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Sigma factors, often in conjunction with other transcription factors, regulate gene

expression in prokaryotes at the transcriptional level. Specific transcription factors

tend to co-occur with specific sigma factors. To predict new members of the tran-
scription factor regulon, we applied Bayes rule to combine the Bayesian probability

of sigma factor prediction calculated from microarray data and the sigma factor

binding sequence motif, the motif score of the transcription factor associated with
the sigma factor, the empirically determined distance between the transcription

start site to the cis-regulatory region, and the tendency for specific sigma factors

and transcription factors to co-occur. By combining these information sources, we
improve the accuracy of predicting regulation by transcription factors, and also

confirm the sigma factor prediction. We applied our proposed method to all genes

in Bacillus subtilis to find currently unknown gene regulations by transcription
factors and sigma factors.

1. Introduction

In recent years, the genomes of more than one hundred bacteria have been
sequenced and the respective coding regions have been found. Inferring the
regulatory mechanism of those genes remains a difficult problem. For un-
derstanding the regulatory system on a genome-wide scale, gene expression
data have been accumulated in microarray experiments for several organ-
isms under various experimental conditions. Due to the complexity of the
regulatory network and limits on the experimental accuracy, it is difficult
to predict reliably which transcription factor (TF) regulates which genes.

One of the promising methods to predict regulation is supervised learn-
ing. However, it is powerful only if a sufficiently large training set is avail-
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able, which is often not the case. Even in one of the best-studied bacteria,
B. subtilis, only 20% of known TFs have more than 10 known binding
sequences.1 To address this problem, we consider combining other data un-
der the biological context. In this paper, we focus on the joint prediction
of sigma factors and associated TFs.

Sigma factors, which bind to the RNA polymerase complex, recognize
specific DNA motifs that are located -35/-10 or -24/-12 basepairs from the
transcription start site. For B. subtilis, 18 sigma factors are known. SigA is
the primary sigma factor and regulates most genes, while secondary sigma
factors activate specific groups of genes depending on cellular conditions.
For example, the sigma factors SigE, SigF, SigG, SigK, and SigH are related
to sporulation, while SigB is involved in stress response, and SigD regulates
genes related to flagellar motion and chemotaxis. Similarly, other (non-
sigma) TFs are involved in particular cellular processes. As a result, some
combinations of sigma factors and TFs are often found to jointly regulate a
gene, while other combinations do not occur often. As an extreme example,
SigL, which belongs to the sigma54 family of enhancer-dependent sigma
factors, can only direct transcription if one of the activating TFs AcoR,
BkdR, LevR, RocR, or YplP is present.

Joint prediction of sigma factors and TFs is particulary important for
SigA, which regulates about 90% of the B. subtilis genes. For differential
regulation of these genes, additional TFs are therefore needed.

Previously, our group predicted which sigma factor regulates each gene
in B. subtilis using 174 microarray data as well as experimentally known
sigma factor binding motifs.2 TF binding sites are typically located near
the transcription start site, which can be found from the predicted sigma
factor binding site. For example, in Escherichia coli, it is known that almost
all activators have upstream binding sites near the transcription start site,
whereas more than two third of repressors have at least one downstream
binding site.3

Here, we aim to predict gene regulation by TFs by combining predicted
sigma factor binding sites with the biological information of joint regulation
by associated TFs, as well as the distribution of TF binding sites near the
sigma factor binding site. Additionally, we consider TFs with more than
one binding site for a specific gene, which can be used to improve the
prediction accuracy.4,5,6
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2. Method

To construct a suitable score function, we applied Bayesian statistics to
combine the Bayesian probability of sigma factor prediction calculated from
the microarray data and binding motif,2 the Position Specific Score Matrix
(PSSM) of the binding motif of the TF associated with the sigma factor,
and the empirically determined distance between the transcription start site
to the cis-regulatory region. We used the sigma factor predictions2 to find
the transcription start site and to determine which TFs may be expected
to co-regulate the gene.

2.1. Sigma factor prediction

Previously, our group predicted gene regulation by sigma factors using
the information of sigma factor binding motif and microarray data.2 We
extend this prediction to the full B. subtilis genome and to all sigma
factors with known regulated genes, allowing genes to be regulated by
more than one sigma factor. From this prediction, we find the Bayesian
prior probability Pprior(σ = σN ) that a gene is regulated by σN , where
N ∈ {A,B, D,E, F,G, H,K, L, W,X}.

2.2. Combining sigma factors and transcription factors

Specific TFs tend to occur with specific sigma factors, as shown in Ta-
ble 1. In addition to four knowns gene, one more gene was predicted as an
enhancer for SigL-regulated genes by our Pfam seach (PF00309)7.

Table 1. Sigma factors and associated TFs in B. subtilis.

Family Sigma
factor

Function Cooperative transcription factors∗

sigma70 SigA Housekeeping

Early sporulation

AbrB(21) AraR(3) CcpA(40) CcpC(3)

ComA(6) ComK(40) CtsR(6) DegU(15)
DinR(6) FNR(5) Fur(21) GlnR(4) Hpr(6)

PerR(7) PucR(7) PurR(11) RocR(4)

Spo0A(10) TnrA(11) Zur(3)
SigE Expressed in early mother cell SpoIIID(4)

SigH Expressed in postexponential
phase; competence and early

sporulation

Spo0A(4)

SigK Expressed in late mother cell GerE(13) SpoIIID(5)

sigma54 SigL Degradative enzymes AcoR(1) BkdR(1) LevR(1) RocR(3)

∗ The number in parentheses is the number of genes known to be regulated by each combi-

nation of sigma factor and TF. Genes whose sigma factor is unknown experimentally were
assigned to the SigA regulon, which contains 90% of the B.subtilis genes10.
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From Table 1, we can estimate the probability that a gene is co-regulated
by transcription factor Ti, given regulation by sigma factor σN :

Pprior(T = Ti|σ = σN ) =
# genes regulated by Ti and σN

# genes regulated by σN
(1)

Some combinations of sigma factor and TF may exist that have not yet been
found experimentally. To allow for this possibility, we add a pseudocount8

1
k+1

√
# genes regulated by Ti, where k is the number of TFs under con-

sideration, to the numerator, and
√

# genes regulated by Ti to the denom-
inator. Note that i runs from 0 to k, where 0 corresponds to a currently
unknown transcription factor.

2.3. Motif search

The motif sequences can be described statistically by a position specific
score matrix (PSSM) Wr,b for each TF.8 This matrix is the log-odds score
of finding a nucleotide b at position r in the binding sequence motif of TF.
The log-likelihood that a transcription factor Ti binds a subsequence Si of
the sequence S upstream of a gene is then

Mi ≡ ln
P [Si| Ti binds Si]
P [Si|background]

=
R−1∑
r=0

Wr,Si[r] (2)

where R is the length of the motif. The PSSM was calculated from the
known binding motifs of the genes in the regulon of each TF, as listed in
the DBTBS database. For the matrix calculation based on n known binding
sites, we added

√
n pseudocounts,8 using a non-coding region background

probability of 0.3185 for A and T, and 0.1815 for C and G.

2.4. Relative distance from transcription start site to TF

binding site

Using the DBTBS data, we estimated the probability density distribution
fdist(Di) of the distance Di from the transcription start site to the binding
site of transcription factor Ti, measured in base pairs, using a kernel density
estimation based on Gaussian kernels.9 Positive regulators tend to bind in
front of the transcription start site, while negative regulators bind at or
downstream of the transcription start site. About half of TFs we consider
are dual purpose regulators, which regulate some genes positively and others
negatively. Those dual TF binding sites are located over a wider range than
single regulators.
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Figure 1. Distribution of the position of the TF binding site with the respect to the

transcription start site.

As Figure 1 shows, the graph for positive regulators (ComA) and nega-
tive regulators (Fur) each have two peaks. The lower peaks correspond to
TFs having two or more binding sites.

2.5. Combining sigma factor and transcription factor

prediction

The joint probability that a gene is regulated by transcription factor Ti,
i ∈ 1..k and sigma factor σN is denoted by P (σ = σN , T = Ti). Here, T0

corresponds to an unknown TF. For deriving the posterior joint probabil-
ity, we combined the following three elements: the prior joint probability
Pprior(σ = σN , T = Ti), the maximum PSSM score in each promoter se-
quence Mi calculated for Ti, and the distance Di between the transcription
start site and the predicted TF binding site. Mi and Di are calculated
from the sequence region S upstream of the gene. The Bayesian posterior
probability that a gene is regulated by sigma factor σN and transcription
factor Ti, given the upstream sequence S, can be calculated as

P (σ = σN , T = Ti|S)

=
P (S|σ = σN , T = Ti)Pprior(σ = σN , T = Ti)∑

U

∑
j P (S|σ = σU , T = Tj)Pprior(σ = σU , T = Tj)

, (3)
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where in the denominator U is summed over sigma factors A, B, D, E, F,
G, H, K, L, X, and W. The prior probability Pprior(σ = σN , T = Ti) is
calculated as Pprior(σ = σN )Pprior(T = Ti|σ = σN ), as described above.

P (S|σ = σN , T = Ti) is the conditional probability that an up-
stream sequence S is generated, given that σN and Ti regulate the gene.
The upstream sequence S consists of the binding site Si, described by
the PSSM, and the remaining sequence S\Si. We can then decompose
P (S|σ = σN , T = Ti) into three parts:

P (S|σ = σN , T = Ti) = P (Si|T = Ti)·P (S\Si|background)·fdist(Di). (4)

The third factor is the probability that Si is generated at a distance Di

from the transcription start site (Section 2.4). Here, the predicted position
of the transcription start site depends on the sigma factor σN , as described
previously.2

Dividing by the background probability yields

P (S|σ = σN , T = Ti)
P (S|background)

=
P (Si|T = Ti)

P (Si|background)
fdist(Di) = eMifdist(Di), (5)

where Mi is the maximum value of the PSSM score for transcription factor
Ti over the upstream region S. For an unknown transcription factor (T =
T0), however, this ratio is equal to unity.

Note that for fdist(Di) uniform, this reduces to eMi/Dmax, where Dmax

is the size of the upstream region S that we search. This then corresponds
to the Bonferoni correction for multiple comparisons.

By combining these equations, we find the following expression for the
posterior probability:

P [σ = σN , T = Ti|S] =
exp

[
score

(
σN , Ti

)]
∑

U

∑k
j=0 exp [score (σU , Tj)]

, (6)

where we defined the score functions

score(σN , Ti) ≡ lnPprior(T = Ti|σ = σN ) + lnPprior(σ = σN )

+ Mi + lnfdist(Di), (7)

while we drop the last two terms if i = 0. For genes that have more
than two binding sites for the same transcription factor Ti, we add terms
(Mi + lnfdist(Di)) correspondingly.
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2.6. Example calculation

We calculated the Bayesian posterior probability in Eq. (6) that the gene
rocA is regulated by each sigma factor and by one of the TFs AcoR, BkdR,
LevR, RocR, or on unknown TF. Table 2 shows that the (SigL, RocR)
combination is by far the most likely. From biological experiments, rocA is
known to be regulated by SigL and RocR, which serves as the transcrip-
tional activator of arginine utilization operons.

3. Validation

3.1. The sigma factor prediction aids in the TF prediction

To verify the validity of combining the TF prediction with the sigma factor
prediction, we examined the contribution of each term in Eq. (7). To assess
the effect of using the sigma factor prediction for the TF prediction, we
compare the two scores Mi + lnP (T = Ti|σ = σN ) and Mi (Table 3).

The negative dataset consists of genes regulated by sigma factors whose
regulons do not contain any genes that are known to be regulated by the
TF. The positive dataset are the genes known to be regulated by the TF.
The specificity is given by TP/(TP + FP ) and the sensitivity is given by
TP/(TP + FN), where TP is true positive, FP is false positive, and FN is
false negative.

Furthermore, the predicted sigma factor binding site Pprior(σ = σN )
in Eq. (7) allows us to search for the TF motif nearby on the genome,
as represented by the term in fdist(Di) in Eq. (7). We show the effect of
including this term in Table 4.

As shown in these tables, both the sigma factor information and the
transcription start sites greatly improve the specificity and the sensitivity
of the TF prediction. The biological knowledge that specific sigma factors
and TFs tend to co-occur is particularly informative, as shown in Table 3.

3.2. The TF prediction aids in the sigma factor prediction

We calculate the posterior probability that a gene is regulated by a specific
sigma factor by summing Eq. (6) over Ti. As shown in Table 5, this posterior
probability is more accurate than the prior probability in predicting sigma
factors. While the prior probability already gives a very accurate prediction
of sigma factor regulation, the accuracy of the posterior probability is even
higher. We note that for unknown genes, the sigma factor prediction may
be less accurate due to uncertainties in the operon structure.2,11
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Table 2. Probability that rocA is regulated by various combinations of a sigma factor and TF.

Sigma TF Mi ln(fdist(Di)) ln(Pprior(T = Ti|σ = σN )) ln(Pprior(σ = σN )) Score Probability
AcoR 6.41 -6.45 -5.54 -2.04 -7.62 0.000
BkdR 4.53 -4.98 -5.54 -2.04 -8.03 0.000

sigA LevR 3.21 -4.93 -5.54 -2.04 -9.3 0.000
RocR 30.5 -19.4 -5.54 -2.04 3.52 0.000
ND - - -5.54 -2.04 -7.58 0.000

AcoR 6.41 -10.92 -4.69 -1.93 -11.13 0.000
BkdR 3.77 -5.06 -4.69 -1.93 -7.91 0.000

sigB LevR 4.08 -5.2 -4.69 -1.93 -7.74 0.000
RocR 30.5 -13.74 -4.69 -1.93 10.14 0.000
ND - - -4.69 -1.93 -6.62 0.000

AcoR 6.41 -8.23 -3.63 -6.55 -12 0.000
BkdR 4.53 -7.01 -3.63 -6.55 -12.66 0.000

sigD LevR 3.48 -5.42 -3.63 -6.55 -12.12 0.000
RocR 30.5 -10.27 -3.63 -6.55 10.05 0.000
ND - - -3.63 -6.55 -10.18 0.000

AcoR 6.41 -5.61 -4.82 -2.17 -6.18 0.000
BkdR 4.53 -5.21 -4.82 -2.17 -7.66 0.000

sigE LevR 3.21 -5.87 -4.82 -2.17 -9.64 0.000
RocR 30.5 -22.45 -4.82 -2.17 1.06 0.000
ND - - -4.82 -2.17 -6.99 0.000

AcoR 6.41 -10.78 -3.57 -5.14 -13.08 0.000
BkdR 3.77 -5.08 -3.57 -5.14 -10.03 0.000

sigF LevR 4.08 -5.24 -3.57 -5.14 -9.87 0.000
RocR 30.5 -13.61 -3.57 -5.14 8.17 0.000
ND - - -3.57 -5.14 -8.72 0.000

AcoR 6.41 -8.45 -4.03 -4.12 -10.18 0.000
BkdR 4.53 -7.61 -4.03 -4.12 -11.23 0.000

sigG LevR 3.48 -6.08 -4.03 -4.12 -10.74 0.000
RocR 30.5 -10.3 -4.03 -4.12 12.06 0.003
ND - - -4.03 -4.12 -8.14 0.000

AcoR 0.76 -5.84 -4.59 -4.14 -13.82 0.000
BkdR 4.53 -5.5 -4.59 -4.14 -9.71 0.000

sigH LevR 3.48 -4.66 -4.59 -4.14 -9.92 0.000
RocR 30.5 -17.38 -4.59 -4.14 4.38 0.000
ND - - -4.59 -4.14 -8.74 0.000

AcoR 0 -4.83 -4.13 -5.02 -13.98 0.000
BkdR 3.77 -5.66 -4.13 -5.02 -11.04 0.000

sigK LevR 4.08 -5.98 -4.13 -5.02 -11.05 0.000
RocR 30.5 -12.98 -4.13 -5.02 8.37 0.000
ND - - -4.13 -5.02 -9.15 0.000

AcoR 6.41 -10.46 -1.74 -0.57 -6.36 0.000
BkdR 4.53 -6.02 -1.74 -0.57 -3.8 0.000

sigL LevR 3.48 -5.06 -1.74 -0.57 -3.89 0.000
RocR 30.5 -10.86 -1.22 -0.57 17.85 0.996
ND - - -2.85 -0.57 -3.42 0.000

AcoR 6.41 -7.47 -2.58 -9.36 -13 0.000
BkdR 4.53 -5.53 -2.58 -9.36 -12.94 0.000

sigX LevR 3.48 -5.03 -2.58 -9.36 -13.49 0.000
RocR 30.5 -12.53 -2.58 -9.36 6.03 0.000
ND - - -2.58 -9.36 -11.94 0.000

AcoR 6.41 -8.51 -3.99 -7.82 -13.91 0.000
BkdR 4.53 -7.74 -3.99 -7.82 -15.01 0.000

sigW LevR 2.96 -5.71 -3.99 -7.82 -14.55 0.000
RocR 30.5 -10.45 -3.99 -7.82 8.24 0.000
ND - - -3.99 -7.82 -11.81 0.000

ND: TF unknown case.
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Table 3. The effect of sigma factor information on the TF prediction.

Mi + lnP (T = Ti|σ = σN ) Mi

TF sigma TP FP FN SP SN TP FP FN SP SN

Spo0A A,H 8 0 0 100.0% 100.0% 5 3 3 62.5% 62.5%

SpoIIID E,K 9 0 0 100.0% 100.0% 3 8 6 27.3% 33.3%
GerE K 13 0 0 100.0% 100.0% 7 13 6 35.0% 53.8%

SigL L 5 0 0 100.0% 100.0% 5 0 0 100.0% 100.0%

Total 35 0 0 100.0% 100.0% 20 24 15 45.5% 57.1%

TP true positive, FP false positive, FN false negative, SP specificity, and SN sensitivity.

Table 4. The effect of transcription start site information on TF prediction.

Mi + lnfdist(Di) Mi

TF sigma TP FP FN SP SN TP FP FN SP SN

Spo0A A,H 6 2 2 75.0% 75.0% 5 3 3 62.5% 62.5%

SpoIIID E,K 5 6 4 45.5% 55.6% 3 8 6 27.3% 33.3%

GerE K 7 2 6 77.8% 53.8% 7 13 6 35.0% 53.8%
SigL L 5 0 0 100.0% 100.0% 5 0 0 100.0% 100.0%

Total 23 10 12 69.7% 65.7% 20 24 15 45.5% 57.1%

4. Result

We applied our proposed method to jointly predict sigma factor and TFs for
all genes in B. subtilis in order to find currently unknown gene regulations.
Table 6 shows some predicted combinations for which a high posterior prob-
ability was found. For many proteins, the function is presently unknown.
The sigma/TF prediction can suggest the cellular function of those proteins.

CcpA is one of the global repressor of the carbon catabolite repressors
which bind to CRE site (TGWAANCGGNTNWCA)10. Our prediction
shows that CcpA acts on some genes related to sugar metabolism (sacP,
fruR, yojA) and dehydrogenase (yrbE), which is consistent with the known
function of CcpA.

The sporulation genes, spoIIP and spoIID are known to be regulated by
SigE. Both genes are required for complete dissolution of the asymmetric

Table 5. The accuracy of the sigma factor prediction.

prior posterior

sigma TP FP FN SP SN TP FP FN SP SN

SigE 53 3 2 94.6% 96.4% 53 2 2 96.4% 96.4%

SigH 33 5 5 86.8% 86.8% 35 5 3 87.5% 92.1%

SigK 24 1 1 96.0% 96.0% 25 1 0 96.2% 100.0%
SigL 5 0 0 100.0% 100.0% 5 0 0 100.0% 100.0%

Total 115 9 8 92.7% 93.5% 118 8 5 93.7% 95.9%
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Table 6. Newly predicted gene regulations by TFs and sigma factors in B. subtilis.

Sigma RG TF posterior Prob. Function

SigA sacP CcpA 0.997 PTS sucrose-specific enzyme IIBC component

yqgQ CcpA 0.980 * unknown

yrzF CcpA 0.976 unknown
yvfH CcpA 0.972 unknown; similar to L-lactate permease

yvfK CcpA 0.967 unknown; similar to maltose/maltodextrin-binding protein

yngI CcpA 0.953 unknown; similar to long-chain acyl-CoA synthetase
yngI CcpA 0.953 unknown; similar to long-chain acyl-CoA synthetase

ycsA CcpA 0.947 unknown; similar to 3-isopropylmalate dehydrogenase

opuE CcpA 0.916 * proline transporter
yrpD CcpA 0.912 unknown; similar to unknown proteins from B. subtilis

ywqC CcpA 0.904 unknown; similar to capsular polysaccharide biosynthesis

yvfI CcpA 0.901 unknown; similar to transcriptional regulator (GntR family)
glcR ComK 0.985 transcriptional repressor involved in the expression of the phos-

photransferase system

aadK ComK 0.971 aminoglycoside 6-adenylyltransferase
yufL ComK 0.946 unknown; similar to two-component sensor histidine kinase [YufM]

yuiD ComK 0.903 unknown; similar to unknown proteins
glmS CtsR 0.968 L-glutamine-D-fructose-6-phosphate amidotransferase

yozM DinR 0.949 unknown

ypoP Fur 0.958 unknown; similar to transcriptional regulator (MarR family)
yodE TnrA 0.938 unknown; similar to unknown proteins

SigE spoIIP SpoIIID 0.961 ∗ required for dissolution of the septal cell wall

spoIID SpoIIID 0.960 ∗ required for complete dissolution of the asymmetric septum
cwlD SpoIIID 0.930 ∗ N-acetylmuramoyl-L-alanine amidase (germination)

ylbJ SpoIIID 0.910 ∗ unknown; similar to unknown proteins

ytvA SpoIIID 0.873 unknown; similar to protein kinase
yurH SpoIIID 0.857 unknown; similar to N-carbamyl-L-amino acid amidohydrolase

greA SpoIIID 0.849 transcription elongation factor

yugP SpoIIID 0.827 unknown; similar to unknown proteins
yjkB SpoIIID 0.813 unknown; similar to amino acid ABC transporter

ytxC SpoIIID 0.754 ∗ unknown; similar to unknown proteins
yqfZ SpoIIID 0.745 ∗ unknown; similar to unknown proteins

spoVE SpoIIID 0.687 ∗ required for spore cortex peptidoglycan synthesis

yugO SpoIIID 0.671 unknown; similar to potassium channel protein
yqeW SpoIIID 0.664 unknown; similar to Na+/Pi cotransporter

SigH yvyD Spo0A 0.667 ∗ general stress protein under dual control of sigB and sigH
SigK nucB GerE 0.887 sporulation-specific extracellular nuclease

ytkC GerE 0.851 unknown; similar to autolytic amidase

ywjE GerE 0.820 unknown; similar to cardiolipin synthetase

ypgA GerE 0.808 unknown; similar to unknown proteins
SigL yokK BkdR 0.416 unknown

∗ The sigma factor has been determined experimentally. In all cases shown in this table, the experi-

mentally determined sigma factor agrees with the computational prediction. All predicted regulations

by TFs shown in this table are currently unknown.
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septum cell wall. We found the SpoIIID binding motif at +18 and +3 for
spoIIP and at +24 for spoIID. From the location of the binding site, we infer
that those genes might be negatively regulated. For the SigE-dependent
asparagine synthetase gene yisO, we found three SpoIIID binding sites in
the promoter region.

GerE is a transcriptional regulator required for the expression of late
spore coat genes. It is predicted to regulate membrane phospholipid cardi-
olipin (ywjE) and permease (yecA). Since in addition it is known that GerE
regulates N-acetylmuramoyl-L-alanine amidase, we expect the prediction
for ytkC, which is similar to autolytic amidase, to be correct.

In E.coli, 17 operons are known to be regulated by SigL12. In B. subtilis,
only six operons are known to be regulated by SigL. Whereas we may expect
currently unknown SigL-regulated genes to exist in B. subtilis, our result
suggests that there are few additional SigL regulated genes in the B. subtilis
genome.

5. Discussion

Our result shows that the joint prediction of TFs is a powerful way both
to confirm the sigma prediction and to predict new members of the TF
regulon. As the joint prediction of sigma factors and TFs is a supervised
learning method, it can make better use of known biological facts than
unsupervised methods. This method can also detect genes regulated by
two or more different sigma factors. For example, spoIVCB is initially
transcribed under the direction of SigE acting in conjunction with SpoIIID.
Later in sporulation, SigK-mediated transcription of spoIVCB is repressed
by GerE. In our method, we can calculate the probability that spoIVCB is
regulated by SigK with GerE and by SigE with SpoIIID separately. This
method can also be applied to other organisms such as E.coli, cyanobacteria
and yeast, for which some regulatory relations are known.
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