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When searching for an optimal protein structure, it is often necessary to generate
a set of structures similar, e.g., within 4Å Root Mean Square Deviation (RMSD),

to some base structure. Current methods to do this are designed to produce only
small deviations (< 0.1Å RMSD) and are inefficient for larger deviations. The
method proposed in this paper, ChainTweak, can generate conformations with
larger deviations from the base much more efficiently. For example, in 18 seconds
it can generate 100 backbone conformations, each within 1-4Å RMSD of a given
45-residue conformation. Moreover, each conformation has correct bond lengths,
angles and omega torsional angles; its phi-psi angles have energetically favorable

values; and there are rarely any backbone steric clashes. The method uses the
insight that loop closure techniques can be used to perform compensatory changes
of dihedral angles so that only a part of the conformation is changed. It is demon-

strated, using decoys from the Decoys ‘R Us data-set, that ChainTweak can be
used to construct good decoys. It also provides a novel and intuitive way of analyz-
ing the energy landscape of a protein. In addition, ChainTweak can improve the

accuracy and performance of the loop modeling program RAPPER by an order of
magnitude (1.1 min. vs. 36 min. for an 8-residue chain).

Availability & Supp. Info.: http://theory.csail.mit.edu/chaintweak

1. Introduction

A fundamental axiom of molecular biology is that the function of a protein

is determined by its structure. In turn, most protein structure determination

problems are, essentially, search problems. In some of these, e.g., homology

modeling or protein re-design, the problem specification may restrict the

search to the neighbourhood of some template structure. In other cases,

restricting the search to the neighbourhoods of a set of candidate structures

might just be a solution strategy (e.g., in the Rosetta4 method for ab-initio

folding). Here, the neighbourhood of a structure is the set of structures similar

to it. For example, the set of all structures within, say, 4Å RMSD of a base

structure could be defined as its neighbourhooda.

∗Corresponding author
†Also in the MIT Dept. of Mathematics
aOf course, the size of the neighbourhood and, consequently, the exact choice of a RMSD

threshold would depend on the problem instance and the size of the protein. Typically,
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Figure 1: (a) A cartoon illustrating the space coverage differences between global, neigh-

bourhood, and local search. Observe that local search techniques can only cover the basin

on one local minima. (b) Cartoon illustrating that changes in dihedral angles near the

terminal regions of a chain (A) result in small perturbations (B and C), while changing an
angle in the middle of the chain results in a very large perturbation (D). (c) Example out-
put from ChainTweak. Ten conformations from the neighbourhood of a 32-residue protein

structure (PDB:1clv, chain I) were sampled and aligned with the original. The original
structure is in black, the others are in gray.

Efficiently searching in the neighbourhood of a possible protein structure

(conformation) is thus an important and frequently recurring problem. As

the term “neighbourhood search” signifies, this search problem is different

from global or local search problems (Fig 1a), even though it has usually

been studied as an extreme case of these. This paper focuses on the sampling

component of this search problem and presents a method, ChainTweak, for

efficiently and representatively sampling from a given neighbourhood.

Many different approaches to neighbourhood sampling have been tried.

High-temperature Molecular Dynamics (MD) methods have been used to

generate structures with 2-4Å RMSD from the native1. Methods based on

discrete off-lattice models2,3 discretize the dihedral-angle space and try out

different combinations. Similarly, in Monte Carlo (MC) search methods, var-

ious move-sets have been developed for making local moves. For example,

fragment-swap MC in Rosetta4 relies on using a database of polypeptide frag-

ments to swap one fragment for another, as long as their ends match. Another

set of approaches, such as in torsional dynamics5, or the MC-based methods

proposed by Ulmschneider & Jorgensen6 and Cahill et al.7 use geometric

insights to perform such local modifications.

Our proposed neighbourhood sampling method, ChainTweak, has many

advantages over existing methods. Rather than being closely tied to some

search strategy (or an energy function), it is a stand-alone method that can

be used by researchers as a black-box, allowing them to focus on other parts

of the search problem (e.g., energy function design8). Moreover, ChainTweak

for a 50-residue protein, two conformations within 2Å of each other are considered almost

identical. Thus, in this case, the threshold size should be ≥ 2Å.



enables fast generation of ensembles (sets of conformations) centered around

any given base conformation. The flexibility of ChainTweak enables novel

applications (e.g., energy function analysis) and enhances the performance of

existing applications (see Section 5).

1.1. Neighbourhood Sampling: The Right Representation?

Almost all neighbourhood sampling methods work by perturbing the base

conformation’s structure to generate conformations in its neighbourhood. To

model the structure, these methods use either an all-atoms Cartesian coor-

dinates based model or a dihedral angles based model.

Most existing methods use the Cartesian coordinate based model. With

this model, however, an energy minimization step is needed to restore correct

bond lengths/angles in the perturbed structures. Efficiency and convergence

issues with this step limit the size of a single perturbation step (< 0.1Å9).

Thus, only a small neighbourhood around the base can be explored. For

larger deviations, successive perturb-and-minimize operations, using an MD-

like approach1, can be done. However, generating many MD trajectories, to

ensure representative sampling, may become computationally expensive.

In contrast, representing the protein backbone by its dihedral angles offers

distinct advantages. All conformations sampled from the neighbourhood will

then have different dihedral angles but the same bond lengths/angles. Since

the latter can always be set to their desired/ideal values, no minimization step

is necessary. Hence, the restriction on small perturbation sizes is removed.

However, modifying a dihedral angle at residue i changes the positions of all

residues i + 1 onwards. As a result, the perturbed structure may deviate

so far from the base as to not be in the neighbourhood at all, especially if

residue i is in the middle of the chain (Fig 1b). This problem is the major

stumbling block in using a dihedral angles based representation.

One way to solve this problem, e.g., in Torsional Dynamics (TD)5, is

compensatory modification of multiple torsional angles such that the overall

structural deviation is acceptably small. However, the differential calculus-

based methods used by TD algorithms work well only for small perturbations.

Moreover, the sampling behavior is effected by the energy function chosen for

the TD simulations. The reader might also notice the parallel here with the

loop closure problem where one needs to find small chains joining two fixed

ends. Indeed, our proposed algorithm, ChainTweak, exploits this parallel.

1.2. Contributions

ChainTweak is an algorithm for efficiently sampling from the neighbour-

hood of a given base conformation. It generates a set of backbone conforma-



tions such that each new conformation has the following properties: it lies in

a neighbourhood of the base; it has the terminal (first and last) residues fixed

in the same relative positions as the base; and it has bond lengths/angles set

to their desired/ideal values. In Section 2 we describe a simple extension that

allows the positions of terminal residues to vary as well.

ChainTweak iteratively perturbs the base conformation using the dihedral

angle representation. A sliding window approach is used to successively move

some atoms by 0–2Å while keeping all others fixed. Inside the window, loop

closure methods are used to generate such perturbations. Moreover, residue-

specific phi-psi angle preferences can be used to choose a perturbation.

We show that ChainTweak can explore large neighbourhoods efficiently.

Given a conformation of a 45-residue protein, in 18 seconds it can generate

100 backbone conformations, each within 1-4Å RMSD of the base. Moreover,

by running ChainTweak for more iterations larger neighbourhoods can be

explored: for this protein, a conformation with RMSD of 12Å from the base

can be found. In contrast, after 18 seconds, an MD simulation (run using

TINKER9) produces a single conformation for the same protein (with 0.91Å

RMSD). Even theoretically, ChainTweak’s running time is asymptotically

optimal— linear in the length of the chain and the number of samples desired.

We also describe some applications of ChainTweak (Section 4.2). It im-

proves upon the performance of some existing applications (decoy generation

and ab-initio loop-modeling using RAPPER) and also enables novel applica-

tions (energy function analysis in an intuitive way).

2. Algorithm

Here we present the algorithm ChainTweak that has the following input

and output:

Input: A single backbone conformation C0 described by its bond lengths,

bond angles and dihedral angles.

Output: N conformations such that the RMSDs of these conformations w.r.t.

C0 roughly follow a desired distribution. For example, half of the output

conformations are 0–2Å RMSD from the base while the rest are 2–4Å RMSD

from the base. For each output conformation, the bond lengths, bond angles

and the relative positions of the end-residues are the same as in C0.

The initial restriction on preserving the relative positions of the end-

residues can be adapted for flexible chain ends by pre-processing C0 to produce

a set of conformations with randomly sampled values for dihedral angles at

the end-residues. Recall that modifying dihedral angles at the ends only

results in local structure changes (Fig 1b). Each of these conformations then

becomes the input to a separate ChainTweak instance.



Observe that by iteratively setting each output conformation as the input

of a new ChainTweak problem, more solutions can be found for the original

ChainTweak problem. Also, the problem can be recursively solved by split-

ting the input chain into two sub-chains and concatenating the respective

solutions. We do this until we have a chain small enough to be solved using

loop-closure techniques. The pre-processing step (moving the chain ends)

mentioned previously is required only at the top level of recursion, i.e., for

the full-length chain.

The loop closure problem was informally discussed by Robert Diamond14

and was formally defined by Go and Scheraga15. The input in such a problem

is the relative position of two fixed residues (anchors) at each end and the

goal is to find different possible conformations for a polypeptide chain of

length m joining the fixed ends. For a problem instance with 6 unknown

dihedral angles, i.e. 6 degrees of freedom (DOFs), the maximum number

of possible solutions is 16. With more DOFs, the number of solutions is

infinite. In the 6-DOF case, Manocha et al.16 applied inverse kinematics

techniques from robotics to numerically generate all possible 16 solutions.

More recently, Wedemeyer and Scheraga17 and Coutsias et al.18 have also

presented analytic solutions for the 6-DOF problem. ChainTweak can use

any of these as a subroutine (Algorithm 3 in Supp. Info.).

ChainTweak iteratively calls the subroutine SlideWin (Algorithm 2 in

Supp. Info.). Given a starting backbone conformation, SlideWin finds a

new backbone conformation using a sliding window approach (Fig 2a). A

window of 3 residues (9 points) is chosen. After fixing 3 points on both

ends, this results in a 6-DOF loop closure problem. We use Manocha et al.’s

algorithm when omega angles are unrestricted and Coutsias et al.’s algorithm

when omega angles have to be restricted to particular values (say, 180◦). A

wrapper around these routines (LoopClsr6, Algorithm 3) suggests up to

15 alternative conformations for the conformation inside the window. Of

these, we randomly select one conformation, biasing our choice towards a

conformation that has phi-psi angles in favorable/acceptable regions of the

Ramachandran Plot (Fig 3). Residue and secondary structure information

can thus be encoded by designing appropriate phi-psi preference maps.

A single iteration of SlideWin moves each residue by about 0.5–1.5Å.

ChainTweak (Algorithm 1 in Supp. Info.) iteratively applies SlideWin K

times to achieve a much larger deviation from the starting conformation; the

output conformations of one iteration form the input for the next. Between

each iteration, some conformations may be pruned out, depending on their

RMSD from the original structure. The exact pruning policy is described by
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Figure 2: (a) A cartoon describing SlideWin. Inside each window, LoopClsr6 is used

to perform the tweak. Observe that the first and last positions in the window are not

changed, both in LoopClsr6 and SlideWin (see Supp. Info.). (b) A plot showing the

frequency distribution of ChainTweak-generated conformations vs. their RMSD w.r.t the
base. The parameters K and Filter can be used to control structural variation in the
output set. A low value of K (=5) results in conformations that are similar to the the
original. K = 21 resulted in greater structural variation. Filter was used to ensure
that the distribution was “more even”. The frequencies of each distribution have been
scaled so that the maximum is same across all three. (c) A plot showing the frequency
distribution of ChainTweak-generated conformations, classified by the number of steric
clashes per conformation and its RMSD from the native. 10000 backbone conformations

from the neighbourhood of a 45-residue structure (PDB 1bh9:31-75) were generated. For
each conformation, the number of backbone steric clashes, using a cutoff of 2Å, were

counted. Most of the conformations, even those with large RMSDs from the base, have no
steric clashes. Note that the frequencies are shown on a log scale.

the user-specified parameter Filter (described below) and helps in achieving

a desired structural variation in the final solution set (Fig 2b).

3. Results

3.1. Performance Analysis

The size of the neighbourhood explored by ChainTweak, measured in

RMSD from the base, is controlled by the number of iterations, K. In our

simulations, we observed that this size increases from 2.5Å, for K = 5, to

about 4.5Å, for K = 21 (Fig 2b). ChainTweak can explore rather large

neighbourhoods: for a 45-residue protein it can generate a conformation with

12Å RMSD from the base.

Another user-specified parameter, Filter, can be used to control the

structural variation in ChainTweak’s output by describing a pruning policy.

An example pruning strategy (Fig 2b) is to remove enough structures, after

every 4th iteration, such that the RMSDs (w.r.t. the base) of the remaining

structures are uniformly distributed. Without any pruning, the output set’s

composition is skewed towards structures with low RMSD (approx 1-2Å) from

the base. This is understandable— having performed a tweak operation on

a conformation, a second tweak operation is as likely to take it further away

from the original as it is to bring it back closer to the original. Analogously,
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Figure 3: (a) Using a reference Ramachandran Plot, (b) we implemented a simple phi-psi
priority scheme: (red: favorable, allowed) > (dark blue: generously allowed) > (light blue:
others). (c) For 10000 conformations of a 45-residue protein (PDB: 1bh9,31-75) generated
by ChainTweak, the phi-psi distributions match well with the specified priorities. This
protein has 2 alpha-helices which explains the higher frequency of phi-psi angles in regions
of the plot corresponding to alpha-helical structure.

recall that in a 1-D random walk, the probability of being at distance d from

the origin decreases exponentially with d.

Can ChainTweak representatively sample from the entire neighbour-

hood? Some recent theoretical work19,20 on the folding of polygonal chains

suggests that any two protein backbone conformations (with same bond

lengths/angles) can be converted into each other by simply changing the

dihedral angles. This suggests that ChainTweak can explore the entire neigh-

bourhood. Also, observe that the “tweak” operation of SlideWin is essen-

tially a random walk in this neighbourhood. This, in turn, suggests that

ChainTweak’s sampling is representative.

ChainTweak is efficient in both practice and theory: for a chain of length n

with N output conformations, the running time of ChainTweak is O(Nn). It

is dominated by the approximately KNn/3 calls to LoopClsr6. The actual

time spent per call of LoopClsr6 does not vary much (avg: 8.3 millisecs;

std dev: 3.6 millisecs on a Pentium-4 2.4GHz PC). Also, observe that just

writing the output (N conformations, each of size O(n)) would take O(Nn)

time. Hence, ChainTweak is an asymptotically optimal algorithm.

ChainTweak has high numerical accuracy. Its implementation avoids er-

ror accumulation (see Supp. Info. for details). For example, the deviation of

atom positions in the terminal residues is negligible: avg error = 0.001Å.

Conformations generated by ChainTweak have very few backbone steric

clashes (Fig 2c). This is probably because, in all our experiments, the base

conformation did not have any steric clashes and the output conformations

are similar to the base. After the addition of sidechains to the generated back-

bone conformations, both new sidechain and old backbone steric clashes, if



ChainTweak + RAPPER RAPPER only

Best generated Best generated

(RMSD) (RMSD)

Time Backbone Cα C Anchor Time Backbone Cα C Anchor

Length (min.)? Global Local Local (RMSD)† (min.)‡ Global Local Local (RMSD)
8 0.7(1.1) 1.40 0.92 0.93 0.02 36.4 1.11 0.70 0.56 0.30
9 1.1(1.5) 1.61 1.07 1.12 0.03 30.5 1.29 0.81 0.72 0.33

10 1.3(1.7) 2.02 1.24 1.31 0.01 44.15 1.67 1.11 1.00 0.41
11 1.7(2.3) 2.45 1.49 1.61 0.04 59.17 1.99 1.27 1.23 0.33
12 2.1(3.1) 2.21 1.56 1.72 0.02 100.4 2.21 1.47 1.46 0.54

Table 1: ChainTweak can improve upon the performance of the loop modeling program

RAPPER. The latter’s performance in generating 1000 loop conformations for loops of
various lengths has been measured using the FISER dataset10. From the same dataset, for

chain lengths between 8-12 residues, we picked 20 chains each. For each of these, a repre-
sentative set (in terms of their RMSDs from the native conformation) of 10 conformations
was picked from the RAPPER-generated set. Using ChainTweak, 100 conformations in
the neighbourhood of each such conformation were sampled. As in ref. (10), the quality
of these 1000-conformation ensembles is measured in terms of the smallest Global (only
loop ends aligned) and Local (whole chain aligned) RMSD of any conformation w.r.t. to
the native (averaged across all 20 chains) and the deviation of C-terminal loop ends from

the desired position. [?] The time in parentheses includes the estimated cost of generating
10 conformations using RAPPER. [†] Before running ChainTweak, the chosen RAPPER-

generated conformations were fixed, if possible, so that their ends matched those of the
native. [‡] To account for differences in processing power (2.4GHz for us vs. 900MHz in

ref. (10)), these running times are one-fourth of the actual times reported in ref. (10).

any, can be relieved simultaneously. Hence, we decided against explicitly

checking for steric clashes in ChainTweak. In case such checks become neces-

sary, they can be done efficiently by taking advantage of ChainTweak’s incre-

mental modification approach and using kinetic data structures22 or Lotan

et al.’s hierarchical approach23.

ChainTweak generates structures where most of the phi-psi angles have

favorable values. A random 6-DOF chain with fixed ends has multiple alter-

native conformations. Residue and secondary-structure related phi-psi pref-

erences can be used to pick the most appropriate alternative. We encoded a

simple phi-psi preference map which accorded higher priority to any phi-psi

combination lying in favorable and acceptable regions of the Ramachandran

Plot. Even this simple map yielded impressive results (Fig 3).

3.2. Applications

Loop Modeling: ChainTweak can be used to supplement an ab-initio

loop modeling program like RAPPER (DePristo et al.10). The latter gener-

ates loop conformations by sampling in a discretized phi-psi angle space and

then using a dihedral angle-based minimizer to ensure that the position of

loop ends is roughly unchanged. The method is computationally expensive
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Figure 4: (a,b) Decoys of a protein domain (PDB 1mfa:1-111, ig structal hires in De-

coys ’R Us) were extracted from the Decoys ’R Us Database (DB) and were also created
using ChainTweak (CT). Both the sets, as well as the native, were minimized using the

CHARMM v19 energy function and the TINKER package. (a) Post-minimization ener-
gies and Cα-RMSD from the native structure are plotted to illustrate that both DB and

CT decoy-sets manage to “fool” the energy function and are structurally similar to the
native structure. (b) To identify regions with local structural variation, we measured the

standard deviation of phi-psi angles along the chain. This indicates that the CT set is
more representative: its local structural variation is not limited to a few regions. (c,d)
Comparison of decoys produced by DB (c) and CT (d) for the loop region 1vfa:158-166.

The structural variation among the decoys, as measured by Cα-RMSD to the native con-
formation, is comparable across the two sets

because all conformations with incorrect positions of the loop ends have to be

rejected. In contrast, ChainTweak only generates conformations that have

the loop ends in the right positions.

ChainTweak can be used to efficiently expand a small ensemble generated

by RAPPER, thus improving overall efficiency by an order of magnitude

(Table 1). The ensembles generated by the two methods are of comparable

quality (as measured by the RMSD to the native conformation). On one

important criterion, that of fixing the positions of the loop ends, ChainTweak

actually performs much better.

Decoy Generation: Decoys2 are non-native structures that can be used

to design energy functions8 capable of distinguishing such structures from

the native. We have found that ensembles generated by ChainTweak can

be used to generate decoys, especially those that are globally similar to the



A CB

w.r.t. the native’s minimum,

# of minima with largest
Energy Function < 0.1Å RMSD < 0.5Å RMSD RMSD

Amber ’99 + GB/SA 6 of 10 10 of 10 0.32Å

Charmm v19 + GB/SA 5 of 10 10 of 10 0.16Å

OPLS + GB/SA 3 of 10 10 of 10 0.25Å

Charmm v27 + GB/SA 3 of 10 10 of 10 0.39Å
Charmm v19 2 of 10 5 of 10 4.38Å

Charmm v27 0 of 10 4 of 10 2.33Å

Amber ’99 0 of 10 4 of 10 1.72Å

OPLS 0 of 10 0 of 10 3.17Å

Figure 5: Figure: This figure illustrates how ChainTweak can be used for analyzing

energy landscapes. (A) Given some decoy and two candidate energy functions, (B) Chain-
Tweak can sample from the neighbourhood of the decoy. (C) The generated conformations
are minimized and the distribution of local minima provides information about the energy
landscape. Note that the same set of conformations is used for each energy function.
Table: ChainTweak was used to generate 10 conformations similar (within 0.003-0.13Å
RMSD) to an alpha-helix (PDB 2gib:22-37). Eight different energy functions were used
to minimize the ensemble conformations, resulting in 10 local minima per function (see
Supp. Info. for details). For each function, the RMSDs of these local minima from the

local minimum corresponding to the native structure were measured. An energy function
ranked higher if it had more local minima with a very low (< 0.1Å) RMSD from the min-

imum corresponding to native structure. As can be seen, the addition of a solvation term
(GB/SA24) improves the performance of these energy functions.

native structure but have significant local differences from it. As the use of

homology modeling to predict structure increases, the need for such decoys

will increase. We used some loop decoy-sets and some homology modeling

based decoy-sets (HM) from the the Decoys ’R Us database (Samudrala and

Levitt12) to evaluate ChainTweak-generated decoys.

ChainTweak’s HM decoys are comparable to the database decoys in terms

of their energy-vs-RMSD profile. CT decoys are more representative, i.e,

their local structural variation is not limited to a few small regions (Fig 4a,

4b). With HM decoys, the use of homology forces biased sampling: the local

structural variation across them is limited to a few regions. With Chain-

Tweak, the user has the option to either emulate such behavior (by applying

ChainTweak only on specific parts of the chain) or have equal local variation

through-out the entire chain (Fig 4b).

We also compared ChainTweak-generated loop decoys against some loop

decoy-sets from the database. The former performed comparably with

database decoys in terms of their structural characteristics (Fig 4c, 4d). They

performed significantly better on the criteria of preserving the positions of

loop ends (∼ 0.01Å deviation vs. ∼ 0.5Å deviation).

Energy Landscape Analysis: As discussed by Keasar and Levitt21,

well-designed functions should have wide basins and few local minima so that



structurally similar conformations are minimized to the same local minima

(Fig 5). Ensembles generated by ChainTweak can be used to analyze the

energy landscape of any energy function f around a protein structure b: after

each conformation in the ensemble is minimized, the distribution of these local

minima and their proximity to the base provide direct information about the

energy landscape. Observe that such analysis does not require that the native

structure be known. This is an important advantage of ChainTweak: it can

be used in homology modeling to pick the right energy function.

Using a ChainTweak-generated ensemble around an alpha-helix, we com-

pare different energy functions and demonstrate, in a direct way, the value

of incorporating solvation effects (Table in Fig 5).

4. Discussion

In this paper, we have presented a formulation of the neighbourhood sam-

pling problem that is independent of any search problem or energy function.

Our proposed method for this problem, ChainTweak, can be used as a tool in

many different applications and also enables novel applications like analysis

of the energy-landscape around a particular conformation.

ChainTweak provides significant performance improvements over exist-

ing methods. Unlike discrete off-lattice phi-psi angle models2,3, it does not

generate (and reject) infeasible solutions. Its perturbation size (and, thus,

efficiency) is much larger than what is possible with MD-like methods1,5 and,

unlike these methods, it can also modify partial structures. With database-

based methods, e.g., fragment-swap MC4, a small database size restricts the

number of solutions that can be found while a larger database reduces ef-

ficiency. ChainTweak, in contrast, is fast and explores all possible local

perturbations at each step.

Like ChainTweak, some MC-based methods6,7 also make local moves by

compensatory modification of dihedral angles. While ChainTweak’s modular

design allows easy emulation of these methods’ local-modification approaches,

its currently chosen methods for loop-closure16,18 allow larger local pertur-

bations (i.e., more efficient space coverage) and the ability to get multiple

possible alternative local moves at each step, at no extra cost. Thus, unlike

existing methods, per-residue phi-psi preferences can be easily supported.

A goal of this paper has been to demonstrate the usefulness of a stand-

alone neighbourhood sampling program. In future work, we hope to fur-

ther explore the use of ChainTweak in problems where it might enable

new analyses and methods. For example, ChainTweak-generated ensembles

could be used to further analyze energy functions and add entropic terms to

them. Using ChainTweak, conformational propensities of disordered regions



in proteins25 and conformational variation across sets of re-engineered28,29 or

homologous30 proteins could be studied. It could be used in conjunction with

existing methods26,27 to analyze the ligand-protein docking process. We are

also considering extending the algorithm to handle sidechain rotamer prefer-

ences and covalently-modified resiudues (e.g., phosphorylation).
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