometry and maximize discrimina-
tory power, in order to be robust to experimental noise and ambiguity. This paper
develops a suite of new algorithms, trading complexity vs. accuracy, for analysis of
cross-linkability in predicted structure models. The algorithms provide better dis-
criminability and robustness than previously published approaches, and thus promise
to enable broader applicability of cross-linking to protein fold identification.

2 Cross-Linkability Analysis

2.1 Problem Formulation

A cross-linker serves as a molecular ruler by linking only “close-enough” pairs of
residues. Since the atoms of the cross-linker occupy physical space, the measurements
are greatly constrained. We assume here that the cross-linker is energetically excluded



Input :
• Polyhedral protein surfaceS, representing the
boundary of the body from which the cross-linker is
excluded.
Let Sint denote the interior of the body.
• A setP of point cross-linking sitesonS, represent-
ing potentially cross-linked atoms.
Computation:
Cross-linking pathsbetween site pairspi, pj ∈ P and
exterior toSint.
Output :
For each pair of sitespi, pj ∈ P , cross-linking dis-
tanceD∗(i, j) as the minimum of the lengths of cross-
linking paths betweenpi andpj .
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Figure 2: Cross-link problem formulation and 2D schematic illustrating surfaceS, atoms, cross-linking
sitesp1 andp2, and cross-linking pathsQ (achieving cross-linking distance) andR.

from penetrating the protein interior. Since cross-linked residues (e.g.Lys ) must be
on or near the protein surface in order for the cross-linker to react with them, we rep-
resent cross-linked atoms (e.g.Lys Nζ) by points on a solvent accessible surface14.
For example, one could find the closest surface point, or a set of “close-enough” such
points, reachable from an atom without intersecting the van der Waals spheres of
other atoms. While the cross-linked atoms have considerable mobility in solution, we
assume that they are fixed for these algorithms. (Dynamics may be accounted for by
applying the algorithms to multiple conformations.) We also assume the cross-linker
is infinitely flexible. Alternatives will be addressed in a separate publication. With
this representation, cross-linkability is determined by testing whether or not the dis-
tance between cross-linking sites, measured exterior to the protein, is short enough
for the cross-linking molecule. Fig. 2 formalizes the problem and terminology.

The basic protein surface representation we employ is a triangulation of the sol-
vent accessible surface, where vertices indicate locations of a probe molecule’s center
(typically water) when in contact with the protein, and edges connect triangle vertices.
In order to allow for uncertainty in the atomic coordinates of models, we have found
it desirable to ignore part or all of the protein side chains. For example, Cα coordi-
nates, as employed by Young3, completely ignore side chains, while Cβ coordinates
ignore many atoms but retain the side chain direction. We have developed an iterative
“peeling” algorithm to remove exposed side chain atoms while leaving internal ones
intact so that no voids are introduced. The algorithm first identifies solvent accessible
residues (with solvent accessible area above some threshold), and then removes those



side chain atoms that are solvent accessible, starting from the end and moving towards
the Cα in subsequent iterations. This approach guarantees that, upon termination, all
and only the outer atoms are removed.

The problem of computing cross-linking distance requires finding the shortest
path between two points. This is a well-studied problem in graph theory and networks
(e.g. Dijkstra’s algorithm15). The complexity of geometric shortest path algorithms
(e.g. for robotics) grows rapidly with the dimension. Our cross-linking problem can
be viewed as finding the shortest obstacle-avoiding path, treating the protein body as
an obstacle. When the path is not constrained to a discrete graph, but can include
bends, the number of combinatorially different paths becomes exponential. Several
approximation algorithms for finding the shortest path have been developed16.

Here we specialize the shortest path problem to take into consideration the spe-
cial geometry of proteins. We obtain a hierarchy of novel lower- and upper-bound
algorithms for estimating cross-linking distance. Due to space constraints, we present
here only high-level pseudocode (Fig. 3), examples (Fig. 4), and sketches of some
correctness and complexity arguments.

2.2 Lower Bound Algorithms

The Euclidean distanced(pi, pj) between cross-linking sites provides an obvious
lower bound,Dline, on cross-linking distance. This straight-line approach does not
account for the model’s surface geometry, and provides relatively little information,
but has been employed for model discrimination by Younget al.3

A tighter bound is obtained by sampling cross-sections of the protein at points
along the segment connecting cross-link sites. Ourdisk algorithm(Figs. 3, 4a) com-
putes a lower boundDdisk by sampling a setC of points on thepipj segment and
in Sint, and then constructing a sequence of disks with centers inC perpendicular to
pipj and contained entirely within the bodyS ∪ Sint (they intersect the protein sur-
face only by their boundary circles). The convex hull of the union of the disks and
endpoints captures some of the essential surface geometry and provides for immedi-
ate computation of a lower bound path. The distance from one site to the other is
measured along a path in the intersection of the boundary of the convex hull with a
plane containing the segmentpipj .

Ddisk(pi, pj) depends on the sample pointsC, which we treat as fixed for the fol-
lowing arguments. For allpi, pj , Dline(pi, pj) ≤ Ddisk(pi, pj) because the length of
each path frompi topj is at least the Euclidean distance. For allpi, pj , Ddisk(pi, pj) ≤
D∗(pi, pj)) follows from the fact that if the length of a pathP from pi to pj is less
thanDdisk(pi, pj), thenP intersects the interior of at least one of the disks. Thus, if
there exists a cross-linking pathP∗ with |P∗| = D∗(pi, pj) < Ddisk(pi, pj), thenP∗
contains an interior point of at least one of the disks. By construction, each interior



DiskDistance(S, pi, pj)
C ← a set of sample points on[pi, pj ] in Sint

D ← {(d(c, pi), r) | c ∈ C, r = min {d(c, p) | p ∈ S, pipj ⊥ cp}}
b← (0, 0); e← (d(pi, pj), 0)
H ← vertices of convex hull ofD ∪ {b, e}, sorted fromb to e
return

∑|H|−1
p=0 d(Hp,Hp+1)

PlaneDistance(S, pi, pj)
C ← a set of sample points on[pi, pj ] in Sint

Θ← a set of sample plane normals not perpendicular topipj
returnmaxc∈C (maxθ∈Θ (min {d(pi, p) + d(p, pj) | p ∈ S ∩ plane(c, θ)}))

ShortcutDistance(S, pi, pj)
P ← a set of sample paths on graph ofS, from pi to pj
for eachP = 〈pi = v1, v2, . . . , vn = pj〉 ∈ P
GP ← (V,E) : V = {v1, . . . , vn}, E = {{vk, vl} | vkvl ∩ Sint = ∅}
dP ← length of shortestpi to pj path onGP

returnminP∈P dP

VisibilityDistance(S, pi, pj)
G← (V,E) : V = vertices of, E = {{vk, vl} | vkvl ∩ Sint = ∅}
return length of shortestpi to pj path onG

Figure 3: Cross-linking distance bounding algorithms.

point of each of the disks belongs toSint, soP∗ intersectsSint, a contradiction.
The complexity of the disk algorithm depends on the implementation of the var-

ious geometric tests. Selecting sample points requires testing inside/outside of the
polyhedral surface, and determining disk radii requires finding distances to surface
points on the perpendicular. We employ a straightforward inside/outside test count-
ing the number of intersections of a ray from the sample point with the triangles of
the protein surface, requiring totalO(CT ) time, whereT is the set of triangles of
S. We compute disk radii by first sorting surface vertices in order along the segment
pipj , and then for each sample point, using binary search to find vertices of triangles
that potentially intersect the disk at the sample point. This requires output-sensitive
timeO(CTC log T ), whereTC is the set of triangles found by the search. We note
that if a very finely sampled set of points is desired (trading off increased complexity
for increased accuracy), a plane sweep algorithm could be employed, keeping track
of surface triangles intersecting the current plane and iterating by vertices in order of
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Figure 4: 2D schematics and examples on protein FGF-2 for (a) disk, (b) plane, and (c) shortcut algorithms.

their projections ontopipj .
A complementary lower bound,Dplane, considers single cross-sections at mul-

tiple angles and positions. Ourplane algorithm(Figs. 3, 4b) employs this idea to
compute a lower boundDplane by finding, at each sample point and each admissible
plane orientation, the shortest path from one cross-link site to the other via a point
on the intersection of the plane and the protein surface. The longest such path deter-
mines the lower bound. Correctness of the plane algorithm follows from the fact that
the cross-linking path must pass through each such plane without intersectingSint.

The complexity analysis for the plane algorithm is similar to that for the disk al-
gorithm. The disk algorithm considers the sample points simultaneously, at a uniform
cross-section angle, while the plane algorithm considers the sample points indepen-
dently, at variable angles. Both the lower bounds and the computational complexity of
these algorithms depend not only onS, pi, pj , but also on the sample points (and for
plane, sample normal directions). The two degrees of freedom sampled for the plane
orientations result in more intersection tests than are required for the disk algorithm.

2.3 Upper Bound Algorithms

An immediate upper bound on the cross-linking distance is obtained by taking the
convex hull of the protein surface, finding paths outsideSint from the cross-linking
sites to representative points on the surface of the hull, and finding shortest paths
on the hull surface between these points. The correctness of the upper boundDhull

computed by thishull algorithm follows immediately, since the hull is exterior to the
protein. Dhull depends on the paths from the sites to the hull surface, and is useful
when the computation of these paths is easy (e.g. a line segment not intersecting
Sint can be identified). By applying Chen and Han’s17 single-source shortest-paths



algorithm for polyhedral surfaces, the complexity for a single sitepi to all otherpj ∈
P isO(V 2), whereV is the set of hull vertices.

The convex hull approach takes “shortcuts” across the mouth of concavities by
traversing the hull of the protein, but can miss shortcuts through the concavities. A
complementary approach is to start with a sample of paths on the protein surface,
rather than on the hull, and then take shortcuts where possible to reduce the lengths of
these paths. More precisely, a shortcut of a path replaces the subsequence of vertices
〈pk, pk+1, . . . , pl〉 with the sequence〈pk, pl〉 when the segmentpkpl doesn’t intersect
Sint. We call such a pairpk, pl a visible pair. Ourshortcut algorithm(Figs. 3, 4c)
applies this approach to compute an upper boundDshortcut. Since initial paths are on
the surface and shortcuts do not penetrate the body, this is a correct upper bound.

The complexity of the shortcut algorithm depends on the approaches to generat-
ing paths, computing visibility, and selecting shortcuts. Our current implementation
generates diverse paths by repeatedly performing a breadth-first search frompi to pj
(taking time linear in the number of surface vertices) and removing edges for path
vertices before the next iteration. Other approaches are also possible to achieve diver-
sity. We shortcut a path by an iterative greedy refinement algorithm, starting atpi and
at each iteration jumping to the vertex furthest in the path and still visible. Visibil-
ity can be tested by computing surface triangle intersections, as discussed regarding
the disk algorithm, yieldingO(TP 2) total time to shortcut a pathP . An alternate
approach that we are exploring is to test intersection of a segment with each of the
protein atom spheres, using an atomic radius expanded by that of the solvent. In
either case, efficient data structures could reduce the number of triangles tested. Dijk-
stra’s single-source shortest path algorithm15 could be employed instead of the greedy
shortcutting, requiringO(TP 2) time to guarantee optimal shortcutting. We find that
in practice the greedy approach usually makes substantial progress per iteration and
is closer to linear than quadratic in path length.

Rather than considering shortcuts on a few sample paths, we can compute, at the
cost of complexity, a complete visibility graph for the protein surface. A visibility
graph18 indicates all visible pairs of vertices. Given a visibility graph, we can apply
standard shortest paths algorithms (e.g. Dijkstra’s algorithm15). Our visibility algo-
rithm (Fig. 3) uses this approach to compute an upper boundDvisibility. As with the
shortcut algorithm, correctness as an upper bound is immediate.

A straightforward construction of the visibility graph, using the techniques men-
tioned above for shortcutting, requiresO(TV 2) time, whereT andV are respectively
the set of triangles and vertices ofS. This preprocessing is used for all cross-linking
site pairs; Dijkstra’s algorithm then requires additionalO(V 2) time for each site.



2.4 Protein Model Discrimination

In order to discriminate among a set of predicted protein models, we must test for
each of them the feasibility of the distances for all observed cross-links. We note that
less information can be gained from the absence of evidence for a cross-link under a
bottom-up mass spectrometry approach, since several factors other than cross-linking
distance can contribute to the absence. More powerful reasoning from negative ev-
idence will be possible in future work, particularly following the application of top-
down mass spectrometry for cross-linking analysis4.

When employed with observed cross-links, lower and upper bounds provide com-
plementary information for model discrimination. A lower bound can provide evi-
dence against a model, when the estimated distance for an observed cross-link ex-
ceeds the expectation for the cross-linker. An upper bound can provide evidence for
a model, when the estimated distance for an observed cross-link is less than the max-
imum distance. We adopt a simple strategy assuming cross-links are independent and
sum their scores:+1 when an upper bound is satisfied,−1 when a lower bound is
violated, and0 when neither holds. (It is impossible for both to hold.)

3 Results

We have tested the performance of our algorithms for model selection with both pub-
lished experimental and simulated data. Fibroblast growth factor (FGF-2) is the pri-
mary target because of available data3 and structure (PDB id 4FGF). Competing
models were obtained for the published template structures3 via the protein fold-
recognition meta-server19; two of the models are of the same fold (β trefoil) as 4FGF.
TheLys -specific cross-linker BS3 was used. To further demonstrate the utility of our
approach, we chose two CASP420 targets with many high-quality models: deoxyri-
bonucleoside kinase (PDB id 1J90) andα-catenin (PDB id 1L7C).

We applied our algorithms, using Nζ , Cγ , Cβ , or Cα atoms (with surfaces appro-
priately peeled), and found the Cβ to provide the best results. The Cα straight-line
measurement of Younget al.3 provides a control, although we could not exactly repro-
duce their model discrimination results (presumably due to differences in the details
of the protein models).

Visualizations like those in Fig. 4 provide evidence of the ability of our algo-
rithms to better approximate cross-linking distance. To quantitatively characterize
discriminatory power, we computed, for each distance between 1 and 45Å, the num-
ber of possibleLys pairs in 4FGF whose length exceeds the threshold and compared
the number for experimentally identified cross-links (to be maximized) and unidenti-
fied ones (to be minimized). Greater difference between these numbers at a threshold
indicates better abstraction of structural features and enhanced ability of the method
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Figure 5: Comparison of cross-linking distances for (left) Cα straight-line, (middle) Cβ disk, and (right)
Cβ plane methods. Thex-axis indicates a distance and they-axis the number of experimentally-identified
(blue lower line; 18 maximum) and not (red upper line; 48 maximum) cross-links exceeding that threshold.

employed to separate identified from unidentified for a cross-linker of that length.
Fig. 5 compares the straight-line distance against two of our lower bound methods.
The area between the curves (summing the count difference over the range) is 641
for Cα straight-line, 826 for Cβ disk, and 887 for Cβ plane, demonstrating the more
informative bounds provided by our algorithms.

In model discrimination, Younget al.3 employ a maximum value of 24̊A for
feasible cross-linking distance; we use the same threshold for testing both upper and
lower bounds. This value accounts for the BS3 length (11.4Å), the distance from the
reactive Nζ to the representative cross-linking site, and a small amount of uncertainty.
Fig. 5 shows that some of the experimentally-determined cross-links have distances
exceeding even this threshold (e.g.Ddisk(Lys21 ,Lys125 ) is 29.5Å). These large
distances were confirmed visually. Possible explanations include experimental errors,
artificial distortion of the protein, or extensive natural flexibility. Artificial distortion
(e.g. by partial denaturation due to multiple cross-links), may be alleviated by better
choice of experimental conditions. The work of Falke21 suggests it is possible to ob-
tain cross-links more than 10̊A longer than expected, in mobile situations, although
the rate of cross-linking falls off by orders of magnitude. To study such flexibility, we
intend to apply our algorithms to multiple frames of a molecular dynamics simulation,
boosting the need to trade off efficiency and tightness of bound. We note that infre-
quent conformations might in general be detected rarely by mass spectrometry, and
thus could be treated as noise in a probabilistic analysis. The cross-link experiment
could also be altered to exploit differences in rates.

We further quantified discriminatory power by comparing differences in esti-
mated cross-link distances between models. Treat the set of cross-linking distances
for a model as a point iǹ-dimensional space (for̀ cross-links), and compute dif-
ferences (Euclidean distance) between these points. A larger difference is indicative
of greater discriminatory power, since the cross-linker’s fixed length is more likely
to separate the points on some dimension (cross-link). We compared our disk Cβ



algorithm to the control straight-line Cα, and found that our algorithm yields an av-
erage of 0.2–0.3̊A larger average differences for both experimentally observed and
all possible cross-links, when either comparing 4FGF to all other models, 4FGF to
non-β-trefoil models, or each model to all other models.

We tested our methods by ranking the correct structure vs. the models, scoring
with either the Young approach of counting violations (straight-line distance> 24
Å) or our discrimination method combining disk (lower bound) and shortcut (up-
per bound) distances. We analyzed the effects of cross-link sparsity and noise by
choosing datasets consisting of a random subset of the identified plus a random set of
the unidentified cross-links. Fig. 6 illustrates the average rank of the correct structure
over 100 such simulations for each of several different numbers of observed and unob-
served cross-links. (We apply the conservative choice of ranking the correct structure
worst in case of a tie.) With smaller subsets of identified cross-links, the two methods
are comparable. Larger subsets tend to include more cross-links labeled infeasible by
the disk bound, and our method degrades.

Finally, we analyzed model discriminability by varying the number of simulated
“good” and “bad” cross-links and finding the average rank of the correct structure
as above. For tests with our method, good cross-links were chosen from those with
shortcut Cβ distance below 24̊A in the correct structure, and bad cross-links from
those with disk Cβ distance greater than 24̊A. Similarly, good and bad cross-links
for the straight-line method were chosen using the 24Å threshold. Fig. 7 shows
results for FGF using each method to analyze the corresponding simulated dataset.
These results test discriminability and robustness to sparsity and noise — over many
different sets of feasible/infeasible cross-links, our distances distinguish the correct
structure from the models better than do straight-line distances. Fig. 8 shows our
results on the CASP4 targets; straight-line is again inferior (not shown).

4 Conclusions

We have developed and applied a set of lower- and upper-bound algorithms for es-
timating cross-linking distance. The algorithms trade off complexity and tightness
of bound. We have shown that by taking into account protein surface geometry, our
algorithms provide better model discriminability, in terms of cross-link separability,
distance differences, and discrimination effectiveness. We illustrated the robustness
of our techniques by simulating sets of good and bad cross-link data. Our results
demonstrate that information from relatively rapid and inexpensive experiments per-
mit model discrimination in spite of sparse information and the presence of noise.

The current work can be further extended in several ways. Protein dynamics can
be taken into consideration. As more experimental data become available, better clas-
sifiers can be developed to apply distance estimates to model discrimination. While
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Figure 6: Discrimination using experimental data for FGF-2 with (a) straight-line Cα, (b) combined disk
and shortcut Cβ . Thex- andy-axes indicate number of cross-link pairs identified and unidentified, respec-
tively; thez-axis shows the average rank of the actual structure over 100 random subsets.
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Figure 7: Discriminability for FGF-2 with (a) straight-line Cα, (b) combined disk and shortcut Cβ . Thex-
andy-axes indicate number of good and bad cross-link pairs, respectively, chosen according to the same
methods; thez-axis shows the average rank of the actual structure over 100 random subsets.
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Figure 8: Discriminability, as in Fig. 7, with combined disk-shortcut Cβ using simulated data for (a)
deoxyribonucleoside kinase and (b)α-catenin models.



cross-links were considered independent here, a more complex framework would cap-
ture dependencies with respect to differential reactivity, competing cross-links, and so
forth. Our analysis can be used in planning experiments, e.g. proposing a cross-linker
of the best length or the substitution of particular residues to lysine.
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