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Recently, researchers have made some progress in using microarrays to validate
predicted exons in genome sequence and find new gene structures. However, cur-
rent methods rely on separately making threshold-based decisions on intensity
of expression, similarity of expression profiles, and arrangements of exons in the
genome. We have taken a Bayesian approach and developed GenRate, a genera-
tive model that accounts for both genome-wide expression data taken from multiple
conditions (e.g. tissues) and co-location and density of probes in DNA sequence
data. GenRate balances probabilistic evidence derived from different sources and
outputs scores (log-likelihoods) for each gene model, enabling the estimation of
false-positive and false-negative rates. The model has a number of local minima
that is exponential in the length of the DNA sequence data, so direct application
of the EM learning algorithm produces poor results. We describe a novel way of
parameterizing the model using examples from the data set, so that good solu-
tions are found using an efficient algorithm. We apply GenRate to a subset of
mouse genome-wide expression data that we have created, and discuss the statis-
tical significance of the genes found by GenRate. Three of the highest-ranking
gene structures found by GenRate, each containing thousands of bases from the
genome, are confirmed using RT-PCR experiments.

1 Introduction

The use of DNA microarrays for the discovery of expressed elements in genomes
is increasing with improvements in density, flexibility, and accessibility of the
technology. Two general strategies have emerged. In the first, candidate el-
ements (e.g. ORFs, genes, exons, RNAs) are identified computationally, and
each is represented one or a few times on the array 10,12,4. In the second, the
entire genome sequence is ”tiled”; for example, overlapping oligonucleotides en-
compassing both strands are printed on arrays, such that all possible expressed
sequences are represented 12,6,11,13. Both approaches, as well as independent
analyses by other methods 8,4 have indicated that a substantially higher pro-
portion of genomes are expressed than are currently annotated, underscoring
the shortcomings of current sequence-based gene prediction algorithms and
emphasizing the need for empirical analysis.

Microarrays do not inherently provide information regarding the length of
the RNA or DNA molecules detected, nor do they inherently reveal whether
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features designed to detect adjacent features on the chromosome are in fact
detecting the same transcript. Co-expression (i.e. co-detection) of adjacent
features can be taken as evidence supporting that the corresponding probes
are indeed detecting the same molecular species. However, mRNAs, which ac-
count for the largest proportion of transcribed sequence in a genome, present
a particular challenge in this paradigm. mRNAs are composed only of spliced
exons, often separated in the genome (and in the primary transcript) by thou-
sands to tens of thousands of bases of intronic sequence. Identifying the exons
that comprise individual transcripts from genome- or exon-tiling data is not
a trivial task, since falsely-predicted exons, overlapping features, transcript
variants, and poor-quality measurements can confound assumptions based on
simple correlation of magnitude or co-variation of expression.

We describe a generative model that jointly accounts for the stochastic na-
ture of the arrangement of exons in genomic DNA and the noise properties in
microarray data. The generative model, called GenRate, uses expression data
taken from multiple conditions, accounts for co-location statistics of probes in
DNA sequence data, and finds and scores gene structures. While the version
of GenRate described here does not model expression variability introduced by
alternative splicing, overlapping genes, and alternative transcription sites, in a
future paper we will describe an extension, which does account for these effects.

2 Microarray data
The microarray data are a subset of a full-genome data set to be described else-
where1. Briefly, exons were predicted from Repeat-masked mouse draft genome
sequence (Build 28) using five different exon-prediction programs. (While this
data is based on putative exons, GenRate can be applied to any sequence-
based expression data set, including genome tiling data.) A total of 63,041
non-overlapping exons were contained on chromosome 4. One 60-mer oligonu-
cleotide probe for each exon was selected using conventional procedures, such
that its binding free energy for the corresponding putative exon was as low as
possible compared to its binding free energy with sequence elsewhere in the
genome, taking into account other constraints on probe design. (For simplicity,
we assume each probe has a unique position in the genome.) Arrays designs
were submitted to Agilent Technologies (Palo Alto, California) for array pro-
duction. Twelve diverse samples were hybridized to the arrays, each consisting
of a pool of cDNA from poly-A selected mRNA from mouse tissues (37 tissues
total were represented). The pools were designed to maximize the diversity
of genes expressed between the pools, without diluting them beyond detection
limits 2. Scanned microarray images were quantitated with GenePix (Axon
Instruments), complex noise structures (spatial trends, blobs, smudges) were
removed from the images using our spatial detrending algorithm3, and each set
of 12 pool-specific images was calibrated using the VSN algorithm 15 (using a
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Figure 1: A small fraction of our data set, which consists of an expression measurement
for each of 12 mouse tissue pools and 63,041 60-mer probes for putative exons arranged
according to the order in Build 28 of the genome.

set of one hundred ”housekeeping” genes represented on every slide). For each
of the 63,041 probes, the 12 values were then normalized to have intensities
ranging from 0 to 1.

Fig. 1 shows a portion of the data from chromosome 4. Because the probes
are arranged according to their order in the genome, a consecutive sequence of
similar expression profiles (columns) provides evidence of co-regulation of the
corresponding putative exons, and thus provides evidence of a gene structure.
For example, probes 4 to 14 have similar expression profiles (with high expres-
sion in the 10th tissue pool), which provides evidence of a gene. However, such
visually obvious examples are relatively rare. More common examples that
GenRate finds include complex gap patterns and noisy, albeit statistically sig-
nificant patterns that are hard to identify visually.

3 Previous Work
Heuristics that group nearby putative exons using intensity of expression or co-
regulation across experimental conditions can be used to approach this problem
12,6,13. In 6, a dense activity map of RNA transcription is used to verify pu-
tative exons. A disadvantage of this approach is that it cannot detect weakly-
expressed exons that have a large biological impact, due to high translational
efficiency. In addition to detecting high levels of transcriptional activity, our
approach finds correspondences in patterns of activation across multiple tissue
pools, so even weakly-expressed exons that have tissue-dependent activity can
be detected.

In 12, correlations between the expression patterns of nearby probes are
used to merge probes into putative gene structures. A merge step takes place
if the correlation exceeds 0.5, but not if the number of non-merged probes be-
tween the two candidate probes is greater than 5. Our approach differs from
this approach in two ways. First, our algorithm doesn’t make a sequence of
threshold-based decisions, but instead uses distributions over gene lengths, gap
lengths and probe similarity to jointly make decisions and compute maximum a



posteriori gene structures. So, for example, extraordinarily similar expression
profiles may be merged even if there is a large gap between the corresponding
exon. Second, since GenRate uses a principled generative probability model,
decisions on gene structures are based on an automatic comparison of the like-
lihood of seeing the gene structure under the gene model and the background
expression profile model. So, if the profiles for two probes are quite unusual
compared to typical profiles in the data (i.e., they have unusual patterns of
tissue-specificity), the two probes may be merged into a gene structure even if
their expression profiles are only weakly similar.

In the above previous work, it is not clear how to properly balance evidence
provided by similarity of expression profiles with that provided by sequence
features (e.g. gene length, intron lengths, intra-gene gap length). Recently
researchers have successfully shown that complex probability models can be
used effectively to combine different sources of information in genomics data
(c.f. 14). In a probability model, combining different sources of information
is realized by a computationally efficient application of Bayes rule to combine
sources of information in a probabilistic manner.

4 Generative Probability Model
GenRate can be applied to any genome-based expression data set, since it
works on the assumption that the expression data is arranged in order on the
genome. In our model, the probes are indexed by i and the probes are ordered
according to their locations in the genome. Denote the expression vector for
probe i by xi, which contains the levels of expression of probe i across K
experimental conditions. In our data, there are K = 12 tissue pools. Since
probe i is selected from putative exon sequence data, it may in fact correspond
to a false exon either between genes or within a gene. ei is a binary variable,
where ei = 1 indicates a true exon and ei = 0 indicates a false exon. If probe i
is within a gene, the remaining length of the gene (in probes) including probe
i is `i. `i = 0 indicates that probe i does not belong to the gene.

To model the relationships between the variables {`i} and {ei}, we com-
puted statistics using confirmed exons derived from four cDNA and EST
databases: Refseq, Fantom II, Unigene, and Ensembl. The database sequences
were mapped to Build 28 of the mouse chromosome using BLAT 9 and only
unique mappings with greater than 95% coverage and greater than 90% identity
were retained. Probes whose chromosomal location fell within the boundaries
of a mapped exon were taken to be confirmed. The genes in these databases
are obviously subject to selection bias, so statistics based on these genes will
be biased, an effect we ignore for now.

We model the lengths of genes using a geometric distribution, with param-
eter λ = 0.05, which was estimated using cDNA genes. This approximation
is accurate for lengths greater than 5. For shorter lengths, the accuracy of



the prior is not critical, because the prior probability of starting a gene (see
the next paragraph) dominates. Importantly, there is a significant computa-
tional advantage in using the memory-less geometric distribution. Using cDNA
genes to select the length prior will introduce a bias, so other priors should be
investigated, but in this paper we report results using the geometric prior.

The “control knob” that we use to vary the number of genes that GenRate
finds is κ, the a priori probability of starting a gene at an arbitrarily chosen
position. Combining the above distributions, and recalling that `i = 0 indicates
an inter-gene region, we have

P (`i = 0|`i−1 = 0 or 1) = 1− κ

P (`i|`i−1 = 0 or 1) = κ · 0.05 exp(−0.05`i), if `i > 0
P (`i = n− 1|`i−1 = n) = 1, if `i−1 > 1. (1)

The expression “`i−1 = 0 or 1” occurs because a new gene may start immedi-
ately after the previous gene has finished.

From the data on confirmed genes, we found that within genes, each probe
has a probability of 0.7 corresponding to a correct predicted exon. We assume
that within genes, putative exons are true exons independently and with prob-
ability

P (ei = 1|`i > 0) = ε, (2)

where from the above data we estimated ε = 0.7. Although we have not verified
this assumption directly using the data, we find that the results obtained using
this assumption give high sensitivity with high specificity (see below). Between
genes, all putative exons are false, so P (ei = 1|`i = 0) = 0.

The similarity between the expression profiles belonging to the same gene
is accounted for by a gene-specific prototype expression vector. While this
model does not properly take into account effects introduced by alternative
splicing, overlapping genes and alternative transcription sites, as shown in the
experimental section, this model is sufficient for finding a large number of new
exons and genes. In the gene model, each gene has a unique, hidden index
variable and the prototype expression vector for gene j is µj . We denote
the index of the gene at probe i by ci. Different probes may have different
sensitivities (for a variety of reasons, including free energy of binding), so
we assume that each expression profile belonging to a gene is similar to a
scaled version of the prototype. Since probe sensitivity is not tissue-specific,
we use the same scaling factor for all K tissues. Also, different probes will
be offset by different amounts (e.g., due to different average amounts of cross-
hybridization), so we include a tissue-independent additive variable for each
probe. Assuming the expression profile xi for a true exon (ei = 1) is equal to



the corresponding prototype µci
, plus isotropic Gaussian noise, we have

P (xi|e = 1, ci, {µj}, ai) =
K∏

k=1

1√
2πa2

i3

exp
(−(xik − [ai1µcik + ai2])2/2a2

i3

)
, (3)

where ai1, ai2 and ai3 are the scale, offset and isotropic noise variance for
probe i, collectively referred to as ai. In a priori distribution P (ai) over these
variables, the scale is assumed to be uniformly distributed in [1/30, 30], which
corresponds to a liberal assumption about the range of sensitivities of the
probes. The offsets are assumed to be uniform in [−0.5, 0.5] and the variance
is assumed to be uniform in [0, 1]. These assumptions are naive and require
further research, but we find they are sufficient for obtaining good results.

False exons are modelled using a background expression profile distribu-
tion,

P (xi|ei = 0, ci, ai, {µj}) = P0(xi) (4)

Since the background distribution doesn’t depend on ci, ai or {µ}, we also
write it as P (xi|e = 0). We obtained values for these probability densities by
training a mixture of 100 Gaussians on the entire, unordered set of expression
profiles, and including a component that is uniform over the range of expression
profiles.

The structural relationships between the variables described above are in-
dicated by the Bayesian network in Fig. 2. Often, when drawing Bayesian
networks, the prototypes are considered as parameters and not shown. We
include the prototypes in the Bayesian network to show that they induce long-
range dependencies in the GenRate model. For example, if all of the prototypes
are used to model gene structures in the first part of the chromosome, none
will be left to model the remainder of the chromosome. So, during learning,
prototypes must somehow be distributed in a fair fashion across the chromo-
some.

Combining the structure of the Bayesian network with the conditional
distributions described above, we have a joint distribution,

P ({xi}, {ai}, {ei}, {ci}, {`i}, {µj}) = (5)
N∏

i=1

P (xi|ei, ci, ai, {µj})P (ai)P (ei|`i)P (ci|ci−1, `i−1)P (`i|`i−1)
G∏

j=1

P (µj),

where in this expression P (c1|c0, `0) and P (`1|`0) are equal to P (`1) and P (c1).
Most of the components in the above model are described above. As for the
gene indices, ci, we assume that ci is ordered, starting at 1: P (ci = 1) = 1.
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Figure 2: A Bayesian network showing the variables and parameters in GenRate.

Whenever a gene terminates, ci is incremented in anticipation of modelling the
next gene, so P (ci = n|ci−1 = n, `i−1) = 1 if `i−1 > 1 and P (ci = n + 1|ci−1 =
n, `i−1) = 1 if `i−1 = 1. We assume the prototypes are distributed according
to the background model: P (µj) = P0(µj).

5 Inference and Learning
Exact computation of the marginal probabilities or the MAP configuration in
the above model is computationally intractable. A standard way of coping
with this intractability in this form of model is to use the EM algorithm 16.
The EM algorithm fails spectacularly on this problem. This is not surprising,
since the EM algorithm in long hidden Markov models is known to find poor
local minima caused by suboptimal parsings of the long data sequence 19. In
the GenRate model, the EM algorithm gets stuck in local minima where pro-
totypes are used to model weakly-evidenced gene patterns in one part of the
chromosome, at the cost of not modelling strongly-evidenced gene patterns in
another part of the chromosome.

To circumvent the problem of very poor local minima, we devised a novel
scheme where the parameters (µ’s) are represented using examples from the
data set. An additional advantage of this approach is that since learning
consists of identifying nearby profiles as prototypes, learning can be performed
in a single forward-backward pass (Viterbi pass).

The scheme is based on the fact that the model for each xi is derived from
nearby expression patterns, corresponding to nearby exons in the genomic



DNA. So, if xi is an exon, there ought to be another x nearby that is a good
representative of the profile for the gene. To accomplish this we replace each
variables ci with a variable ri, which indicates the distance, in indices, from
xi to the prototype xj for the gene that xi is in, i.e. ri = j − i. For example,
ri = −1 indicates that the profile immediately preceding xi is the prototype
for the gene to which xi belongs. The new conditional distribution for xi is

Pe(xi|ei = 1, ri,xi+ri
, ai) =

{∏K
k=1

1√
2πa2

i3

exp
(−(xik − [ai1xi+ri,k + ai2])2/2a2

i3

)
, if ri 6= 0

P (xi|ei = 1, ri,xi+ri
, ai) = P (xi|e = 0), if ri = 0.

(6)

Here, ri acts as a switch to select the parent of xi. To ensure the ri’s take on
appropriate values, the conditional distribution for ri is given by P (ri = n −
1|ri−1 = n, `i−1, `i) = 1 if `i−1 > 1 and P (ri|ri−1, `i−1, `i) = Unif(0, . . . , `i) if
`i−1 = 1. This ensures that when a new gene starts, ri will be drawn randomly
from within the length of the gene and that ri will decrement throughout the
duration of the new gene. This model can be described using a factor graph
18.

The above model is a product of terms that has a Markov chain structure
with tractable state complexity, so the forward-backward algorithm or Viterbi
algorithm can be used for exact inference. Some readers may be concerned
about the presence of the continuous variables ai. However, these variables
do not have parents, so they can be integrated or maximized for each config-
uration of the (discrete) variables in their Markov blankets (ri and ei). We
use the Viterbi algorithm to find the MAP configuration of the model. Our
MATLAB implementation of GenRate takes approximately 3 minutes to pro-
cess the 63,041 probes and 12 tissue pools in chromosome 4, with a restriction
on the gene length of W = 200 probes.

The only free parameter in the model is κ, which sets the statistical sig-
nificance of the genes found by GenRate. The score of each gene found by
GenRate can be computed by taking the log-ratio of the probability under
GenRate of the MAP path through the gene and the probability of the path
corresponding to non-gene probes (intra-gene probes).

6 Experimental Results
Fig. 3 shows a snapshot of the GenRate view screen that contains interesting
examples. After we set the probability of starting an exon at an arbitrary
position (κ) to achieve a false positive rate of 1%, as described below, GenRate
found 16,082 exons in chromosome 4, comprising 1,477 genes.

To determine how many of these predictions are new, we extracted con-
firmed genes derived from four cDNA and EST databases: Refseq, Fantom II,



Figure 3: The GenRate MATLAB program shows the genomic expression data and predicted
gene structures for a given false positive rate. Genes found by GenRate and genes in cDNA
databases (Ensembl, Fantom II, RefSeq, Unigene), are identified by shaded blocks, each of
which indicates that the corresponding exon is included in the gene. Each box at the bottom
of the screen corresponds to a predicted gene and contains the normalized profiles for exons
determined to be part of the gene. The corresponding raw profiles are connected to the box
by lines. The rank of each gene is printed below the corresponding box.

Unigene, and Ensembl. The database sequences were mapped to Build 28 of
the mouse chromosome using BLAT and only unique mappings with greater
than 95% coverage and greater than 90% identity were retained. Probes whose
chromosomal location fell within the boundaries of a mapped exon were taken
to be confirmed.

The following table shows the number of new genes found by GenRate,
relative to the 4 databases and the combined set of databases. Different levels
of strictness are used to label each gene as new, ranging from 100% to 25%
of the predicted exons as “unconfirmed” by these four cDNA databases. Note
that 783 of the 1,477 genes found by GenRate have at least 50% exon overlap
with the confirmed genes in all cDNA databases, but that 427 of the genes
found by GenRate have no exon overlap with the confirmed genes in all cDNA
databases. In the set of genes that are completely new, the minimum, median
and maximum gene lengths (in number of exons) are 2, 15 and 66.
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Figure 4: (a) RT-PCR results for three new genes identified by GenRate. The vertical
axis corresponds to the weight of the RT-PCR product and the darkness of each band
corresponds to the amount of product with that weight. (b) Fraction of predicted positives
and positives confirmed by cDNA databases, versus fraction of positives predicted using
randomly permuted data (false positives).

Number of new genes predicted by GenRate
EST/cDNA Minimum fraction of exons in each gene that are new
Database 100% 75% 50% 25%
Ensembl 1030 1157 1224 1284
Fantom II 606 776 902 1032
RefSeq 793 853 929 1032
Unigene 620 724 813 944
All 427 557 656 783

We are currently performing an extensive set of RT-PCR and Northern
blotting experiments to verify the tissue-specific expression and exon structure
of novel genes discovered by GenRate. Results on the first three genes tested
(selected to have high scores and to overlap with no genes in the four cDNA
databases) are shown in Fig. 4a. The two PCR primers for each predicted gene
are from different exons separated by thousands of bases in the genome. For
each predicted gene, we selected 1 tissue pool with high microarray expression,
and 1 tissue pool with low expression. We included the ubiquitously-expressed
gene GAPDH to ensure proper RT-PCR amplification. The RT-PCR results
confirm the predicted genes and their tissue-specific expression.

An important motivation for approaching this problem using a probability
model is that the model should be capable of balancing probabilistic evidence
provided by the expression data and the genomic exon arrangements. For



example, there are several expression profiles that occur frequently in the data
(in particular, profiles where activity in a single tissue pool dominates). If two
of these profiles are found adjacent to each other in the data, should they be
labeled as a gene? Obviously not, since this event occurs with high probability,
even if the putative exons are arranged in random order.

To test the statistical significance of the results obtained by GenRate, we
constructed a new version of the chromosome 4 data set, where the columns
(putative exons) are placed in random order. We then applied GenRate to the
permuted data and compared the results to the results obtained on the original
data, for varying levels of κ. Fig. 4b summarizes the results. The x-axis shows
the fraction of the 63,041 probes that are labeled as exons in the permuted
data. These can be viewed as false positives, since without knowing the order
of the putative exons in the genome, we do not expect to be able to find gene
structures with any statistical significance.

The plot shows two curves. The dashed curve is the fraction of all 63,041
probes that are labeled by GenRate as exons in the original (unpermuted) data.
The solid curve is the fraction of exons from known genes (see above) that are
labeled by GenRate as exons in the original (unpermuted) data. These curves
demonstrate that GenRate is able to find predicted gene structures and gene
structures compatible with cDNA databases with high statistical significance.
For example, at a false positive rate of 1%, 25% of the probes in the original
data are labeled as exons, and 54% of the probes in known cDNAs are cor-
rectly labeled as exons. This is a reasonable estimate of the proportion of genes
that are expected to be expressed in the tissue pools represented in the data set.

7 Summary and future directions

GenRate is the first generative model that combines a model of genomic ar-
rangement of putative exons with a model of expression patterns, for the pur-
pose of exon and gene discovery. Applied to our microarray data set, GenRate
identifies many new genes with a very low false-positive rate. Using RT-PCR
to verify 3 new genes predicted by GenRate, we found that all 3 predicted
exon sequences (each containing thousands of bases from the genome), are
indeed transcriptionally active. We are developing an extension to GenRate,
which accounts for alternative splicing, overlapping genes and alternative tran-
scription sites, and applying it to our genome-wide data set of over 12,000,000
measurements. GenRate can be applied to any sequence-based data set, such
as whole-genome tiling data.
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