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We present a measure of contextual similarity for biomedical terms. The contex-
tual features need to be explored, because newly coined terms are not explicitly
described and efficiently stored in biomedical ontologies and their inner features
(e.g. morphologic or orthographic) do not always provide sufficient information
about the properties of the underlying concepts. The context of each term can be
represented as a sequence of syntactic elements annotated with biomedical infor-
mation retrieved from an ontology. The sequences of contextual elements may be
matched approximately by edit distance defined as the minimal cost incurred by
the changes (including insertion, deletion and replacement) needed to transform
one sequence into the other. Our approach augments the traditional concept of
edit distance by elements of linguistic and biomedical knowledge, which together
provide flexible selection of contextual features and their comparison.

1. Introduction

Breakthrough advances in biotechnology have given rise to rapid production
of biomedical data. New discoveries are being described in scientific papers
(most often electronically available) with the intention of sharing the results
with the scientific community. However, the rapid expansion of the bio-
literaturea makes it increasingly difficult to locate the right information
at the right time. Clearly, for biomedical experts to experience the full
benefits of electronically accessible literature, natural language processing
(NLP) applications (such as information retrieval, information extraction,

∗This work has been partially supported by the JISC-funded National Centre for Text
Mining (NaCTeM), Manchester, UK.
aFor example, the MEDLINE database (www.ncbi.nlm.nih.gov/PubMed) currently con-
tains approximately 12 million references to biomedical articles, growing by more than
10,000 references weekly.



etc.) are becoming a necessity in order to facilitate navigation through huge
volumes of biomedical texts.

Automatic extraction and retrieval of biomedical information subsumes
identification of terms denoting biomedical concepts (such as compounds,
genes, drugs, reactions, etc.), their properties and mutual relations from
a corpus of relevant documents. Rule-based approaches to these problems
cannot cope with an enormous and ever growing number of terms and the
complex structure of terminologiesb. Since rules would need to be defined
for each NLP task and biomedical subdomain separately, manual rule en-
gineering in such a broad and complex domain is hindered by inefficiency
and inconsistency. Alternatively, a similarity measure could be used as a
vehicle of machine learning approaches to a variety of NLP tasks, utilising
the large body of biomedical texts as the training data. In this paper, we
suggest a measure of contextual similarity between biomedical terms based
on edit distance. The alignment between two contexts corresponding to
their edit distance can be used to match terms occurring in similar con-
texts. This property can be further exploited to support tasks such as term
classification and disambiguation, extraction of their relations, etc.

The remainder of the paper is organised as follows. In Section 2 we
briefly overview edit distance. Section 3 introduces the sold measure, gen-
erally based on the idea of edit distance as a means of assessing contextual
similarity of biomedical terms. Sections 4, 5 and 6 give details on the spe-
cific aspects of the sold measure, namely syntactic, ontology-driven and
lexical components. Finally, in Section 7 we conclude the paper.

2. Background and Related Work

Edit distance (ED) has been widely used for approximate string matching,
where the distance between identical strings equals zero and increases as the
strings get more dissimilar with respect to the symbols they contain and the
order in which they appear. ED is defined as the minimal cost incurred by
the changes needed to transform one string into the other. These changes
may include insertion or deletion of a single character, replacement of two
characters in the two strings and transposition of two adjacent characters in
a single string. The choice of edit operations and their costs influences the
“meaning” of the corresponding approximate matching, and thus depends

bFor example, UMLS (www.nlm.nih.gov/research/umls) currently contains over one mil-
lion concepts named by 2.8 million terms, organised into a hierarchy of 135 classes and
interconnected by 54 different relations.



on a specific application.
A most popular application area of ED is molecular biology, where it

has been used to compare DNA and protein sequences in order to infer
information about the common ancestry, functional equivalence, possible
mutations, etc.1 It has also been successfully utilised in NLP to deal with
alternate spellings, misspellings, the use of upper- and lower-case letters,
etc. Further, ED has been used in terminological processing for the recog-
nition of term variants (namely, protein names) based on their internal
properties focusing on orthographic features.2 Our intention, however, is
primarily to explore contextual properties of terms.

In this case, it is more convenient to apply ED at the word level rather
than the character level. Namely, character-based ED does not cope well
with permutations of words. For instance, judging by the “conventional”
ED, stone in kidney is more similar to stone in bladder than kidney stone.
Obviously, for some applications it is more useful to treat strings as se-
quences of words. For example, approximate string matching can be viewed
as the problem of pairing up their words so as to minimise their ED.3 Re-
cently, ED has been applied at the word level4 as support for extended
phrase-based text search allowing different wordings and syntactic mis-
takes. In this approach, ED was simply applied to words as opposed to
characters. We, however, enriched the basic ED approach with linguistic
knowledge (relying on part-of-speech (POS) tagging and partial parsing)
and domain-specific knowledge (using an ontology). In the following sec-
tion, we point to the main developments in this direction.

3. Approximate Context Matching

ED usually relies on the exact matches between symbols unless “wild card”
symbols are allowed. This is not suitable for words, because they are in-
flected. Also, term variation causes two terms not to match even when
they are synonymous. We want to keep the main idea of ED to account
for different orderings of words, but also to make it more flexible towards
lexical variations. For example, two inflected word forms should match if
both their lexical categories and their base forms are identical, e.g.: c

<tok><sur>better</sur><lem cat=”adj”>good</lem></tok>

<tok><sur>good</sur> <lem cat=”adj”>good</lem></tok>

cIn the given XML notation, elements <tok>, <sur> and <lem> stand for token, surface
form and lemma respectively, while attribute cat corresponds to category.



When two terms are compared, information from an ontology may be
utilised. If the terms match exactly or if they are identified as variants,
the matching score should be the highest, slightly less if they are siblings
in the “is-a” hierarchy, etc. For example, the following terms have been
recognised as variants in UMLS and annotated as such in the corpus by
mapping them to the same preferred term form:

<tok><sur>vitamin A</sur><lem cat=”term”>vitamin A</lem></tok>
<tok><sur>A vitamin</sur><lem cat=”term”>vitamin A</lem></tok>
<tok><sur>vitamin-A</sur><lem cat=”term”>vitamin A</lem></tok>
<tok><sur>retinol</sur> <lem cat=”term”>vitamin A</lem></tok>

Similarly, classified terms can be compared through their classes, e.g. both
retinol and ascorbic acid are mapped to the Vitamin class in UMLS, and
therefore can be regarded similar:

<tok>
<sur>retinol</sur> → Vitamin
<lem cat=”term”>vitamin A</lem>

</tok>
↑ similar ↓ ← ↑ identical ↓

<tok>
<sur>ascorbic acid</sur>
<lem cat=”term”>vitamin C</lem> → Vitamin

</tok>

When term classes are not identical, their superclasses can be compared
analogously, e.g. the classes retrieved for terms insulin and glycosidase are
respectively Hormone and Enzyme, which both descend from the Biologi-
cally Active Substance class, so the given terms can be regarded similar:

<tok>
<sur>insulin</sur> → Hormone
<lem cat=”term”>insulin</lem> ↘

</tok> Biologically
↑ similar ↓ ← Active

<tok> Substance
<sur>glycosidase</sur> ↗
<lem cat=”term”>glycosidase</lem> → Enzyme

</tok>

When at least one of the compared terms is not classified, then lexical clues
may indicate their semantic similarity. For example, suppose that retinol
has been mapped to its preferred form vitamin A in the ontology and that
vitamin C has only been identified in the corpus. Then the lexical similar-
ity between the corresponding normalised forms vitamin A and vitamin C
(e.g. measured by ED) can be used to reduce the cost of their replacement:



<tok>
<sur>retinol</sur> → Vitamin
<lem cat=”term”>vitamin A</lem>

</tok>
↑ similar ↓ ← ↑ lex. similar ↓ ← ↑ ? ↓

<tok>
<sur>vitamin C</sur>
<lem cat=”term”>vitamin C</lem> → ?

</tok>

Apart from lexical and terminological clues, syntactic information can
be utilised as well. For example, partial parsing can be applied to POS-
tagged text to group subsequent words into basic syntactic structures
(e.g. noun phrases). ED applied to chunks of words rather than individual
words is “forced” to take into account the syntactic structure at the phrase
level. By choosing to replace syntactic categories with similar properties at
lower costs (e.g. nouns and pronouns), ED can also be used to compare the
syntactic structure at the sentence level. Namely, the sentences receiving
low ED values are the ones that can be transformed into one another us-
ing a small number of low-cost edit operations, implying that their overall
syntactic structure is fairly isomorphic.

We suggested how the traditional concept of ED can be augmented
by elements of linguistic and domain-specific knowledge. We continue
to describe the specific solutions used to implement the sold (syntactic,
ontology-driven, lexical distance) measure.

4. Syntactic Component

Let X = (x1, . . . , xm) and Y = (y1, . . . , yn) denote two sentences as the se-
quences of chunks (not individual words) denoted by xi (1 ≤ i ≤ m) and yj

(1 ≤ j ≤ n). Their distance is defined as the minimal number of edit opera-
tions necessary to transform X into Y . Figure 1 describes the computation
of the sold measure using the standard dynamic programming approach,5

where cost(i, j) denotes ED between (x1, . . . , xi) and (y1, . . . , yj), IC and
DC (where IC ≡ DC) are the costs of inserting and deleting a given chunk,
and RC is the cost of replacing two chunks (see Table 1d). Automatic opti-
misation of the cost function led to overfitting. Therefore, an appropriate
cost function has been chosen empirically and supported by experiments
conducted with equal weights, metric and non-metric cost functions. We

dThe cost of replacement by the epsilon symbol represents the cost of inserting or deleting
the other symbol.



describe the motivation behind the chosen cost function, which provided
satisfactory results.

cost(0, 0) = 0;
for (i = 1; i ≤ m; i = i + 1) cost(i, 0) = cost(i− 1, 0) + IC(xi);
for (j = 1; j ≤ n; j = j + 1) cost(0, j) = cost(0, j − 1) + DC(yj);
for (i = 1; i ≤ m; i = i + 1)
for (j = 1; j ≤ n; j = j + 1)

cost(i, j) = min

8
<
:

cost(i− 1, j) + IC(xi)
cost(i, j − 1) + DC(yj)
cost(i− 1, j − 1) + RC(xi, yj)

9
=
; ;

sold(X, Y ) = cost(m, n);
Figure 1. Calculation of the sold distance.

The choice of specific costs is based on an assumption about the po-
tential semantic content and importance of syntactic chunks. Deleting a
term incurs the highest possible cost (1), since important domain-specific
information is lost. High importance (0.9) is also given to verbs as they
may represent domain-specific relations. Generally, noun phrases (NPs),
together with verbs, carry “heavy” semantic load. This is emphasised even
more in a sublanguage, because terms constitute a subclass of NPs. NPs
other than terms are still semantically important, especially since they can
be unrecognised terms, so they are assigned high cost (0.9). Further, pro-
nouns are given high cost (0.85), because they can co-refer with terms
(i.e. indirectly denote a domain-specific concept). Prepositions can model
spatial, temporal and other types of relationships between terms, and for
this reason they are relatively highly ranked (0.5). Similarly, adjectives and
adverbs as potential modifiers of terms and domain-specific verbs, e.g.:

... the fragment of SMRT encoding amino acids 1192-1495, which strongly

interacts with TRbeta, interacts very weakly with COUP-TFI ...

are given the same cost (0.5). Next ranked (0.4) are different forms of the
verb to be, which can be used in a general sense, but can also model the
“is-a” relationship between terms, e.g.:

... acetylcysteine is a drug usually used to reduce the thickness of mucus ...

so they are assigned a similar cost (0.4). Auxiliary verb phrases can be
used to modify the meaning of domain-specific verbs and in that manner
encode important semantic information, e.g.:

... the oestrogen receptor AF-2 antagonist hydroxytamoxifen cannot promote

ER-TIF1 interaction ...



and they incur the same cost (0.4). A low cost (0.2) is given to conjunc-
tions, whose main role is to support text cohesion and not to pass relevant
domain-specific information. Other chunks are assigned zero cost, as they
are regarded irrelevant. For example, linking phrases (e.g. on the other
hand) guide a reader, but carry no explicit semantic content. Punctuation
marks are used similarly to improve the readability, and are thus discarded.
Determiners are ignored because of their insufficient semantic content and
especially because they are not used consistently or even correctly.

Table 1. The cost of edit operations for different chunks.

Chunk np term link be aux adj adv cnj det prep pron pun v ε

np 0.20 0.30 0.90 0.90 0.90 0.75 0.90 1.00 0.90 1.00 0.15 0.90 0.70 0.90
term 0.30 0.15 1.00 0.90 0.90 0.80 0.95 1.00 1.00 1.00 0.15 1.00 0.70 1.00
link 0.90 1.00 0.00 0.40 0.40 0.50 0.50 0.20 0.00 0.50 0.85 0.00 0.90 0.00
be 0.90 0.90 0.40 0.00 0.10 0.90 0.75 0.55 0.40 0.70 0.90 0.40 0.55 0.40
aux 0.90 0.90 0.40 0.10 0.00 0.90 0.75 0.55 0.40 0.70 0.90 0.40 0.55 0.40
adj 0.75 0.80 0.50 0.90 0.90 0.15 0.25 0.65 0.50 0.85 0.75 0.50 0.90 0.50
adv 0.90 0.95 0.50 0.75 0.75 0.25 0.15 0.65 0.50 0.85 0.90 0.50 0.80 0.50
cnj 1.00 1.00 0.20 0.55 0.55 0.65 0.65 0.00 0.20 0.55 1.00 0.20 0.95 0.20
det 0.90 1.00 0.00 0.40 0.40 0.50 0.50 0.20 0.00 0.50 0.85 0.00 0.90 0.00
prep 1.00 1.00 0.50 0.70 0.70 0.85 0.85 0.55 0.50 0.05 1.00 0.50 1.00 0.50
pron 0.15 0.15 0.85 0.90 0.90 0.75 0.90 1.00 0.85 1.00 0.05 0.85 0.70 0.90
pun 0.90 1.00 0.00 0.40 0.40 0.50 0.50 0.20 0.00 0.50 0.85 0.00 0.90 0.00
v 0.70 0.70 0.90 0.55 0.55 0.90 0.80 0.95 0.90 1.00 0.70 0.90 0.20 0.90
ε 0.90 1.00 0.00 0.40 0.40 0.50 0.50 0.20 0.00 0.50 0.90 0.00 0.90

The costs of replacing two chunks depends on their types. Zero cost is
used to make the chunks fully compatible (e.g. auxiliary verb phrases can
freely interchange). Also, all chunks that are deleted with zero cost may
freely replace one another. Generally, the replacement costs reflect the com-
patibility between the involved chunks. Therefore, low costs can be found
along the main diagonal in Table 1 emphasising the highest compatibility
between the same chunk types. An exception with this regard is the cost
of replacing NPs and terms with pronouns (0.15), which can act as “wild
cards” for these chunks. Note that the cost of replacing the same chunk
types is not necessarily zero. Although compatible, they cannot always be
freely replaced. This is used for high-content chunks (such as terms and
NPs) in order to emphasise the importance of semantic information they
encode and not only their syntactic function.

So far we have mostly relied on syntactic information acquired through
POS tagging and partial parsing. We would like to incorporate more
domain-specific knowledge into the sold measure in order to support se-



mantic comparison. Since the ontology used incorporates hierarchies of
terms and domain-specific verbs, the replacement costs can be fine-grained
so as to reflect the semantic closeness of terms and verbs considered. The
actual replacement cost involving such chunks depends on their content.
In these cases, the replacement cost r given in Table 1 is not fixed, but
rather represents its upper limit. There are two basic principles used for
the calculation of the replacement cost in such cases: a knowledge-rich ap-
proach based on domain-specific knowledge contained in the ontology and
a knowledge-poor approach based on lexical similarity. In the following
sections we discuss these two approaches to semantic comparison.

5. Ontology-Driven Component

Ontology-based replacement cost is used for terms and verbs contained
in the ontology. Let us describe how the replacement cost is calculated for
two classified terms. Figure 2 describes the computation of the replacement
cost (RC) for two classified terms (t1 and t2) based on their similarity: the
higher the similarity, the smaller the replacement cost. It is first checked
if the terms are lexical variants, that is – if they are orthographic variants
(differing in the use of hyphenation, lower and upper cases, spelling, etc.) or
inflectional variants (differing in number – singular or plural), simply by
checking if they are linked to the same term identifier in UMLS. Lexical
variants are given the highest similarity value (1), since they identify the
same concept and differ only in their textual realisation. For the same rea-
son, semantic variants (i.e. synonyms) are given the same similarity score.
It is checked if two terms are synonyms, by checking if they are mapped to
the same concept identifier in UMLS. If they are not recognised as seman-
tic variants, the class information is used for their further comparison. All
semantic classes in UMLS are organised into a hierarchy, which can be used
to quantify their similarity. The tree similarity (ts) between two classes (C1

and C2) is calculated according to the following formula:

ts(C1, C2) =
2 · common(C1, C2)

depth(C1) + depth(C2)

where common(C1, C2) denotes the number of common classes in the paths
leading from the root to the given classes, and depth(C) is the number of
classes in the path connecting the root and the given class. This formula
is a derivative of Dice coefficient, where each ancestor class is treated as a
separate feature. It was previously used to measure conceptual similarity
in a hierarchically structured lexicon.6 Other measures have been proposed



and could be used as well. For example, Resnik7 used a “probabilistic
variation” of this model:

ts(C1, C2) =
2 · log P (S(C1, C2))

log P (C1) + log P (C2)

where S(C1, C2) is the deepest class that subsumes both classes, and P (C)
denotes the probability that a random object belongs to the given class. To
be used with UMLS, this approach would require additional computation
of these probabilities.

Further, since UMLS supports multiple classification, we estimate the
similarity between two terms as the maximal similarity between their
classes. Note that if two terms belong to the same class (among others
if any), then their similarity reaches 1. In order to differentiate between
compatible terms (i.e. non-synonymous terms belonging to the same class)
and semantic variants (i.e. synonymous terms), we scale down the tree sim-
ilarity by 10%. Finally, having calculated the similarity between two terms,
it is converted to the corresponding distance and mapped to the interval
[0, r] (where r = 0.15 is the maximal replacement cost for two terms). The
replacement cost for classified domain-specific verbs is calculated similarly.

if t1 and t2 are lexical variants, then sim(t1, t2) = 1,
else if t1 and t2 are synonyms, then sim(t1, t2) = 1,
else sim(t1, t2) = 0.9 ·max,

(where max is the maximal value of ts(C1, C2)
for all classes C1 of t1 and all classes C2 of t2)

RC(t1, t2) = r · (1− sim(t1, t2));
Figure 2. Calculation of the variable replacement costs.

6. Lexical Component

The approach described in Section 5 applies only to classified terms or
verbs. Currently, biomedical ontologies are inherently incomplete due to
the fast-growing number of terms. Therefore, it would be useful to use clues
other than the ones explicitly stated in the ontology in order to extend the
semantic comparison to other terms and verbs. Since the syntactic clues are
already being used when comparing term contexts by the sold distance,
we opted for internal lexical properties of context constituents. Lexical
comparison has been enabled for terms, NPs and verbs. We utilised the
standard ED approach applied at the grapheme level. Similarly to Tsuruoka
and Tsujii,2 we differentiate between four types of graphemes (space and
hyphen, digits, letters and all other graphemes) in order to determine the
appropriate costs of edit operations (Table 2).



Table 2. The cost of edit operations for different graphemes.

Grapheme ” ” or ”–” digit letter other ε

” ” or ”–” 0.05 1.00 1.00 1.00 0.50
digit 1.00 0.10 1.00 1.00 1.00
letter 1.00 1.00 0.90* 1.00 1.00
other 1.00 1.00 1.00 0.05 0.50

ε 0.50 1.00 1.00 0.50

The highest deletion costs are given to digits and letters as they convey
more information compared to other graphemes. For example, spaces and
hyphens basically serve to improve the readability of multi-word terms. In
addition, they are not always used consistently and often cause orthographic
variation by replacing each other or being omitted altogether (e.g. EGR-1
vs. EGR 1 vs. EGR1). Hence, these graphemes are assigned lower cost
(0.5). The same cost is given to all other graphemes for similar reasons.

The replacement cost is generally chosen so as to “discourage” the re-
placement of graphemes of different types (e.g. digits and letters) by as-
signing the highest cost (1) to such operations. The replacement within
the same type depends on the importance and similarity between the
graphemes. Space and hyphen are regarded similar, thus are given a low
cost (0.05). Similarly, digits can be interchanged at a relatively low cost
(0.1). Letters are given high cost (0.9) since morphemes (as groups of let-
ters), often in the form of neoclassical roots and affixes,8 are used to encode
important features of biomedical concepts. In order to make the cost func-
tion less case-sensitive, the cost of replacing the same letter differing only
in case is obtained by subtracting the general replacement cost for letters
from the highest possible cost: 1−0.9 = 0.1. Note that we still maintain the
case sensitivity. This may be important for some types of terms (e.g. case
variants sometimes can be used to distinguish a gene from its protein9).
ED between two chunks is used to adjust the cost of their replacement.

The lexical component adds to the robustness of the sold measure by
comparing terms and verbs not covered by the ontology and, therefore,
overlooked by the ontology-driven component. It also makes the sold dis-
tance approach robust with respect to spelling variations and typing errors
occurring within semantically important chunks. Alternatively, word edit
distance3 or the MetaMap10 program for the recognition of term variants
can be used to support lexical comparison.

7. Discussion and Conclusions

We described the sold measure, which can be used to assess similarity
between terms based on their contextual features. Compared to other mea-



sures of contextual similarity, our approach offers a significant degree of
flexibility. For example, Nenadić et al.11 relied on Dice coefficient using pre-
defined lexico-syntactic patterns as contextual features. Such an approach
lacks the necessary flexibility, since small syntactic variations may cause
similar patterns not to match and to be accounted as different features.
In our approach, the variability of a natural language has been accounted
for at multiple levels. First, the choice of contextual features need not be
rigidly predefined, as features may be matched, replaced or discarded as
necessary through elastic matching, thus neutralising some types of syn-
tactic variation. Further, lexical variability is partly neutralised by using
an ontology to match different forms of terms and domain-specific verbs.
In addition, lexical similarity is assessed by ED in order to compensate for
incompleteness of the ontology.

We also compare our approach to that of Dagan et al.12, who proposed a
method for estimating word similarity from sparse data, the main assump-
tion being that similar word co-occurrences should have similar mutual
information. In our approach, sparsity of data can be partly compensated
by non-exact matching driven by the ontology and lexical similarity. In
other words, classes of terms (both lexical and semantic) are compared
rather than individual terms, which means that individual frequencies are
aggregated into collective frequencies of similar terms. In addition, syntac-
tic knowledge and ED are used to generalise a rigid and knowledge-poor
notion of co-occurrence into contextual similarity that takes into account
not only the relative position and the frequency of co-occurrence, but also a
wider context with respect to its syntactic structure and semantic content.

Word similarity approaches can be evaluated through the recognition of
synonyms.13 We generalise this idea to recognition of terms belonging to
the same semantic classes in order to evaluate the sold measure. It has
been fully implemented as part of a case-based reasoning system in which
the similarity measure plays a key inferencing role.14 The efficiency of com-
parison is improved through retrieval component developed to reduce the
search space to potentially similar cases with respect to the sold measure,
thus avoiding a brute-force nearest-neighbour approach and enhancing the
scalability of the given measure. We tested our approach for functional
classification of chemicals (13 UMLS classes) based on a training corpus
of 2072 MEDLINE abstracts annotated with 18236 training, 2405 valida-
tion, 2838 testing and 30419 non-classified terms. The performance has
been evaluated relative to three baseline methods (random, naive Bayes
and rule-based classifier), which achieved 8.97%, 25.31% and 45.54% for



F-measure, while we obtained 58.52%.
We plan to use the sold measure to improve the flexibility of a rule-

based information extraction (IE) system by identifying contexts similar to
the ones to which the IE rules apply directly and to extract information
of interest indirectly by the rules through alignment. In particular, we are
interested in extracting information on protein-protein interactions. We
believe that other methods developed for NLP tasks in biomedicine may
similarly be facilitated by the use of the sold measure.
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14. I. Spasić. A Machine Learning Approach to Term Classification. PhD Thesis.

University of Salford, UK, 2004.




