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A bivariate functional mapping model has been proposed to detect haplotype-based
DNA sequence variants that regulate the response curves of systolic and diastolic
blood pressures (SBP and DBP) to a particular drug. This model capitalizes on

the haplotype structure constructed by single nucleotide polymorphisms (SNPs)
and incorporates the mathematical aspects of pharmacodynamic reactions into the

estimation process, aimed to identify DNA sequence variants responsible for drug
response. In this way, by estimating and testing the curve parameters that define
drug response, many genetically and clinically meaningful hypotheses regarding

the degree and pattern of the genetic control of SBP and DBP can be formulated,
tested and disseminated. In a pharmacogenetic study composed of 107 subjects,

our bivariate model has probed two haplotypes within the β2AR candidate gene
that exert a significant effect on both SBP and DBP respond to dobutamine. With
this candidate gene, two SNPs are genotyped, with allele Gly16 (G) and Arg16 (A)

at codon 16 and alleles Glu27 (G) and Gln27 (C) at codon 27, respectively. The
significant haplotypes are [AC] for SBP and [GG] for DBP. This model provides a

powerful tool for elucidating the genetic variants of drug response and ultimately
designing personalized medications based on each patient’s genetic makeup.
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1. Introduction

The question of whether genes control drug response has been recognized

from simple association analysis between genetic ethnicity and aberrant

drug response in the 1950s to more precise family and twin studies in the

1960s and 70s to biochemical studies in the 1970s and 80s to molecular

genetic studies in the 1980s and 90s1. Today, a more challenging question is

not whether there are genes involved in drug response rather than how genes

control drug response. Tremendous efforts have been made to isolate genes

or polymorphisms responsible for inherited differences in drug metabolism

and disposition, drug effects and drug transporters and targets1.

The identification of genes for drug response is difficult for two reasons.

First, inter-individual variation in drug response is regulated by a multitude

of genes each with a small effect and segregating in Mendelian laws. With

the near completion of the human genome project, it will be possible to

characterize fine-structured DNA variation in the human genome and fur-

ther identify the chromosomal regions associated with the variation in drug

response. Second, patients’ response to a particular drug involves a series of

sequential biochemical pathways and reactions, which are described by two

different but related processes, known as pharmacokinetics (PK) and phar-

macodynamics (PD)2. While PK concerns the change of drug concentration

in the body with time, PD deals with different drug effects under changing

concentrations. Because both PK and PD each presents a dynamic process,

the effects of genes involved are supposed to display particular trajectories.

Statistical models for analyzing such trajectory or longitudinal data with

multiple measurements are qualitatively complicated, as compared to those

for single measurements.

More recently, statistical models for detecting the genetic architecture of

longitudinal traits by mapping the underlying quantitative trait loci (QTL)

have been proposed in the literature3–5. These models, called functional

mapping, approximate time-dependent genetic effects based on mathemat-

ical equations of biological relevance and have proven instrumental for the

identification of QTL for growth traits4–5. Functional mapping has now

been extended to map QTL that control drug response through the in-

corporation of the mathematical aspects of pharmacodynamic processes6.

Taking advantages of sequence-based association studies, functional map-

ping has been modified to characterize the DNA sequence structure of drug

response7 and compare the genetic differences between efficacy and toxicity

at the single DNA base level8.
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Congestive heart failure (CHF) is a pervasive and insidious clinical syn-

drome that most commonly results from ischemic heart disease and hy-

pertension. It is estimated that almost 5 million Americans are affected

by CHF. Dobutamine is primarily an agonist at β1-adrenergic receptors

(β1ARs) that predominate in the heart and also has some β2-adrenergic

receptors (β2ARs) agonist properties. It is used to relieve symptoms in

patients with CHF by increasing stroke volume in a dose-dependent man-

ner. The understanding of the association between genetic polymorphisms

and the inter-patient variability in SBP and DBP responding to dobuta-

mine will provide an objective genetic basis for individualization in treating

CHF. In this article, we modify Lin and Wu’s bivariate functional mapping

model8 to detect the haplotype-based DNA sequence variants associated

with SBP and DBP.

2. Methods

2.1. Likelihood functions

Suppose there are two SNPs that are co-segregating with the linkage dise-

quilibrium of D in a human population at Hardy-Weinberg equilibrium. Let

p
(1)
1 , p

(1)
0 and p

(2)
1 , p

(2)
0 be the relative frequencies of two alleles, designated

as 1 and 0, at each of the two SNPs, respectively, where the superscript

stands for the identification of SNP and p
(1)
1 + p

(1)
0 = 1 and p

(2)
1 + p

(2)
0 = 1.

These two SNPs form 4 possible haplotypes [11], [10], [01] and [00] whose

frequencies are expressed as

pr1r2
= p(1)

r1
p(2)

r2
+ (−1)r1+r2D,

where
∑1

r1=0

∑1
r2=0 pr1r2

= 1 and r1, r2 = 1, 0 denote the alleles of the

two SNPs, respectively9. If the haplotype frequencies are known, then the

allelic frequencies and linkage disequilibrium, arrayed by the population

genetic parameter vector Ωp = (pr1
, pr2

,D), can be solved with the above

equation.

We assume that a specific haplotype among the four ones may af-

fect drug response which is called the reference or risk haplotype7. The

four haplotypes form 10 indistinguishable diplotypes (i.e., a combination

between maternally- and paternally-derived haplotypes) and 9 observable

genotypes with respective frequencies expressed in terms of haplotype fre-

quencies in a population7. Thus, although different diplotypes contribute

to inter-individual variation in drug response, we can only construct the

likelihoods based on observable genotypes of size expressed as nr1r′

1
/r2r′
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(r1 ≥ r′1 = 1, 0; r2 ≥ r′2 = 1, 0). In statistics, this is a classic mixture model

problem and can be solved by implementing the EM algorithm.

Without loss of generality, we assume that haplotype [11] is the risk hap-

lotype and the other haplotypes [10], [01] and [00], collectively designated

as [11], are the non-risk haplotype. Thus, we have three possible composite

genotypes [11][11] (2), [11][11] (1) and [11][11] (0) whose concentration-

dependent genotypic values are expressed as u2, u1 and u0, respectively.

Let Σ be the residual covariance matrix within each composite genotype.

We use Ωq = (u2,u1,u0,Σ) to denote the quantitative genetic parameters

for the two SNPs under consideration.

For a total of n subjects, the measures of SBP, ys, and DBP, yd, are

recorded at C different concentration levels of a drug. Let yi = (ysi,ydi)

be the bivariate drug response for subject i. The log-likelihood functions

of trait values and SNPs given observed genotypes (G) are expressed as

log L(Ωp,Ωq|y,G)

=

n11/11∑

i=1

log f2(yi) +

n11/10∑

i=1

log f1(yi) +

n11/00∑

i=1

log f0(yi) +

n10/11∑

i=1

log f1(yi)

+

n10/10∑

i=1

log[̟f1(yi) + (1 − ̟)f0(yi)] +

n10/00∑

i=1

log f0(yi)

+

n00/11∑

i=1

log f0(yi) +

n00/10∑

i=1

log f0(yi) +

n00/00∑

i=1

log f0(yi) (1)

and

log L(Ωp|G) ∝ 2n11/11 log p11 + n11/10 log(2p11p10) + 2n11/00 log p10

+n10/11 log(2p11p01) + n10/10 log(2p11p00 + 2p10p01)

+n10/00 log(2p10p00) + 2n00/11 log p01

+n00/10 log(2p01p00) + 2n00/00 log p00 (2)

where the double heterozygote is the mixture of two possible diplotypes

weighted by ̟ = p11p00

p11p00+p10p01

and 1 − ̟ = p10p01

p11p00+p10p01

.

The multivariate normal distribution of SBP and DBP for composite

genotype j, fj(yi) (j = 2, 1, 0), can be expressed as

fj(yi;uj ,Σ) =
1

(2π)C |Σ|1/2
exp

[
−

1

2
(yi − uj)Σ

−1(yi − uj)
T

]
,

with mean vector

uj = (usj ,udj) = (usj(1), . . . , usj(C), udj(1), . . . , udj(C)), j = 2, 1, 0 (3)
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where µsj(c) and µdj(c) are the genotypic values of SBP and DBP of com-

posite genotype j at concentration c, and covariance matrix

Σ =

(
Σs Σsd

Σds Σd

)
, (4)

where Σs and Σd are composed of σ2
s(c) and σs(c1, c2), and σ2

d(c) and

σd(c1, c2) (1 ≤ c1, c2 ≤ C), respectively; and Σds and Σds are composed of

σsd(c) and σsd(c1s, c2d) (1 ≤ c1s 6= c2d ≤ C), and σds(c) and σsd(c1d, c2s)

(1 ≤ c1d 6= c2s ≤ C), respectively.

2.2. Modelling the mean vector

The concentration-dependent expected values of composite genotype j can

be modelled for SBP and DBP by the sigmoid Emax model2. The Emax

model postulates the following relationship between drug concentration (c)

and drug effect (u(c)) for composite genotype j

uj(c) = E0j +
Emaxjc

Hj

EC
Hj

50j + cHj

, (5)

where E0 is the constant or baseline value for the drug response parameter,

Emax is the asymptotic (limiting) effect, EC50 is the drug concentration

that results in 50% of the maximal effect, and H is the slope parameter

that determines the slope of the concentration-response curve. Eq. (5) can

be used to fit the responses of SBP and DBP. As a result, there are eight

curve parameters together for these two blood pressures.

It is possible that SBP and DBP have different risk haplotypes, so

their composite genotypes should be treated differently. Thus, eight

curve parameters are defined for composite genotype j1 for SBP and

j2 for DBP, which are arrayed by Ωuj1j2
= (E0j1 , Emaxj1 , EC50j1 ,Hj1 ,

E0j2 , Emaxj2 , EC50j2 ,Hj2). If different composite genotypes have differ-

ent combinations of these parameters, this implies that the DNA sequence

under consideration plays a role in governing the differentiation of these

two pressures. Thus, by testing for the difference of Ωuj1j2
among differ-

ent genotypes, we can determine whether there exists a specific sequence

variant that confers an effect on these two pressures.

2.3. Modelling the structure of the covariance matrix

We use the first-order autoregressive [AR(1)] model to model the structure

of the within-subject (co)variance matrix10, expressed as

σ2
s(1) = · · · = σ2

s(C) = σ2
s , σ2

d(1) = · · · = σ2
d(C) = σ2

d
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for the variances, and

σs(c1, c2) = σ2
sρ|c2−c1|

s , σd(c1, c2) = σ2
dρ

|c2−c1|
d

for the covariances between any two concentration intervals c1 and c2, where

0 < ρs, ρd < 1 are the proportion parameters with which the correlation

decays with concentration lag. The covariances between two responses at

the same concentration level of drug or different concentration levels are,

respectively, modelled by

σsd(1) = · · · = σsd(C) = σsσdρsd, σsd(c1, c2) = σsσdλ
|c2−c1|, 0 < λ < 1.

The parameters that model the structure of the (co)variance matrix Σ is

arrayed by Ωv = (σ2
s , ρs, σ

2
d, ρd, ρsd, λ). Thus, instead of estimating all

elements in matrix Σ, we only need to estimate the parameters contained

in Ωv. This largely reduces the number of parameters to be estimated.

2.4. Computational algorithm

The EM algorithm is implemented to obtain the maximum likelihood esti-

mates (MLEs) of the marker population parameters (Ωp), the curve para-

meters (Ωuj1j2
) that model the mean vector, and the parameters (Ωv) that

model the structure of the covariance matrix.

In the E step, we calculate the expected number (̟) of diplotype [11][00]

contained in the double heterozygote 10/10. In the M step, we use the

calculated ̟ to estimate the haplotype frequencies using a series of closed

form7, expressed as

p̂11 =
2n11/11 + n11/10 + n11/00 + ̟n10/10

2n
,

p̂10 =
2n11/00 + n11/10 + n10/00 + (1 − ̟)n10/10

2n
,

p̂01 =
2n00/11 + n10/11 + n00/10 + (1 − ̟)n10/10

2n
,

p̂00 =
2n00/00 + n00/10 + n00/11 + ̟n10/10

2n
,

But in this step, we encounter a considerable difficulty in deriving the

log-likelihood equations for Ωuj1j2
and Ωv because they are contained in

complex nonlinear equations. In this article, the simplex algorithm11–12is

embedded in the EM algorithm above to provide simultaneous estimation

of haplotype frequencies and curve parameters and matrix-structuring pa-

rameters.
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2.5. Hypothesis tests

The existence of significant DNA sequence variants for drug response can

be tested by formulating the hypothesis,





H0 : Ωuj1j2
≡ Ωu, j1, j2 = 2, 1, 0

H1 : at least one of the equalities above does not hold,
(6)

where H0 corresponds to the reduced model, in which the data can be fit

by a single drug response curve, and H1 corresponds to the full model, in

which there exist different dynamic curves to fit the data. The test statistic

for testing this hypothesis in Eq. (6) is calculated as the log-likelihood ratio

(LR) of the reduced to the full model:

LR = −2[log L(Ω̃|y,G) − log L(Ω̂|y,G)],

where Ω̃ and Ω̂ denote the MLEs of the unknown parameters under H0 and

H1, respectively. The LR is asymptotically χ2-distributed with 16 degrees

of freedom. An empirical approach for determining the critical threshold

is based on permutation tests, as advocated by Churchill and Doerge13.

By repeatedly shuffling the relationships between marker genotypes and

phenotypes, a series of the maximum log-likelihood ratios are calculated,

from the distribution of which the critical threshold is determined.

Table 1. Likelihood ratios for 16 possible combinations of assumed reference
haplotypes for SBP and DBP within β2AR genes.

DBP

SBP GC GG AC AG

GC 15.13 17.31 11.28 8.63

GG 16.60 17.71 13.90 12.18
AC 16.60 21.57 13.04 10.58
AG 18.91 21.50 13.91 10.82

Note: The maximum likelihood ratio value is detected when [AC] and [GG] are
used as the reference haplotypes for SBP and DBP, respectively.

If the same risk haplotype for the systolic and diastolic pressures can

better explain the data, the next test is about the pleiotropic control of this

risk haplotype on these two blood pressures. Such tests are





H0 : Ωusj1j2
≡ Ωus, j1, j2 = 2, 1, 0

H1 : at least one of the equalities above does not hold,
(7)
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for the systolic blood pressure, and




H0 : Ωudj1j2
≡ Ωud, j1, j2 = 2, 1, 0

H1 : at least one of the equalities above does not hold,
(8)

for the diastolic blood pressure. Only the null hypotheses of both Eq. (7)

and Eq. (8) are rejected can we suggest the significance of the pleiotropic

effect on the two pressures.

3. Subjects

A pharmacogenetic study of cardiovascular disease is used to demonstrate

the usefulness of our model. Cardiovascular disease, principally heart dis-

ease and stroke, is the leading killer for both men and women among all

racial and ethnic groups. Dobutamine is a heart-stimulating medication

that is used to treat congestive heart failure by increasing heart rate and

cardiac contractility through β-adrenergic receptors (βARs), with actions

on the heart similar to the effect of exercise14–15.

Table 2. MLEs of population genetic parameters (allele frequencies and link-
age disequilibria) for SNPs as well as quantitative genetic parameters (drug
response and matrix-structuring parameters) within β2AR gene.

Population genetic parameters
p1 p2 D

0.62 0.60 0.05

Composite Curve parameters: SBP
genotype E0 Emax EC50 H

[AC][AC] 0.46 0.09 4.99 18.37

[AC][AC] 0.40 0.17 5.09 16.40

[AC][AC] 0.44 0.09 6.14 3.43

Composite Curve parameters: DBP
genotype E0 Emax EC50 H

[GG][GG] 0.61 -0.10 5.11 16.69

[GG][GG] 0.56 -0.05 18.91 8.01

[GG][GG] 0.57 -0.11 8.03 1.30

Matrix-structuring parameters
σ2

SBP
σ2

DBP
ρSBP ρDBP

0.03 0.01 0.83 0.84

Note: The risk haplotypes for SBP and DBP are [AC] and [GG], respectively.

Both the β1AR and β2AR genes have several polymorphisms that are

common in the population. Two common polymorphisms are located at
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codons 49 (Ser49Gly) and 389 (Arg389Gly) for the β1AR gene and at

codons 16 (Arg16Gly) and 27 (Gln27Glu) for the β2AR gene14. The poly-

morphisms in each of these two receptor genes are in linkage disequilib-

rium, which suggests the importance of taking into account haplotypes,

rather than a single polymorphism, when defining biologic function. This

study attempts to detect haplotype variants within these candidate genes

which determine the response of SBP and DBP to varying concentrations

of dobutamine.

A group of 163 men and women in ages from 32 to 86 years old par-

ticipated in this study. Each of these subjects was genotyped for SNP

markers at codons 49 and 389 within the β1AR gene and at codons 16 and

27 within the β2AR gene. Dobutamine was injected into these subjects to

investigate their response in SBP and DBP to this drug. The subjects re-

ceived increasing doses of dobutamine, until they achieved target SBP and

DBP or predetermined maximum concentration. The concentration levels

used were 0 (baseline), 5, 10, 20, 30 and 40 mcg—min, at each of which

both SBP and DBP were measured. Raw data for SBP-concentration and

DBP-concentration profiles are illustrated in Figure 1A and 1C, respec-

tively. Only those (107) in whom there were SBP and DBP data at all the

six concentration levels were included for data analyses.

4. Results

Statistical analysis and test suggested that different SNPs within each can-

didate gene have significant linkage disequilibria (results not shown). By

assuming that one haplotype is the risk haplotype, we hope to detect a

particular DNA sequence associated with the response of SBP and DBP to

dobutamine. At the β1AR gene, we did not find any haplotype that con-

tributed to inter-individual difference in the SBP and DBP. A significant

effect was observed for haplotype Arg16(A)–Gln(C) for SBP and haplotype

Gly16(G)–Glu27(G) for DBP within the β2AR gene. The log-likelihood

ratio (LR) test statistics for the combination between these two risk hap-

lotypes 21.57, which is statistically significant (P -value=0.05) based on

the critical threshold determined from 1000 permutation tests and is also

greater than the LR values for any other combinations (Table 1).

The MLEs of the population and quantitative genetic parameters were

obtained by our bivariate model (Table 2). Using the estimated response

parameters, we drew the profiles of SBP and DBP response to increas-

ing concentration levels of dobutamine for three composite genotypes for
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these two types of blood pressures (Figure 1). As shown, the three com-

posite genotypes displayed different curves across all concentration levels

for each blood pressure (Figure 1B and 1D). The haplotype [AC] displayed

over-dominant effect on SBP across all concentration levels (Figure 1B).

In Figure 1D, the DBP curve of composite homozygote [GG][GG] showed

rapid decreases when concentration reached 5 mcg. We used area under

curve (AUC) to test in which gene action mode (additive or dominant)

haplotypes affect drug response curves for blood pressures. The testing

results suggest that both additive and dominant effects are important in

determining the shape of the response curve (Table 3).

Since the pioneering simulation study was performed by Lin and Wu7

to investigate the robustness and power of the method within a range of pa-

rameters, the simulation study, in this article, was conducted by mimicking

the example used above in order to determine the reliability of our estimates

in this real application. One haplotype was assumed to be different from

the other three. The data simulated under this assumption were subject to

statistical analysis, pretending that haplotype distinction is unknown. As

expected, only under the correct haplotype distinction could the haplotype

effect be detected and the parameters be accurately and precisely estimated

(result not shown).

Table 3. Testing results for additive and dominant effects for SBP and DBP
based on AUC in 107 subjects under the optimal haplotype model.

Test AdditiveSBP DominantSBP AdditiveDBP DominantDBP

LR 7.78 10.12 13.55 14.42
P value <0.05 <0.05 <0.05 <0.05

5. Discussion

A growing body of data has shown that people differ in their response

to the same medication. Although such variability in drug response among

patients can result from nongenetic factors such as sex, age and race, genetic

variants underlying pharmacological effect appear to receive more attention

in revealing these inter-individual differences16. Increasing examples have

shown that genetic variations lie in the encoding genes of drug metabolism

enzymes, transporters, receptors, and other targets that can modulate drug

response17. And the genetic differences can explain 20 to 95 percent of

variability in drug effects18. Thus, pharmacogenetics or pharmacogenomics,

the study of inherited variability in individuals’ responses to drugs becomes
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Figure 1. Response curves for systolic (SBP) (A) and diastolic blood pressure (DBP)
(C) to dobutamine in a pharmacogenomic study composed of 107 patients. From these

curves we have detected significant risk haplotypes [AC] (B) for SBP and [GG] for DBP
(D) that form three composite genotypes for each type of blood pressure.

flourishing in biomedical science.

With the development of the haplotype map or HapMap project19, more

and more information of DNA sequence variation, such as “tag” single

nucleotide polymorphisms (tag SNPs), a small fraction of SNPs required

in distinguishing a large fraction of the haplotypes, gives the possibility to

directly identify specific DNA sequence that influence drug response at a

single DNA base7. In contrast to the traditional QTL mapping in which

only hypothetical gene can be detected20, the approach proposed by Lin et

al.7 can detect specific DNA sequence variants for a complex trait.

Although the intensity of drug effects resulting from varying drug con-

centrations at the effect site can be characterized by pharmacodynamics,

such dynamic behavior of drug response provides a statistical problem in-

volving longitudinal traits. In coupling with the advantages of functional

mapping which maps dynamic QTL responsible for a biological process3–5,

Lin and Wu proposed a bivariate model for detecting specific DNA se-

quence variants that determine multiple processes of drug responses8. This

model is incorporated by clinally meaningful mathematical functions into

modelling concentration-dependent drug response and the statistical device

used to model the correlated structure of the (co)variance matrix.
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In this article, we adapt Lin and Wu’ approach8 to detect haplotype-

based genetic variants that contribute to inter-individual variation in two

response curves of SBP and DBP to a medication. The magnitudes of the

SBP and DBP are used as an indicator of whether there is a hypertension

for a patient. In a pharmacogenetic study composed of 107 subjects, we

have detected two risk haplotypes, [AC] and [GG], within the β2AR can-

didate gene, that exert significant effects on the response profiles of the

SBP and DBP to dobutamine, respectively. Biologically, such detected

genetic variants provide a possible explanation for the variability of the

inotropic effect among patients resulting from dobutamine. Previous study

also indicates that haplotype [GG] has a significant impact on response in

heart rate7. The results in this article suggest that a pleiotropic effect of

haplotype [GG] on DBP and heart rate may exist. The genetic variants

that regulate the response of SBP and DBP to a medication can therefore

provide scientific guidance for designing individualized drugs and dosages

based on a patient’s genetic makeup.
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