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Bioinformatics techniques to protein secondary structure (PSS) prediction are
mostly single-stage approaches in the sense that they predict secondary struc-
tures of proteins by taking into account only the contextual information in amino
acid sequences. In this paper, we propose two-stage Multi-class Support Vector
Machine (MSVM) approach where a MSVM predictor is introduced to the output
of the first stage MSVM to capture the sequential relationship among secondary
structure elements for the prediction. By using position specific scoring matrices,
generated by PSI-BLAST, the two-stage MSVM approach achieves Q3 accuracies
of 78.0% and 76.3% on the RS126 dataset of 126 nonhomologous globular proteins
and the CB396 dataset of 396 nonhomologous proteins, respectively, which are
better than the highest scores published on both datasets to date.

1 Introduction

One of the major goals of bioinformatics is to predict the three-dimensional
(3-D) structure of a protein from its amino acid sequence. Unfortunately, the
protein structure prediction problem is a combinatorial optimization problem,
which so far has an eluded solution, because of the exponential number of
potential solutions. One of the current approaches is to predict the protein
secondary structure (PSS), which is linear representation of the full knowledge
of the 3-D structure, and, thereafter, predict the 3-D structure 1,2. The usual
goal of secondary structure prediction is to classify a pattern of residues in
amino acid sequences to a pattern of protein secondary structure elements:
an α-helix (H), β-strand (E) or coil (C, the remaining type).

Many computational techniques have been proposed in the literature to
solve the PSS prediction problem, which broadly fall into three categories: (1)
statistical methods, (2) neural network approaches, and (3) nearest neighbor
methods. The statistical methods are mostly based on likelihood techniques
3,4,5. Neural networks use residues in a local neighborhood or a window,
as inputs, to predict the secondary structure at a particular location of an
amino acid sequence by finding an appropriate non-linear mapping 6,7,8,9.
The nearest neighbor approach often uses the k-nearest neighbor techniques
10,11. The consensus approaches that combine different classifiers, parallely,



into a single superior predictor have been proposed for PSS prediction 12,13.
Support Vector Machines (SVMs) have been earlier applied to PSS prediction
14,15; one of the drawbacks in these approaches is that the methods do not
take into account the sequential relationship among the protein secondary
structure elements. Additionally, SVM methods only construct a multi-class
classifier by combining several binary classifiers.

Most existing secondary structure techniques are single-stage approaches,
which are unable to find complex relations (correlations) among structural
elements in the sequence. This could be improved by incorporating the in-
teractions or contextual information among the elements of the sequences of
secondary structures. We argue that it is feasible in enhancing the present
single-stage MSVM approach farther by augmenting with another prediction
scheme at their outputs and propose to use MSVM as the second-stage. By
using the position specific scoring matrices generated by PSI-BLAST, the
two-stage MSVM approach significantly achieves Q3 accuracies of 78.0% and
76.3% on the RS126 and CB396 datasets, based on a seven-fold cross valida-
tion.

2 Two-Stage MSVM Approach

In the two-stage MSVM approach, we use two MSVMs in cascade to predict
secondary structures of residues in amino acid sequences.

Let us denote the given amino acid sequence by r = (r1, r2, . . . , rn) where
ri ∈ ΣR and ΣR is the set of 20 amino acid residues, and t = (t1, t2, . . . tn)
denote the corresponding secondary structure sequence where ti ∈ ΣT and
ΣT = {H,E,C}; n is the length of the sequence. The prediction of the PSS
sequence, t, from an amino acid sequence, r, is the problem of finding the
optimal mapping from the space of Σn

R to the space of Σn
T .

Let vi be the vector representing 21-dimensional coding of the residue
ri where 20 units are the values from raw matrices of PSI-BLAST profiles
ranging from [0, 1] and the other is used for the padding space to indicate
the overlapping end of the sequence 9. Let the input pattern to the MSVM
approach at site i be ri = (vi−h1

1
,vi−h1

1
+1, . . . ,vi, . . . ,vi+h1

2
) where vi denote

the center element, h1
1 and h1

2 denote the width of window on the two sides;
w1 = h1

1 + h1
2 + 1 is the neighborhood size around the element i.

2.1 First Stage

A MSVM scheme has been proposed by Crammer and Singer 16. For PSS
prediction, this method constructs three discriminant functions but all are



obtained by solving one single optimization problem, which can be formulated
as follows:
Minimize

1

2

∑

k∈ΣT

(wk
1)T wk

1 + γ1
N
∑

j=1

ξ1
j

subject to the constraints

w
tj

1 φ1(rj) − wk
1φ1(rj) ≥ ck

j − ξ1
j (1)

where tj is the secondary structural type of residue rj corresponding to the

the training vector rj , j = 1, 2, . . . , N , and ck
j =

{

0 if tj = k
1 if tj 6= k

We find the minimization of the above formulation by solving the
following quadratic programming problem 16:

max
αk

j

−
1

2

N
∑

j=1

N
∑

i=1

K1(rj , ri)
∑

k∈ΣT

αk
j αk

i −
N
∑

j=1

∑

k∈ΣT

αk
j ck

j (2)

such that
∑

k∈ΣT

αk
j = 0 and αk

j ≤

{

0 if tj 6= k
γ1 if tj = k

(3)

where K1(ri, rj) = φ1(ri)φ
1(rj) denotes the kernel function and wk

1 =
∑N

j=1 αk
j φ1(rj).

Once the parameters αk
j are obtained from the optimization, the resulting

discriminant function fk
1 of a test input vector ri is given by

fk
1 (ri) =

N
∑

j=1

αk
jK

1(ri, rj) = wk
1φ1(ri) (4)

Let f1(ri) = arg maxk∈ΣT
fk
1 (ri). In the single-stage MSVM method,

the secondary structural type ti corresponding to the residue at site i, ri, is
determined by

ti = f1(ri) (5)

The function, f1, discriminates the type of PSS, based on the features
or interactions among the residues in the input pattern. With optimal pa-
rameters, the MSVM attempts to minimize the generalization error in the
prediction. If the training and testing patterns are drawn independently and



identically according to a probability distribution P, then the generalization
error, errP(f1), is given by

errP(f1) = P{(r, t) : f1(r) 6= t; (r, t) ∈ Γ1 × {H,E,C}}

where Γ1 denotes the set of input patterns seen by the MSVM during both
the training and testing phases, and t denotes the desired ouput for input
pattern r.

2.2 Second Stage

We extend the single-stage MSVM technique by cascading another MSVM
at the output of the present single-stage approach to improve the accuracy
of prediction. This is because the secondary structure at a particular posi-
tion of the sequence depends on the structures of the rest of the sequence,
i.e., it accounts for the fact that the strands span over at least three adja-
cent residues and helices consist of at least four consecutive residues 6. This
intrinsic relation cannot be captured by using only single-stage approaches
alone. Therefore, another layer of classifiers that minimize the generalization
error of the output of single-stage methods by incorporating the sequential
relationship among the protein structure elements improves the prediction
accuracy.

Consider a window of w2 size at a site of the output sequence of the first
stage; the vector at position i, di = (dk

i−h2
1

, dk
i−h2

1
+1

, . . . , dk
i , . . . , dk

i+h2
2

) where

w2 = 3(h2
1 + h2

2 + 1), dk
i = 1/(1 + e−fk

1 (ri)), and fk
1 denotes the discriminant

function of the first stage. The application of the logistic sigmoid function
to the outputs of the first stage has the advantage of constraining the input
units of the second stage to the (0,1) interval that is similar to the range
of the input units of the first stage. The purpose of this choice is to easier
determine parameters for optimal performance. The MSVM converts the
input patterns, usually linearly inseparable, to a higher dimensional space by
using the mapping φ2 with a kernel function K2(di,dj) = φ2(di)φ

2(dj).
As in the first stage, the hidden outputs in the higher dimensional space

are linearly combined by a weight vector, w2, to obtain the prediction output.
Let the training set of exemplars for the second stage MSVM be Γ2

train = {dj :
j = 1, . . . , N}. The vector w2 is obtained by solving the following convex
quadratic programming problem, over all the patterns seen in the training
phase 16.

Let f2(di) = arg maxk∈ΣT
fk
2 (di). The secondary structural type ti cor-

responding to the residue ri is determined by

ti = f2(di) (6)



If the set of input patterns for the second stage MSVM in both training
and testing phases is denoted by Γ2, the generalization error of the two-stage
MSVM approach, errP(f2), is given by

errP(f2) = P{(d, t) : f2(d) 6= t; (d, t) ∈ Γ2 × {H,E,C}}

If the input pattern d corresponds to a site i, then d = di =

((1 + e
−fk

1 (r
i−h2

1
)
)−1, (1 + e

−fk
1 (r

i−h2
1
+1

)
)−1, . . . , (1 + e−fk

1 (ri))−1, . . . , (1 +

e
−fk

1 (r
i+h2

2
)
)−1). That is, the second stage takes into account the influences of

the PSS values of residues in the neighborhood into the prediction. It could
be easily shown that there exists a function f2 such that errP(f2) = errP(f1)
when h2

1 = h2
2 = 0.

3 Minimal Generalization Error

In this section, we find a function f2 that minimizes the generalization error
errP(f2) when connecting another MSVM predictor at the output of the exist-
ing predictor. The optimal function f2 providing the smallest errP(f2) ensures
errP(f2) ≤ errP(f1). However, finding the global minimum of generalization
error errP(f2) is not a trivial problem because the form of the probability dis-
tribution P is unknown. We can instead consider the probably approximately
correct (pac) bound, ε(N, δ), of the generalization error satisfying

P{Γ2
train : ∃f2 such that errP(f2) > ε(N, δ)} < δ

This is equivalent to asserting that with probability greater than 1 − δ over
the training set Γ2

train, the generalization error of f2 is bounded by

errP(f2) ≤ ε(N, δ)

In the following proofs, we assume that both the training set Γ2
train ⊂ Γ2

and the testing set Γ2
test ⊂ Γ2 for the second stage contained N patterns.

For the MSVM technique at the second stage, let w
k/l
2 be the weight vector

wk
2 − wl

2. Therefore, the secondary structure of a residue r is not l if

w
k/l
2 φ2(d) > 0 or not k otherwise.

Theorem 3.1. 17 Let F = {f
k/l
2 : d → w

k/l
2 φ2(d); ‖w

k/l
2 ‖ ≤ 1;d ∈

Γ2; k, l ∈ ΣT } be restricted to points in a ball of m dimensions of radius
R about the origin, that is φ2(d) ∈ R

m and ‖φ2(d)‖ ≤ R. Then the
fat-shattering dimension is bounded by

fatF (η
k/l
2 ) ≤

(

R

η
k/l
2

)2



Theorem 3.2. 18 Let G be a decision directed acyclic graph on 3
classes H, E, and C, with 3 decision nodes, H/E, E/C, and C/H, with

margins η
k/l
2 and discriminant functions f

k/l
2 ∈ F at decision nodes k/l,

where η
k/l
2 = mind∈Γ2

train

|w
k/l
2

φ2(d)|

‖w
k/l
2

‖
, k and l ∈ ΣT . Then, the following

probability is bounded by

P{Γ2
train,Γ2

test : ∃ G such that errΓ2
train

(G) = 0; errΓ2
test

(G) > ε(N, δ)} < δ

where ε(N, δ) = 1
N

(

∑

k,l∈ΣT
ak/l log 4eN

ak/l log(4N) + log 23

δ

)

, ak/l =

fatF

(

η
k/l
2

8

)

, errΓ2
train

(G) and errΓ2
test

(G) are a fraction of points misclassi-

fied of G on the training set Γ2
train and a random testing set Γ2

test, respectively.

Theorem 3.3. Let G be a decision directed acyclic graph with discriminant

functions f
k/l
2 ∈ F at nodes k/l, k and l ∈ ΣT . Then, the generalization

error of f2 where f2(d) = arg maxk∈ΣT
fk
2 (d) in the probability distribution

P is

errP(f2) = errP(G)

Proof. This can be easily proved for an arbitrary example d ∈ Γ2, f2(d)
equals to the secondary structural type of d predicted by the decision directed
acyclic graph G. �

Theorem 3.4. 19 Let errP(G) be the generalization error of G at the
output of the first stage. Then

P
{

Γ2
train : ∃G such that errΓ2

train
(G) = 0 and errP(G) > 2ε(N, δ)

}

≤

2P
{

Γ2
train,Γ2

test : ∃G such that errΓ2
train

(G) = 0 and errΓ2
test

(G) > ε(N, δ)
}

Theorem 3.5. Suppose we classify a random N examples in the training
set Γ2

train using the MSVM method at second stage with optimal values of
weight vectors wk

2 , k ∈ ΣT . Then, the generalization error errP(f2) with



probability greater than 1 − δ is bound to be less than

ε(N, δ) =
1

N

(

390R2
∑

k∈ΣT

‖wk
2‖

2
log(4eN) log(4N) + 2 log

2(2N)3

δ

)

Proof. Since the margin η
k/l
2 is the minimum value of the

distances from the instances labeled k or l to the hyperplane

w
k/l
2 φ2(d) = 0 at the second stage, we have, η

k/l
2 = mind∈Γ2

train

|w
k/l
2

φ2(d)|

‖w
k/l
2

‖

= mind∈Γ2
train

|(wk
2−wl

2)φ
2(d)|

‖wk
2
−wl

2
‖

≥ 1
‖wk

2
−wl

2
‖
. Therefore, the quantity

M =
∑

k,l
1

(η
k/l
2

)2
≤
∑

k,l ‖w
k
2 − wl

2‖
2

≤ 3
∑

k ‖w
k
2‖

2
. Solving the opti-

mization problems at second stage results in the minimization of the quantity
M which is directly related to the margin of the classifier. Plugging the

binary classifiers induced by w
k/l
2 results a stepwise method for calculating

the maximum among {fk
2 (d) = wk

2φ2(d)} that is similar to the process of
finding the secondary structure in the decision directed acyclic graph G. Let

us apply the result of Theorem (3.2) for G with specified margin η
k/l
2 at

each node to bound the generalization error errP(G). Since the number of
decision nodes is 3 and the largest allowed value of ak/l is N , the number of
all possible patterns of ak/l’s over the decision nodes is bounded by N3. We

let δi = δ/N3 so that the sum
∑N3

i=1 δi = δ. By choosing ε(N, δi

2 )

=
1

N

(

195R2
∑

k∈ΣT

‖wk
2‖

2
log(4eN) log(4N) + log

2(2N)3

δ

)

>
1

N





∑

k,l∈ΣT

R2

(η
k/l
2 /8)2

log
4eN

ak/l
log(4N) + log

23

δi/2





from Theorem (3.1)

>
1

N





∑

k,l∈ΣT

ak/l log
4eN

ak/l
log(4N) + log

23

δi/2





Theorem (3.2) ensures that the probability of any of the statements failing
to hold is less than δ/2. By using the result of the Theorem (3.4), the prob-
ability P{Γ2

train : ∃G; errΓ2
train

(G) = 0; errP(G) > 2ε(N, δi/2)} is bound to

be less than δ. From Theorem (3.3), the generalization error errP(f2) with
probability greater than 1 − δ is bound to be less than 2ε(N, δi/2). �



Minimizing the quantity
∑

k∈ΣT
‖wk

2‖
2
, that is, maximizing the value of

margin η
k/l
2 results in the minimization of the generalization error of the single

stage MSVM method. Minimization of
∑

k∈ΣT
‖wk

2‖
2

is done by solving the
convex quadratic programming problem of MSVM. As shown in the result of
Theorem (3.5), two-stage MSVMs are sufficient for PSS prediction because
they minimize both the generalization error errP(f1) based on interactions
among amino acids and the generalization error errP(f2) of the output of
the single-stage MSVM by capturing the contextual information of secondary
structure.

4 Experiments and Results

4.1 Dataset 1 (RS126)

The set 126 nonhomologous globular protein chains, used in the experi-
ment of Rost and Sander 6 and referred to as the RS126 set, was used
to evaluate the accuracy of the classifiers. The RS126 set is available at
http://www.compbio.dundee.ac.uk/∼www-jpred/data/pred res/126 set.html.
The single-stage and two-stage MSVM approaches were implemented, with
the position specific scoring matrices generated by PSI-BLAST, and tested
on the dataset, using a seven-fold cross validation to estimate the prediction
accuracy.

4.2 Dataset 2 (CB396)

The second dataset generated by Cuff and Barton 12 at the European
Bioinformatics Institute (EBI) consisted of 396 nonhomologous protein
chains and was referred to as the CB396 set. Cuff and Barton used
a rigorous method consisting on the computation of the similarity score
to derive their nonredundant dataset. The CB396 set is available at
http://www.compbio.dundee.ac.uk/∼www-jpred/data/. The single-stage and
two-stage MSVM approaches have been used to predict PSS based on the
position specific scoring matrices generated by PSI-BLAST.

4.3 Protein secondary structure definition

The secondary structure states for each structure in the training and testing
sets were assigned from DSSP 20 that is the most widely used secondary
structure definition. The eight states, H(α-helix), G(310-helix, I(π-helix), E(β-
strand), B(isolated β-bridge), T(turn), S(bend), and -(rest), were reduced to



three classes, α-helix (H), β-strand (E) and coil (C), by using the following
method: H and G to H; E and B to E; all others states to C.

4.4 Prediction accuracy assessment

We have used several measures to evaluate the prediction accuracy. The
Q3 accuracy indicates the percentage of correctly predicted residues of three
states of secondary structure 12. The QH , QE , QC accuracies represent the
percentage of correctly predicted residues of each type of secondary structure
12. Segment overlap measure (Sov) gives accuracy by counting predicted and
observed segments, and measuring their overlap 21.

4.5 Results

For MSVM classifier at the first stage, a window size of 15 amino acid residues
(h1

1 = h1
2 = 7) was used as input for optimal result in the [7, 21] range.

At the second stage, the window size of width 21 (h2
1 = 2 and h2

2 = 4) in
the [9, 24] range gave the optimal accuracy. The kernel selected here was

the radial basis function K(x,y) = e−σ‖x−y‖2

with the parameters: σ =
0.05, γ1 = 0.5 for MSVM at the first stage, and σ = 0.01, γ2 = 0.5 for
two-stage MSVMs, determined empirically for optimal performance in the
[0.01, 0.5] and [0.1, 2] ranges, respectively. We used BSVM library 22, which
leads to faster convergence for large optimization problem, to implement the
multi-class technique.

In tables 1 and 2, the results of Zpred, NNSSP, PREDATOR, DSC and
Jpred methods on the RS126 and CB396 datasets were obtained from Cuff
and Barton 12. The results of the refined neural network proposed by Riis
and Krogh, SVM method of Hua and Sun, dual-layer SVM of Guo, BRNN,
and PHD methods were obtained from their papers 6,7,8,14,15.

Table 1 shows the performance of the different secondary structure pre-
dictors and two-stage MSVM approach on the RS126 set. The best algorithm
was found to be the cascade of two MSVMs with the PSI-BLAST profiles,
which achieved 78.0% of Q3 accuracy. Comparing two-stage MSVMs to two
multi-layer perceptron networks of PHD method proposed by Rost and Sander
6, a substantial gain of 7.2% of Q3 accuracy was observed. Compared to SVM
method of Hua and Sun 14, the two-stage MSVM method obtained 6.8% higher
Q3 score.

Table 2 shows the performance of two-stage MSVMs with the CB396
dataset based on multiple sequence alignments and PSI-BLAST profiles. Two-
stage MSVMs with PSI-BLAST profiles achieved 76.3% of Q3 accuracy that is



Table 1. Comparison of performances of single-stage and two-stage MSVM approaches in
PSS prediction on the RS126 dataset. The notation - indicates that the result cannot be
obtained from the papers.

Method Q3 QH QE QC Sov
Zvelebil et al. (Zpred) 23 66.7 - - - -
Rost and Sander (PHD) 6 70.8 72.0 66.0 72.0 -
Salamov et al. (NNSSP) 10 72.7 - - - -
Frishman (PREDATOR) 24 70.3 - - - -
King and Sternberg (DSC) 25 71.1 - - - -
Riis and Krogh7 71.3 68.9 57.0 79.2 -
Baldi et al. (BRNN) 8 72.0 - - - -
Cuff and Barton (Jpred) 12 74.8 - - - -
Hua and Sun (SVM) 14 71.2 73.0 58.0 75.0 -
Single-Stage MSVM 76.2 69.6 63.5 83.1 68.8
Two-Stage MSVMs 78.0 73.1 65.7 83.8 72.6

Table 2. Comparison of performances of single-stage and two-stage MSVM approaches in
PSS prediction on the CB396 dataset with PSI-BLAST profiles.

Method Q3 QH QE QC Sov
Zvelebil et al.(Zpred)23 64.8 - - - -
Salamov et al. (NNSSP)10 71.4 - - - -
Frishman (PREDATOR)24 68.6 - - - -
King and Sternberg (DSC)25 68.4 - - - -
Guo et al.(Dual-Layer SVM)15 74.0 79.3 69.3 72.0 -
Single-Stage MSVM 74.5 68.5 62.0 82.4 69.5
Two-Stage MSVMs 76.3 70.6 63.4 83.4 73.2

the highest scores on the CB396 set to date. Compared to the newest method
of Guo et al. using dual-layer SVM 15, the two-stage MSVM method signifi-
cantly obtained 2.3% higher Q3 score. As shown, the prediction accuracy of
two-stage MSVMs outperformed the result of single-stage MSVM method for
PSS prediction.

In order to avoid to gross overestimates of accuracy, we performed an-
other test on CB396 dataset: we selected best parameters within each cross-
validation step by dividing the training data into one for SVM learning and
another for selection of window size, σ and γ parameters. The accuracies of
the new evaluation approach were not significantly different from those shown



on Table 2 (76.5% of Q3 and 72.9% of Sov). These results confirmed that the
selected window size, sigma and gamma parameters in both learning stages
were not biased by the test data chosen.

5 Discussion and Conclusion

We have introduced a two-stage MSVM approach to PSS prediction. With
two-stage approaches, the accuracy of prediction is improved because sec-
ondary structure at a particular position of a sequence depends not only on
the amino acid residue at a particular location but also on the structural for-
mations of the rest of the sequence. Two-stage approach was first introduced
in PHD approach which uses two MLPs in cascade for PSS prediction. MLPs
are not optimal for this because the cannot generalize the prediction for un-
seen patterns. The outputs of single stages have been combined in parallel
into a single superior predictor to improve upon the individual predictions
12,13. However, these methods are depended on performances of individual
single models and also do not overcome the limitation of single-stage methods.
As shown, the MSVM method was an optimal classifier for the second stage
because it minimizes not only the empirical risk of known sequences but also
the actual risk of unknown sequences. Additionally, two stages were proven
to be sufficient to find an optimal classifier for PSS prediction as the MSVM
minimized the generalization error of the output of single-stage by solving the
optimization problems at second stage.

Furthermore, we have compared two-stage SVM techniques for PSS prob-
lem: one method based on binary classifications of Guo 15 and the other ap-
proach for multi-class problem by solving one single optimization problem.
We found that the two-stage MSVMs is more suitable for protein secondary
structure prediction because its capacity to lead faster convergence for large
and complex training sets of PSS problem and solve the optimization problem
in one step.

As proved analytically, two-stage MSVMs have the best generalization
ability for PSS prediction, by minimizing the generalization error made in the
first stage MSVM. However, since this scenario could not be compared with
the other techniques as they stick to seven-fold cross-validation for evaluation,
which does not test true generalization capabilities. Further, our comparisons
with the other techniques were not complete due to the inaccessibility of
previously used data and programs. Also, the kernels and SVM parameters
were empirically determined as there do not exist any simple methods to find
them otherwise. Investigation on two-stage MSVM parameters could further
enhance accuracies.
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