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A protein’s function is closely linked to its subcellular localization. Use of Gene
Ontology (GO) molecular function terms to extend sequence-based subcellular lo-
calization prediction has been previously shown to improve predictive performance.

Here, we explore directly the relationship between GO function annotations and
localization information, identifying both highly predictive single terms, and terms
with large information gain with respect to location. The results identify a num-

ber of predictive and informative GO terms with respect to subcellular location,
particularly nucleus, extracellular space, membrane, mitochondrion, endoplasmic
reticulum and Golgi. There are several clear examples illustrating why the ad-

dition of function information provides additional predictive power over sequence
alone. Other interesting phenomena can also be seen in the results. Most predic-

tive or informative terms are imperfect, and incorrect prediction may often call

out significant biological phenomena. Finally, these results may be useful in the
GO annotation process.

1. Introduction

High-throughput sequencing technology has heightened the need for auto-
matic annotation of uncharacterized genes and gene products. As part of
this annotation process, a number of systems have been developed that
support automated prediction of subcellular localization of proteins. Most
such methods are sequence-based, that is, they predict location based on
features calculated from the amino acid sequence of a protein, such as de-
gree of match to motifs constructed from short N-terminal signal peptides,
or global amino acid composition. Recently, Chou & Cai3 and Gardy et
al.7 have demonstrated that the addition of protein function information
improves the performance of pure sequence-based predictions of protein
subcellular localization. Chou & Cai reported the best performing predic-
tive system, as measured on a carefully constructed gold standard, used
a hybrid input containing both sequence patterns and protein annotations



based on the molecular function terms from the Gene Ontology (GO)1.
Computational methods to predict subcellular localization are a crucial

bioinformatic task5. Several broad classes of predictive information have
been brought to bear on this task. One class of informative information is
the global amino acid composition of the protein. For example, NNPSL13

used neural networks with amino acid composition inputs, and SubLoc8

took a similar approach using support vector machines as the induction
method. A second class of predictive information is the presence of signal
peptides, which are short sub-sequences of approximately 15 to 60 amino
acids shown to play functional role in protein transport. Various compu-
tational methods have been used to characterize and recognize instances
of these signals, and then use them to predict specific cell locations. An
example of this approach is TargetP6. A third class of predictive infor-
mation arises from protein homology, which as the breadth of annotation
grows, becomes increasingly useful. The recent LOCkey11 system offered
an unusual twist on homology-based approaches, identifying putatively ho-
mologous proteins by sequence similarity search, using natural language
processing technology to extract textual features from the annotations of
the homologs, and using those features as inputs to an inductive classi-
fier for prediction of location. Approaches that combine multiple classes of
predictive information, such as Grady et al.’s and Chou & Cai’s actually
have a long history in this area, going back more than a decade to Nakai
& Kanehisa’s classic PSORT system12.

Although the Chou & Cai results demonstrate the utility of inclusion of
GO annotations in the set of information used for location prediction, the
direct relationship between macromolecular function terms in the GO and
subcellular location has, to our knowledge, not been previously explored.
The main motivation for exploring this relationship is to understand the
nature of the contribution that molecular function (and its existing anno-
tation) makes to the prediction of subcellular localization; however, there
are other aspects of this work that are also significant. As described below,
there is a linkage in the GO annotation process between molecular function
annotation and subcellular localization annotation; the assessment made in
this study may be useful in improving that process. Also, most predictive or
informative function terms are imperfectly discriminating; the minority (or
mispredicted) localizations often call out significant biological phenomena.



2. Methods

2.1. Source of annotations

The GO provides controlled vocabularies in three broad categories: molec-
ular function, biological process, and subcellular localization. Only protein
annotations from the GO molecular function category are included in this
analysis, and they are compared with two distinct subcellular localization
gold standards. One localization dataset is derived from annotations from
the SwissProt database2, the other from a recent hand-curated set described
in Nair & Rost11.

We did not use the GO subcellular localization annotations for this
work. The reason is that the GO location and function are annotated in
an intentionally dependent manner. GOA curation guidelines specify that
subcellular location annotations can be inferred by the curator directly from
molecular function information when the curator cannot find any relevant
evidence in the biological literature. The assessment of the true degree of
correlation between molecular function and subcellular localization would
be confounded by this practice if we used GOA’s localization data. The
use of the independently curated annotations for localization disentangles
the annotation process from any actual biological relationship.

The GO biological process category was not assessed for relationship to
location because it is intentionally designed to integrate sets of molecular
functions. For example, the process of signal transduction inherently in-
volves signals from the extracellular space interacting with receptors at the
membrane, which in turn modify secondary messengers in the cytoplasm,
which often end up causing changes in transcription occurring in the nu-
cleus. While each of these activities is carried out by molecules which can
reasonably be expected to have their own function annotation and location,
the process itself cannot be said to have a subcellular location.

2.2. Localization-specific GO Terms

The GO molecular function terms and relationships used in this analysis
were taken from the molecular function ontology flat file on the GO websitea

from May 05 2004, version 1.28. Protein annotations for both SwissProt
generated localization (the SUBCELLULAR LOCALIZATION field in CC
lines) and GO terms (GO field in DR lines) were taken from SwissProt

ahttp://www.geneontology.org/



release 42. Only GO terms that appeared in the molecular function flat file
were used in the analysis.

Note that both of the above-mentioned fields are optional, and many
proteins are missing one or the other field, or both. SwissProt release 42
includes 135,850 proteins; only 6,686 (∼ 5%) have relevant annotations
for both location and molecular function. Generally, the issue is lack of
coverage of GO annotations; for example, 3,655 proteins are annotated as
localized in the nucleus, but only 937 (∼ 25%) of those have GO molecular
function terms associated with them.

Certain subcellular localization is not well represented in SwissProt. For
example, almost no GO molecular function terms are associated with pro-
teins in chloroplast, which is an organelle typically found in green plants.
Although GO annotation for plants is underway by several model organism
database groups, particularly for Arabidopsis thaliana and the agricultur-
ally important cereal grasses, these annotations are not yet very prevalent
in SwissProt, where the priority for the ongoing GO annotation effort is on
human proteins.

We took two different approaches to identifying molecular function
terms that are associated with localization. The first approach calculated
the proportion of occurrences of each molecular function term to the most
frequent location for that term and, separately, for the term and all of its
subtypes (“is-a” children in the GO DAG). Any term (or term and its sub-
types) that is associated with one location over a threshold proportion (set
here at 70%) is reported in Table 1.

In order to make this calculation efficient, this specific approach was
taken. Define the set of locations of interest to be L ≡ {nucleus, extracel-
lular space, membrane, mitochondrion, endoplasmic reticulum and Golgi}
and the set F to be all of the GO terms that are children of Molecular
Function.

• Initialize four accumulators for each combination of location (l ∈ L)
and function (f ∈ F ): accf,l, accf,∼l, accincl

f,l , accincl
f,∼l to zero.

• For each location l ∈ L, do

– Let Pl be the set of proteins annotated to have location l. For
each pl ∈ Pl, do

∗ Let Fpl
be the set of molecular function annotations asso-

ciated with the protein pl. For each fpl
∈ Fpl

, increment
accl,f .

– For each l and f such that accl,f > 0, let Pf,∼l be the set of



proteins annotated with function f but with a location other
than l. For each pf,∼l ∈ Pf,∼l, increment accf,∼l

• Beginning from the leaves of the GO DAG and working up is-a links
to the root node for the molecular function hierarchy, traverse each
f ∈ F and set accincl

f,l to be the sum of accf,l and the accfchild,l for
each child fchild of function node f. Similarly for accincl

f,∼l

• Use depth-first search starting from the root of the molecular
function DAG to identify the highest-level terms whose ratios
accf,l/(accf,l + accf,∼l) or accincl

f,l /(accincl
f,l + accincl

f,∼l) are greater
than threshold

Caching of partial results is used to avoid redundant calculations. The
approach avoids doing any work on the large portion of the proteins that
are not annotated in a way that is relevant to the particular calculation.

2.3. Identification of discriminative terms by information

gain

The informativeness of GO molecular function terms with respect to loca-
tion can also be quantified by information gain, a measure of the amount
of information (in bits) of that the knowledge of a feature (here, molec-
ular function) contributes to knowledge of the class of the entity (here,
location)10. An information gain of 1 means that knowledge of the molec-
ular function is a perfect predictor of location, and an information gain of
0 means that knowledge of the molecular function provides no information
regarding location.

In order to address concerns about the representativeness of the Swis-
sProt dataset, we did this test on a completely independent set of annota-
tions, that used by Nair & Rost11. This dataset classifies 1161 proteins into
10 different locations. These proteins are annotated with 207 different GO
molecular functions. The information gain of the presence or absence of
each molecular function term with respect to the distribution of locations
was calculated. Information gain calculated in this way does not indicate
which location is associated with a particular molecular function, or even
that a function is associated with a single location. The implication of pos-
itive information gain is that “purity” of the locations associated with a set
of proteins separated by the presence or absence of a particular function is
higher than would be expected from a random division into the same size
sets. This entropic measure has cleaner formal qualities, but is less directly
useful, than the more ad hoc first method.



3. Results

The results of the first method, the ad hoc generation of localization-
specific molecular function terms, found terms that either on their own
or including annotations from their descendent terms provided ≥ 70%
specificity for at least one of the 6 locations. Nineteen terms were
over threshold for nuclear localization: 52 for membrane, 16 for extra-
cellular, 2 for endoplasmic reticulum, 4 for mitochondrion, and 4 for
Golgi. A sample of the highest-scoring terms is shown in Table 1.
The complete set of results is available on a supplementary web site
http://compbio.uchsc.edu/Hunter lab/Zhiyong/psb2005.

Table 1. Selected highly discriminating terms (including children) for the six subcel-

lular localization derived from the search for location-specific terms in SwissProt.

Location Predictive GO Molecular Function terms

nucleus GO:0003676 Nucleic acid binding
GO:0008134 Transcription factor binding
GO:0030528 Transcription regulator activity

membrane GO:0004872 Receptor activity
GO:0015267 Channel/pore class transporter activity
GO:0008528 Peptide receptor activity, G-protein coupled

extracellular GO:0005125 Cytokine activity
GO:0030414 Protease inhibitor activity
GO:0005201 Extracellular matrix structural constituent

mitochondria GO:0015078 Hydrogen ion transporter activity
GO:0004738 Pyruvate dehydrogenase activity
GO:0003995 Acyl-CoA dehydrogenase activity
GO:0015290 Electrochemical potential-driven transporter activity

E.R. GO:0004497 Monooxygenase activity
GO:0016747 Transferase activity, transferring groups other than

amino-acyl groups

Golgi GO:0016757 Transferase activity, transferring glycosyl groups

GO:0015923 Mannosidase activity
GO:0005384 Manganese ion transporter activity

The results from the information gain method were largely comparable
with the location-specificity measure, even though the datasets were com-
pletely independent and the methods are quite different. 194 of the 207
terms had positive information gain, although only ten had information
gains of .01 or greater, with the greatest gain at 0.047. These numbers are
relatively low because while the presence of a function (such as DNA bind-
ing) may be quite specifically associated with a particular location, many
other proteins without that function are likely to be in the same location,



driving down the information gain substantially. The top ten results are
shown in Table 2, and the complete results are available from the supple-
mentary web site (URL above).

Table 2. The ten highest location information gain GO molecular function terms.

Information Gain GO Molecular Function terms

0.047 GO:0003677 DNA binding

0.024 GO:0005179 hormone activity
0.024 GO:0003676 nucleic acid binding

0.022 GO:0003700 transcription factor activity
0.016 GO:0008270 zinc ion binding
0.015 GO:0004129 cytochrome-c oxidase activity

0.015 GO:0003735 structural constituent of ribosome
0.013 GO:0008009 chemokine activity
0.011 GO:0008083 growth factor activity

0.010 GO:0016491 oxidoreductase activity

4. Discussion

4.1. Comparability of the methods

Most of the high information gain terms appear in the list of the location-
specific terms, and some of the differences are methodological. For example,
the high information gain set includes two terms which have a parent/child
relationship (“GO:0003677 DNA binding” and “GO:0003676 Nucleic acid
binding”) while only the parent term would make it into the location-
specific list generated by the ad hoc method. Other differences arise from
use of different datasets: e.g., “GO:0008528 Peptide receptor activity” is
a highly predictive function in the ad hoc method, but is not associated
with any of the 1161 proteins in the Nair & Rost dataset used to calculate
information gain.

However, some of the differences are more interesting. For example,
two of the top information gain terms, “GO:0008200 Zinc ion binding”
and “GO:0005179 Hormone activity” have relatively low location specificity
scores. These terms strongly favor a biased subgroup of locations, rather
than a single location (e.g. the molecular function “Hormone activity” is
associated with proteins annotated to both extracellular and membrane
locations, not exclusively one or the other).



4.2. Why function is complementary to sequence in

location prediction

As described above, all published location prediction methods are at least
in part sequence-based, but two recent methods3,7 that use functional in-
formation in addition to sequence outperform other methods. Using the
set of proteins from our experiments that were labelled with highly pre-
dictive functions, we found several examples where sequence-only meth-
ods made inaccurate predictions. For example, MBL DROME in Swiss-
Prot is a protein associated with terminal differentiation of photoreceptor
cells in Drosophila. It is annotated as a nuclear protein with GO func-
tion “GO:0003676 nucleic acid binding”. However, it was not predicted
as a nuclear sequence by predictNLS4, a widely used server for identifying
nuclear localization signals in sequence. Furthermore, TMHMM9, a popu-
lar method for recognizing transmembrane helices in proteins, incorrectly
predicted it as a membrane protein, since a putative transmembrane helix
region was identified in the sequence. However, “nucleic acid binding” is
highly predictive of nuclear localization, and was never observed (in our
data) as a function of membrane proteins.

4.3. Biological interpretations

Several of the predictions (and prediction failures) have interesting biolog-
ical interpretations. Focusing on the molecular function terms that are
both predictive and occur in many annotations identifies useful biological
knowledge implicit in the annotations. It may be possible to exploit these
regularities in other applications, e.g. automated methods for constructing
knowledge-bases. Here are several illustrative examples:

• Nucleus: The molecular functions that are predictive of nuclear
localization are mostly related to nucleic acids. The most pre-
dictive term is “GO:0003676 Nucleic acid binding”, which is also
among the high information gain function terms. Other predic-
tive terms include “GO:0030528 Transcription regulator activity”,
“GO:0008134 Transcription factor binding”, and “GO:0004386 He-
licase activity”. However, none of these terms are associated solely
with the nucleus; each annotates proteins that are localized else-
where as well. For example, aside from the nucleus, “GO:0003700
Transcription factor activity”, a child term of “GO:0030528 Tran-
scription regulator activity” is commonly associated with proteins
annotated as cytoplasmic. This duality reflects the fact that tran-



scription factors are often found in inactive form in the cytoplasm,
and transported to the nucleus when activated. For example, con-
sider the major signal transduction family Rel/NF-kappaB (NF-
kB, KBF1 HUMAN in Swiss-Prot), which is involved in the con-
trol of a large number of normal cellular and organismal processes,
such as apoptosis and inflammation. The interaction of NF-kB
with (among other proteins) IkBa both inhibits its ability to bind
to DNA and plays a role in maintaining its cytoplasmic localiza-
tion. When a cell receives any of a multitude of extracellular sig-
nals, NF-kB dissociates from IkBa, is activated functionally and is
transported to the nucleus. Many other proteins annotated with
transcription factor activity are processed similarly, leading to the
observed “imperfect predictiveness.” However, an alternative view
is that the annotations fail to capture the dynamism in the local-
ization of these proteins.

• Membrane: More function terms are associated with membrane lo-
calization that with any other location. This is in part because,
unlike in the case of the nucleus, the most abstract functions of
membrane proteins (e.g. “GO:0005215 Transporter activity”) are
not specific to membrane, and more specific children of these terms
must be used to achieve over-threshold predictiveness. For exam-
ple, note that “GO:0005489 Electron transporter activity” is asso-
ciated mainly with cytoplasmic proteins (although not enough so to
be predictive at the 70% level), while “GO:0015267 Channel/pore
class transporter activity” is predictive of membrane proteins.

• Mitochondrion: Mitochondrion carries out oxidative phosphory-
lation and produces most of the ATP in eukaryotic cells. We
found 4 highly predictive terms for localization to this organelle,
including two that are commonly characterized as specific to en-
ergy metabolism (“GO:0004738 Pyruvate dehydrogenase activity”
and “GO:0003995 Acyl-CoA dehydrogenase activity”). The other
two terms (“GO:0015078 Hydrogen ion transporter activity” and
“GO:0015290 Electrochemical potential-driven transporter activ-
ity”) describe functions not generally characterized in textbooks as
specific to mitochondria. However, these are among the strongest
associations found in this study (“GO:0015078 Hydrogen ion trans-
porter activity” is associated with 81 mitochondrial proteins and
no non-mitochondrial proteins).

• Endoplasmic Reticulum (ER): The difference between the biolog-



ical process carried out in a particular location and specificity of
the functions involved in that process is illustrated in the results
for the ER. The processes associated with the ER are primarily
the synthesis of lipids and secretory proteins. However, the two
molecular function terms that are predictive of ER localization,
“GO:0004497 Monooxygenase activity” and “GO:0016747 Trans-
ferase activity, transferring groups other than amino-acyl groups”,
are not obviously representative of these processes.

4.4. Implications for GO annotators

As described in the introduction, GO provides an ontology of subcellular
localization terms itself, and GO annotators sometimes infer such localiza-
tions on the basis of molecular function. Such inferences are assigned the
evidence code IC (Inferred by curator), although it is not clear if all the
localization annotations with IC evidence codes are done on the basis of
molecular function alone.

We believe it might be possible to extend this kind of annotation on the
basis of these results. For example, we did not find any localization anno-
tations for the mitochondria with IC evidence codes. However, as noted
above, the molecular function “GO:0015078 Hydrogen ion transporter ac-
tivity” (among others) seems a very strong predictor for that localization.
Several other instances also seem to provide evidence that could be used
by curators to infer localizations.

4.5. Conclusion

The biological relationships among molecular function and subcellular lo-
calization are at least partially reflected in protein annotations. These
parallel relationships can be demonstrated both in measures of information
gain and in the development of effective ad hoc predictors of location. These
results provide an explanation of why hybrid prediction methods perform
better than sequence-based methods alone, but also suggest potential im-
provements that might be made in the annotation process, and illustrate
important biological phenomena.
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