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Recent progress in high-throughput screening technologies has led to the produc-
tion of massive amounts data that we can use to understand biological systems. To
interpret this data, biologists often need to analyze the characteristics of a set of
genes by using Gene Ontology (GO) annotation. We are proposing a novel method
for assisting such an analysis. Given a set of genes, the method automatically ex-
tracts several analyzing aspects in terms of a subset of genes that are attached to
some related GO terms. It then creates a gene-attribute bipartite graph that high-
lights the aspect selected by the user according to his/her interests. We describe
this method in detail and report on an experiment where the proposed method is
applied to the analysis of rat kidney expression data.

1 Introduction

The DNA microarray is an effective tool for monitoring and profiling gene ex-
pression patterns. It can measure the expression levels of thousands of genes
simultaneously and provide a set of expression patterns for a given list of genes.
Biologists analyze gene expression patterns to determine their biological mean-
ings (e.g., interactions between specific genes, dependencies between changes
in gene expressions, and patient’s responses to treatment). In the bioinformat-
ics field, many methods, including a kind of data mining, have been applied
to assisting such analysis1. For example, Kennedy et al. used a clustering
method to assist in microarray dataset analysis. They extracted the gene list
by preprocessing the gene expression data. They then applied a clustering
method to the gene list and then presented the resulting gene clusters together
with meaningful descriptions using the functional information obtained from
the Gene Ontology (GO) 2.

The GO is a vocabulary that describes the attributes of genes (for ex-
ample, their biological functions). Each term in the vocabulary, called a GO
term, represents a possible attribute value that is possessed by a gene. The
GO has a hierarchical structure, i.e., GO terms are connected by is-a relations
and construct a directed acyclic graph. The GO Consortium is currently creat-
ing three standard gene ontologies that will describe the associated biological



processes, cellular components, and molecular functions for genes and their
products (RNA or protein products encoded by genes). Many biological re-
sources, including LocusLink (http://www.ncbi.nlm.nih.gov/LocusLink), use
the GO terms to annotate gene properties.

Because there are many kinds of GO terms, attaching GO annotations
to a gene list produces high-dimensional data. In fact, computer-aided anal-
ysis methods are required, such as clustering, principal component analysis
(PCA), and self-organizing maps (SOM). Many of these conventional methods
are helpful in understanding the overall characteristics of a gene list (e.g., the
major gene relationships found within that gene list). For example, as shown
by Kennedy et al.3, a dendrogram display of hierarchical clustering with GO
terms can be used to illustrate the overall structure of the major characteristics
of a gene list.

There is a case, however, in which the overall structure of the gene list
characteristics is not appropriate. Because high-dimensional data can contain
many aspects, an overall structure is incapable of illustrating all of these as-
pects, such that the user may miss some important aspects relating to his or
her interests. For example, consider a case in which collagen activity is ob-
served in a biological phenomenon related to osteoblasts and osteoclasts. One
possible analysis aspect is the collagen metabolism. A biologist whose main
interest resides in the metabolism process will want to understand the collagen
biosynthetic pathway from the viewpoint of how the collagen biosynthesis path-
way interacts with other metabolic pathways, or the requirements for collagen
biosynthesis. In this case, it is important to be able to distinguish between
the intracellular and the extracellular phenomena, as well as distinguish the
metabolism phenomena from other phenomena (see“The extracellular matrix
of animals”, pp 971–995, in4). Another possible aspect is animal development.
A biologist whose main interest is in the developmental program of animals
will want to identify the types of collagen-related developmental processes that
occur. In this case, it is appropriate to classify the active genes based on their
relationship to the development processes (e.g. the formation of an extracel-
lular matrix, arrangement of the cytoskeleton) (see“ Fibroblasts and Their
Transformations: The Connective-Tissue Cell Family”, pp.1179–1187, in 4).

In response to the above demands, we have developed a tool for supporting
gene relationship analysis, called Genesphere Connection Miner (Cminer) 5,
which creates a gene-term bipartite graph that can be focused on the user’s
interests. The contents of the display can be changed according to the user ’
s settings, as specified by a list of GO terms. For example, Wagatsuma et
al. reported that they had obtained results related their interest by using
this tool to analyze the temporal expression data for a hepatitis model rat



(about 500 genes)6. There is a problem with this technique, however, in that
it takes a long time to create an appropriate list of GO terms by hand. To
solve this problem, this paper proposes a method for automatically extracting
the analysis aspects. Given a gene list, the method automatically extracts
several aspects in terms of a subset of genes attached with related GO terms.
The user can easily specify his/her interest by selecting one appropriate aspect
from those that are available. In Chapter 2, we describe the aspect extraction
method in detail. In Chapter 3, we report on an experiment in which the
proposed method is applied to the analysis of rat kidney expression data.

2 Multi-aspect gene relation analysis system

We are proposing a multi-aspect gene relation analysis system, which outputs
multiple aspects about a given gene list. For an aspect selected by the user,
this system displays a bipartite graph consisting of gene symbols and GO
terms. This system uses the Gene Ontology (GO) that is a vocabulary used to
describe the attributes of genes, LocusLink that is a gene database in which
genes are annotated with GO terms, and HomoloGene that is used to provide
orthologous information.

A unique feature of this system is that it automatically extracts multiple
aspects for analyzing a gene list by using a conceptual clustering technique
called ETMIC situation decomposition (E-SD) 7,8. The E-SD method simul-
taneously selects a gene subset and a GO term subset as an aspect. To date,
however, the E-SD method has faced two issues related to this function. One
involves the comparison of GO terms of different abstraction levels. The second
relates to the fact that only a few combinations of genes can be compared be-
cause many genes have no GO term annotationsa. Our new system overcomes
the first problem by: [a] a GO term is inferred by using a transitive rela-
tionship. Then, to overcome the latter problem: [b] a GO term is extended by
using orthologous information, [c] a GO term is summarized by using weighted
singular value decomposition (SVD) b

To realize these countermeasures, our new system is composed of the seven
subprocesses described below (see Figure 1).

(1) Inference of GO terms using transitive relationships [a]

(2) Logarithmic probability weighted SVD [c]

(3) Additions of terms of orthologous genes for each gene[b]

aActually, over 20% of genes of human are annotated with GO term, but only 4% of genes
of rat are annotated.

bAlthough these countermeasures may introduce noisy information, the advantage is ex-
pected to outweigh the disadvantages in such a case of very poor gene annotations.
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Figure 1: Multi-aspect gene relationship analysis system.

Rounded-rectangles indicate input data, rectangles are processing, and circles are output.

Bold arrows indicate the gene list flow for which attributes are added. i-GT: inferred GO

term, e-GT: extended GO term, ie-GT: inferred extended GO term, EA: eigen-attributes.

(4) Inference of GO terms using transitive relationships [a]

(5) Transformation of GO terms to eigen-attributes.[c]
(6) Extraction of multi-aspects by E-SD method
(7) Generation of gene-term bipartite graph for each aspect [c]

The main process path for the target gene list runs from steps (3) to (7),
with the multi-aspect being extracted in (6). The process path from (1) to (2)
generates a left singular vector using all the available genes. To collect terms
that have a similar appearance distribution, the vector transforms the target
gene list from GO terms to eigen-attributes in (5).

2.1 Inferring GO terms using transitive relations

LocusLink contains a GO term list Lorg(cj) for each gene cj . Each term list
Lorg(cj) in LocusLink is converted to an inferred GO term list Linf (cj). In
practice, all of the ancestor terms for each GO term are added to the new term
list Linf (cj), using the transitive relationship of the GO.

2.2 Logarithmic probability weighted SVD

To gather up those GO terms having a similar distribution, a gene representa-
tion is transformed into eigen-attributes. This transformation subprocess (5)
uses a left singular vector U , calculated by the SVD method in subprocess (2).



Logarithmic probability weighting :

When we give all the GO terms an equal weighting, the SVD process tends
to select those terms in the higher layers of the GO hierarchy, which has very
little meaning. This is because the SVD process tends to select those GO
terms associated with many genes. In addition, those terms in a higher layer
tend to associate with many genes (e.g., “binding” in the molecular function
ontology).

To overcome this problem, each GO term i is weighted with a logarithmic
probability weight Wi which highlights a moderate abstraction level (depth)
in the GO hierarchy. Wi is calculated using the following formula.

Wi = − log(
mi

m
) (1)

Where m is the total number of genes, and mi is the number of genes with
term i. For instance, the topmost concept in a hierarchy is annotated by all
the genes, its weighting becomes zero Wi = 0, and so is ignored. On the other
hand, a special narrower term is emphasized.

The idea of logarithmic probability weighting relates to the formula of
similarities in the layered structure as proposed by Resnik, Lin, and Jian 9.

Singular value decomposition (SVD):

In preparation for the SVD process, the inferred terms Linf (cj) for all the genes
are converted to a matrix. Firstly, each inferred term list Linf (cj) (j ∈ [1,m])
is converted into a GO term vector gj of length n. Here, n is the number of
GO terms used in all the genes. An element registered in the inferred term
list Linf (cj) is set to Wi while others are set to 0. Secondly, all the GO term
vectors gj (∀j ∈ [1, m]) are collected into a matrix G with n columns (GO
terms) and m rows (genes). SVD decomposes matrix G, as follows.

G = USDT (2)

U and D are a unitary matrix that satisfies UT U = In and DT D = Im

respectively. The column vector of U is called the left singular vector. The
column vector of D is called the right singular vector.

2.3 Adding terms of the orthologous genes to the target gene list

Each gene ck in the target gene list ζ is annotated by the GO term list Lorg(ck).
To compensate for insufficient GO term annotation in the target gene list
Lorg(ck), GO terms are added using orthologous information. Each target



gene ck of rat has corresponding orthologous genes (human and mouse). GO
terms that belong to orthologous genes and rat genes ck are added to a new
GO term list Lext(ck). This is called the extended GO term list for gene ck.
Orthologous information for three species (human, mouse, and rat) is obtained
from HomoloGene. This is in the form of a 13952-row (entry) by 3-column
(race) LocusID matrix.

2.4 Infering GO terms using transitive relations

In the same way as in subprocess (1), we obtain an extended inferred term list
LIE(ck) from term list Lext(ck) for each gene ck in target gene list ζ.

2.5 Transforming GO terms to eigen-attributes

As part of the preparations for the E-SD process, the genes’ representations
are transformed into eigen-attribute set α from inferred extended term lists
LIE(ck). The set α consists of the top 20 eigen-attributes acquired by the
SVD process. Each term list LIE(ck) for one gene is converted into a GO term
vector gIE

k of length n. Here, n is the number of GO terms used in all the
genes. An element registered in a term list LIE(ck) is set to Wi and others are
set to 0. Here Wi is the weighting for the i-th GO term.

Each gene vector gnew
k which is described by eigen-attribute set α is trans-

formed from gIE
k using left singular vector U .

gnew
k = UT gIE

k (3)

2.6 Extracting multi-aspects with the E-SD method

The ETMIC situation decomposition (E-SD) method 7,8 is used to extract
multiple aspects from the target gene list. The target gene list ζ is a collection
of vectors gnew

k described by eigen-attribute set α. This list is described as
the large square in the left-hand part of Figure 2. Each extracted aspect
J = {A,C} is a combination of subset A of eigen-attribute set α (horizontal
axis in Fig. 2), and subset C of the gene sets ζ (vertical axis in Fig.2).

The E-SD algorithm selects some useful multi-aspects from the enormous
combination of subsets A and C. This process is based on searching for the
local maximum point of an ETMIC criterion to change the gene selection C
in every partial space A 8. The ETMIC criterion that evaluates each aspect
J = {A,C} is as follows.

E(A,C) = nC

(
min

i

(
IX−i

A
;Xi

(C)
)
− max

j

(
IXA;Xj (C)

))
(4)
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Figure 2: Composition of aspect decomposition process
Because of limitations of the figure, the selections of gene

subsets and eigen-attribute subsets are drawn as a continuous area.

Here, nC is the selected number of genes. IX−i
A

;Xi
(C)and IXA;Xj (C)are mutual

information on each of two partial spaces for gene subset C. X−i
A is a partial

space for eigen-attribute subset i to eigen-attribute subset A − ai. Xi is a
partial space for eigen-attribute ai. XA is a partial space for eigen-attribute
subset A. Xj is a partial space for eigen-attribute j.

2.7 Generation of gene-term bipartite graph for each aspect

For each aspect, genes and GO terms should be selected to draw the gene-
term bipartite graph, which is helpful in understanding the gene relations.
The members of gene subset C are displayed on this graph. Unfortunately, it
is difficult to select the GO terms to be displayed on this graph, because the
eigen-attribute subset A corresponds to a weighted selection of GO terms.

The norm of the vector U for i-th GO term |Ui| =
√∑

a∈A Uai
2 is used for

selecting the significant GO terms, where Uai is the a-th eigen-attribute and
the i-th GO term element of matrix U . GO terms are selected so that every
gene connects to at least one GO term. This process selects one GO term from
the inferred extended term list LIE(ck) of each gene. This selection for each
gene ck is based on the equation using the maximum norm of U , as follows.

imax(cj) = arg max
i∈LIE(cj)

|Ui| (5)

Finally, each aspect is drawn by a gene-term bipartite graph, includes the gene
subset C and the GO term subset indicated by imax(cj).



3 Experiment: Analysis of gene-list of rat embryonic kidney

In this section, we describe an experiment in which the proposed method is
applied to the analysis of a gene list obtained through microarray expression
profiling.

3.1 Experimental setup: Analyzed gene list

Stuart et al.10 analyzed gene expression patterns during kidney organogenesis
using DNA array technology and, as a result, classified 8,740 genes into five
discrete clusters based on the temporal patterns of their expression levels. We
used the second cluster (group 2), whose expression pattern peaks with mid-
nephrogenesis, as an example gene list for our experiment. The following lists
the symbols (bold font) and the names of the genes used for our experiment.

AGR: Agrin, Calm1: Calmodulin 1 (phosphorylase kinase, delta), Col1a1:

collagen, type 1, alpha 1, Dcn: decorin, ENP1MR: Epithelial membrane

protein 1, Erbb2: Avian erythroblastosis viral (v-erb-B2) oncogene homo-

logue 2 Erp29: endoplasmic retuclum protein 29, Galr3: galanin receptor

3, ID125A: Inhibitor of DNA binding 1, helix-loop-helix protein, ILGF-

BPA: Insulin-like growth factor binding protein 2, Lamc1: laminin, gamma 1,

Lbp: lipopolysaccharide binding protein, Mmp2: matrix metalloproteinase 2,

Mtap6: microtubule-associated protein 6, Nkaa1b: ATPase, Na+K+ trans-

porting, alpha 1, Npr1: natriuretic peptide receptor 1, Phb: Prohibitin,

Pkcb: protein kinase C, beta 1, Pmp22: peripheral myelin protein 22, SO-

MATO: somatostatin receptor 5, Serpina1: serine (or cysteine) proteinase

inhibitor, clade A, member 1, Sm22: Transgelin (Smooth muscle 22 protein),

Sparc: Secreted acidic cystein-rich glycoprotein (osteonectin), Ucp2: Uncou-

pling protein 2, mitochondrial.

These 24 genes were derived from the group 2 cluster (containing 168
accession numbers of GenBank genes)c as follows. Every gene in the cluster
was converted into the LocusID or removed if a LocusID could not be found.
For each of the 66 genes successfully converted as a result of that process, GO
terms were retrieved from the LocusLink database. Finally, we constructed a
GO term list Lorg(ck) for each gene ck that has one or more associated GO
terms.

cThe list of genes was acquired from the Kidney Development Gene Expression Database
(http://organogenesis.ucsd.edu/ ).



Table 1: Extracted aspects list of top five.

rank ETMIC eigen- # genes # different genes
score attributes A B C D E

1 8.21 4 6 18 A 0 7 11 8 8
2 8.02 9 13 17 B 7 0 12 11 9
3 7.45 15 18 13 C 11 12 0 15 11
4 7.25 10 13 14 D 8 11 15 0 14
5 6.93 10 11 14 E 8 9 11 14 0

3.2 Experimental setup: Compressing GO term annotation

For the E-SD subprocess (6), we constructed twenty attributes, that is, eigen-
attributes, which express the major features of all the GO term annotations
in the LocusLink database (see Fig.1). These twenty eigen-attributes A were
calculated as follows. Firstly, SVD compressed all the GO term annotations
obtained from the LocusLink database into a twenty-dimensional feature space
by means of subprocesses (1) and (2). In this process, we used 13,557 (=n)
effective entries (i.e., entries with GO annotations) among all the 24,489 Lo-
cusLink entries (human, mouse and rat) and 5,325 (=m) effective GO terms
(i.e., GO terms found in the GO annotations of LocusLink entries). Then,
to input the E-SD method, each eigen-attribute was digitized to a nominal
variable with five domains.

3.3 Experimental results: List of extracted aspects

Table 3.3 summarizes the top five aspects (A,B, C,D, E) that the proposed
method extracted from the gene list mentioned above.

This table shows that these five aspects have different features. For ex-
ample, the first aspect A has 18 genes in a two-dimensional feature space that
is spanned by the 4th and 6th axes of the compressed GO annotation, while
the second aspect B shows 17 genes in another feature space spanned by the
9th and 13th axes. They are different not only in the axes spanning the fea-
ture space but also in the focused genes, i.e., 7 genes out of 18 and 19 are
different, as shown in the right-hand part of this table. This fact indicates
a feature of the E-SD process in that it selects genes in such a manner that
the selected genes exhibit a relatively simple scattering pattern in the selected
feature space. In other words, the selected genes are expected to construct
clusters having a relatively simple structure. As a result, it should be easy to
interpret each aspect by analyzing the GO annotations associated with some
of the clusters of the selected genes.



Figure 3: Gene-term bipartite graph for first aspect (A)

Rectangles represent genes. Ovals represent GO terms. [p]=biological process,

[f]=moleculer function,[l]cellular componet.eigen-attribute=(4 6) # genes=18.

3.4 Experimental results: Investigation of each aspect

Gene-term bipartite graph for first aspect (A) : As shown in Figure
3, the largest gene cluster in the first aspect A is extracellular. In comparison
with the analysis by Stuart et al.10, the genes of extracellular exhibit such a
good concordance that they contain all the five representative genes (AGR,
Col1a1, Dcn, Sparc, and Mmp2) listed by them Stuart et al. d This aspect
also presents a contrast between the extracellular and cytoplasm that are linked
through genes related to metabolism process and/or metal ion binding activity
(Pkcb, Mmp2 and Sparc). This could be a good indication for identifying
some midnephrogenesis-specific metabolic processes. In addition, it should be
noted that gene selection by the E-SD process makes the graph simpler and
thus makes the aforementioned focus of the graph clearer. For instance, the
graph would be more complicated if the Nkaa1b gene, which connects five GO

dStuart et al.10 listed ten representative genes of the group 2 cluster. Among them, five
genes were used here because no GO terms could be retrieved for the other genes.



Figure 4: Gene-term bipartite graph for second aspect (B)

Rectangles represent genes. Ovals represent GO terms. [p]=biological process,

[f]=moleculer function,[l]cellular componet.eigen-attribute=(9 13) # genes=17.

termse, had not been dropped by the E-SD process.

Gene-term bipartite graph for second aspect (B): As shown in Figure
4, the largest gene cluster in the second aspect B is morphogenesis. This aspect
also focuses on two cellular components, namely, cytoskeleton and extracellular
matrix. These suggestions for this aspect are similar to the statements made
by Stuart et al.10 in that group 2 was most notable for genes of the extracellular
matrix as well as morphogenetic genes.

4 Conclusion

In this paper, we have addressed the need for a method for the multi-aspect
analysis of biological data and proposed a novel method for assisting in this
kind of analysis. The unique feature of our method is that it automatically

eIn Fig. 3, five terms (metabolism, catabolism, transporter activity, metal ion binding
activity, and integral to plasma membrane) are associated to Nkaa1b.



extracts multiple aspects for analyzing a gene list by using E-SD (a type of
conceptual clustering). We conducted an experiment in which the method was
applied to the analysis of rat kidney expression data. In this, our method
successfully extracted different analyzing aspects, each of which consisted of
relatively few genes and GO terms in a fairly simple structure. This suggests
that the analyzing aspects identified by our method can be helpful in examining
biological data from a range of viewpoints. For example, the user might mine
some interesting viewpoints that he/she had not been aware of previously.

We are currently trying to apply our method to a larger set of genes. A
preliminary experiment conducted for about thousand or more genes suggested
that our method can extract different analyzing aspects but that extracted as-
pects tend to consist of too many genes and GO terms (e.g., 500 genes and 30
GO terms) for researchers to quickly find the major characteristics of each as-
pect. With regard to this point, one of the future issues is to develop a function
for summarizing each aspect as well as a function for helping detailed analysis
of each aspect. These functions could be realized by using some conventional
methods for producing the overall characteristics of a gene list.
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