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We describe a natural language processing system (Enhanced SemRep) to identify core 
assertions on pharmacogenomics in Medline citations. Extracted information is 
represented as semantic predications covering a range of relations relevant to this domain. 
The specific relations addressed by the system provide greater precision than that 
achievable with methods that rely on entity co-occurrence. The development of Enhanced 
SemRep is based on the adaptation of an existing system and crucially depends on 
domain knowledge in the Unified Medical Language System. We provide a preliminary 
evaluation (55% recall and 73% precision) and discuss the potential of this system in 
assisting both clinical practice and scientific investigation.  

1. Introduction 

We discuss the development of a natural language processing (NLP) system to 
identify and extract a range of semantic predications (or relations) from Medline 
citations on pharmacogenomics. Core research in this field investigates the 
interaction of genes and their products with therapeutic substances. Discoveries 
hold considerable promise for treatment of disease [1], as clinical successes, 
notably in oncology, demonstrate. For example, Gleevec is a first-line therapy 
for chronic myelogenous leukemia, as it attacks the mutant BCR-ABL fusion 
tyrosine kinase in cancer cells, leaving healthy cells largely unharmed [2].   

Automatic methods, including NLP, are increasingly used as important 
aspects of the research process in biomedicine [3,4,5,6]. Current NLP for 
pharmacogenomics concentrates on co-occurrence information without 
specifying exact relations [7]. We are developing a system (called Enhanced 
SemRep in this paper) which complements that approach by representing 
assertions in text as semantic predications. For example, the predications in (2) 
are extracted from the sentence in (1).  

1) These findings therefore demonstrate that dexamethasone is a potent 
inducer of multidrug resistance-associated protein expression in rat 

 

Pacific Symposium on Biocomputing 12:209-220(2007) 



 

hepatocytes through a mechanism that seems not to involve the 
classical glucocorticoid receptor pathway. 

2) Dexamethasone STIMULATES Multidrug Resistance-Associated 
Proteins 
Dexamethasone NEG_INTERACTS_WITH Glucocorticoid receptor 
Multidrug Resistance-Associated Proteins PART_OF Rats 
Hepatocytes PART_OF Rats 

Enhanced SemRep is based on two existing systems: SemRep [8,9] and 
SemGen [10,11]. SemRep extracts semantic predications from clinical text, and 
SemGen was developed from SemRep to identify etiologic relations between 
genetic phenomena and diseases. Several aspects of these programs were 
combined and modified to identify a range of relations referring to genes, drugs, 
diseases, and population groups. The enhanced system extracts 
pharmacogenomic information down to the gene level, without identifying more 
specific genetic phenomena, such as mutations (e.g., CYP2C9*3), single 
nucleotide polymorphisms (e.g., C2850T), and haplotype information.  In this 
paper we describe the major issues involved in developing Enhanced SemRep 
for pharmacogenomics.  

2. Background  

2.1.  Natural Language Processing for Biomedicine 

Several NLP systems identify relations in biomedical text. Due to the 
complexity of natural language, they often target particular semantic relations. 
In order to achieve high recall, some methods rely mainly on co-occurrence of 
entities in text (e.g. Yen et al. [12] for gene-disease relations). Some approaches 
use machine learning techniques to identify relations, for example Chun et al. 
[13] for gene-disease relations. Syntactic templates and shallow parsing are also 
used, by Blaschke et al. [14] for protein interactions, Rindflesch et al. [15] for 
binding, and Leroy et al. [16] for a variety of relations. Friedman et al. [17] use 
extensive linguistic processing for relations on molecular pathways, while 
Lussier et al. [18] use a similar approach to identify phenotypic context for 
genetic phenomena. 

In pharmacogenomics, methods for extracting drug-gene relations have 
been developed, based on co-occurrence of drug and gene names in a sentence 
[19, 7]. The system described in [19] is limited to cancer research, while Chang 
et al. [7] use machine learning to assign drug-gene co-occurrences to one of 
several broad relations, such as genotype, clinical outcome, or 
pharmacokinetics. The system we present here (Enhanced SemRep)  addresses a 
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wide range of syntactic structures and specific semantic relations pertinent to 
pharmacogenomics, such as STIMULATES, DISRUPTS, and CAUSES. We 
first describe the structure of the domain knowledge in the Unified Medical 
Language System (UMLS) [20], upon which the system crucially depends.  

2.2. The Unified Medical Language System 

The Metathesaurus and the Semantic Network are components of the UMLS 
representing structured biomedical domain knowledge.  In the current (2006AB) 
release, the Metathesaurus contains more than a million concepts. Editors 
combine terms from constituent sources having similar meaning into a concept, 
which is also assigned a semantic type, as in (3). 

3)  Concept: fever;  Synonyms: pyrexia, febrile, and hyperthermia; 
Semantic Type: ‘Finding’ 

The Semantic Network is an upper level ontology of medicine. Its core 
structure consists of two hierarchies (entities and events) of 135 semantic types, 
which represent  the organization of phenomena in the medical domain. 

4)  Entity 
Physical Object 
    Anatomical Structure 
        Fully Formed Anatomical Structure  
           Gene or Genome 

Semantic types serve as arguments of “ontological” predications that 
represent allowable relationships between classes of concepts in the medical 
domain. The predicates in these predications are drawn from 54 semantic 
relations. Some examples are given in (5). 

5)  ‘Gene or Genome’ PART_OF ‘Cell’ 
‘Pharmacologic Substance’ INTERACTS_WITH ‘Enzyme’ 
‘Disease or Syndrome’ CO-OCCURS_WITH ‘Neoplastic Process’ 

Semantic interpretation depends on  matching asserted semantic 
predications to ontological semantic predications, and the current version of 
SemRep depends on the unedited version of the UMLS Semantic Network for 
this matching. One of the major efforts in the development of Enhanced 
SemRep was to edit the Semantic Network for application in 
pharmacogenomics.  

2.3. SemRep and SemGen 

SemRep: SemRep [8,9] is a rule-based symbolic natural language processing 
system developed to extract semantic predications from Medline citations on 
clinical medicine. As the first step in semantic interpretation, SemRep produces 
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an underspecified (or shallow) syntactic analysis based on the SPECIALIST 
Lexicon [21] and the MedPost part-of-speech tagger [22]. The most important 
aspect of this processing is the identification of simple noun phrases. In the next 
step, these are mapped to concepts in the Metathesaurus using MetaMap [23]. 
The structure in (7) illustrates syntactic analysis with Metathesaurus concepts 
and semantic types (abbreviated) for the sentence in (6).  

6)  Phenytoin induced gingival hyperplasia 
7)  [[head(noun(phenytoin)), metaconc(‘Phenytoin’:[orch,phsu]))], 

[verb(induced)], [head(noun([‘gingival hyperplasia’)), 
metaconc(‘Gingival Hyperplasia’:[dsyn]))]] 

The structure in (7) serves as the basis for the final phase in constructing a 
semantic predication. During this phase, SemRep relies on “indicator” rules 
which map syntactic elements (such as verbs and nominalizations) to predicates 
in the Semantic Network, such as TREATS, CAUSES, and LOCATION_OF. 
Argument identification rules (which take into account coordination, 
relativization, and negation) then find syntactically allowable noun phrases to 
serve as arguments for indicators. If an indicator and the noun phrases serving 
as its syntactic arguments can be interpreted as a semantic predication, the 
following condition must be met: The semantic types of the Metathesaurus 
concepts for the noun phrases must match the semantic types serving as 
arguments of the indicated predicate in the Semantic Network. For example, in 
(7) the indicator induced maps to the Semantic Network relation in (8).  

8)  ‘Pharmacological Substance’ CAUSES ‘Disease or Syndrome’ 
The concepts corresponding to the noun phrases phenytoin and gingival 
hyperplasia can serve as arguments because their semantic types 
(‘Pharmacological Substance’ (phsu) and ‘Disease or Syndrome’ (dsyn)) match 
those in the Semantic Network relation. In the final interpretation (9), The 
Metathesaurus concepts from the noun phrases are substituted for the semantic 
types in the Semantic Network relation.  

9)  Phenytoin CAUSES Gingival Hyperplasia 
SemGen: SemGen [10,11] was adapted from SemRep in order to identify 

semantic predications on the genetic etiology of disease. The main consideration 
in creating SemGen was the identification of gene and protein names as well as  
related genomic phenomena. For this SemGen relies on ABGene [24], in 
addition to MetaMap and the Metathesaurus.  

Since the UMLS Semantic Network does not cover molecular genetics, 
ontological semantic relations for this domain were created for SemGen. The 
allowable relations were defined in two classes: gene-disease interactions 
(ASSOCIATED_WITH, PREDISPOSE, and CAUSE) and gene-gene 
interactions (INHIBIT, STIMULATE, and INTERACTS_WITH). 
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3. Methods  

The development of Enhanced SemRep for pharmacogenomics began with 
scrutiny of the pharmacogenomics literature to identify relevant predications not 
identified by either SemRep or SemGen. Approximately 1000 Medline citations 
were retrieved with queries containing drug and gene names. From these, 400 
sentences were selected as containing assertions most crucial to 
pharmacogenomics,   including genetic (gene-disease), genomic (gene-gene), 
and pharmacogenomic (drug-gene, drug-genome) relations; in addition relations 
between genes and population groups; relations between disease and population 
groups; and pharmacological relations (drug-disease, drug-pharmacological 
effect, drug-drug) were scrutinized.  Examples of relevant assertions include: 

10)  N-acetyltransferase 2 plays an important role in Alzheimer’s Disease. 
(gene-disease) 
Ticlopidine is a potent inhibitor for CYP2C19. (drug-gene)  
Gefitinib and erlotinib for tumors with epidermal growth factor 
receptor (EGFR) mutations or increased EGFR gene copy numbers. 
(drug-gene) 
The CHF patients with the VDR FF genotype have higher rates of bone 
loss. (gene-disease and gene-process) 

After processing these 400 sentences with SemRep, errors were analyzed 
and categorized for etiology. It was determined that the majority of errors were 
missed predications that could be accounted for under three broad categories: a) 
the Semantic Network, b) errors in argument identification due to “empty” 
heads, and  c) Gene name identification. For Enhanced SemRep, gene name 
identification was addressed by adding ABGene [24] to the machinery provided 
by MetaMap and the Metathesaurus. The other classes of errors required more 
extensive modifications.  

3.1. Modification of Semantic Network for Enhanced SemRep 

The UMLS Semantic Network was substantially modified in enhanced SemRep.  
New ontological semantic predications were added and the definitions of others 
were modified. In order to accommodate semantic relations crucial to 
pharmacogenomics, semantic types stipulated as arguments of ontological 
semantic predications were reorganized into groups reflecting major categories 
in this field. 

Semantic Types: Semantic groups have been defined to organize the finer 
grained UMLS semantic types into broader semantic categories relevant to the 
clinical domain   [25]. For Enhanced SemRep, five semantic groups (Substance, 
Anatomy, Living Being, Process, and Pathology) were defined to permit 
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systematic and comprehensive treatment of arguments in predications relevant 
to pharmacogenomics.  These semantic groups are used to stipulate allowable 
arguments of the ontological semantic predications defined for each domain. 
Each group for pharmacogenomics is defined as: 

11)  Substance: ‘Amino Acid, Peptide, or Protein’, ‘Antibiotic’, 
‘Biologically Active Substance’, ‘Carbohydrate’, ‘Chemical’, 
‘Eicosanoid’, ‘Element, Ion, or Isotope’, ‘Enzyme’, ‘Gene or Genome’, 
‘Hazardous or Poisonous Substance’, ‘Hormone’, ‘Immunologic 
Factor’, ‘Inorganic Chemical’, ‘Lipid’, ‘Neuroreactive Substance or 
Biogenic Amine’, ‘Nucleotide Sequence’, ‘Organic Chemical’, 
‘Organophosphorous Compound’, ‘Pharmacologic Substance’, 
‘Receptor’, ‘Steroid’, ‘Vitamin’ 

12)  Anatomy: ‘Anatomical Structure’, ‘Body Part, Organ, or Organ 
Component’, ‘Cell’, ‘Cell Component’, ‘Embryonic Structure’, ‘Fully 
Formed Anatomical Structure’, ‘Gene or Genome’,  ‘Neoplastic 
Process’, ‘Tissue’   

13)  Living Being: ‘Animal’, Archaeon’, ‘Bacterium’, ‘Fungus’, ‘Human’, 
‘Invertebrate’, ‘Mammal’, ‘Organism’, ‘Vertebrate’, ‘Virus’ 

14)  Process: ‘Acquired Abnormality’, ‘Anatomical Abnormality’, ‘Cell 
Function’, ‘Cell or Molecular Dysfunction’, ‘Congenital Abnormality’, 
‘Disease or Syndrome’, ‘Finding’, ‘Injury or Poisoning’,  ‘Laboratory 
Test Result’, ‘Organism Function’, ‘Pathologic Function’, ‘Physiologic 
Function’, ‘Sign or Symptom’  

15)  Pathology: ‘Acquired Abnormality’, ‘Anatomical Abnormality’, ‘Cell 
or Molecular Dysfunction’, ‘Congenital Abnormality’, ‘Disease or 
Syndrome’, ‘Injury or Poisoning’, Mental or Behavioral Disorder’, 
‘Pathologic Function’, ‘Sign or Symptom’  

In addition to grouping semantic types, semantic types assigned to two 
classes of Metathesaurus concepts were manipulated to handle the following 
generalizations.  

16)  Proteins are also genes. Concepts assigned the semantic type ‘Amino 
Acid, Peptide, or Protein’ are also assigned the semantic type ‘Gene or 
Genome’ (“Cytochrome P-450 CYP2E1” now has ‘Gene or Genome’ 
in addition to ‘Amino Acid, Peptide, or Protein’) 

17)  Group members are human.  Concepts assigned the semantic type 
‘Group’ (or its descendants) are also assigned the semantic type 
‘Human’. (“Child” now has ‘Human’ in addition to ‘Age Group’). 

Predications: Predications for the pharmacogenomics domain were defined 
in the following categories (18-23). Ontological predications are defined by 
specifying allowable arguments, that is semantic types in the stipulated semantic 
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groups. The predications in (18-23) constitute a type of schema [26] for 
representing pharmacogenomic information. 

18)  Genetic Etiology:  
{Substance} ASSOCIATED_WITH OR PREDISPOSES OR CAUSES {Pathology} 
19)  Substance Relations :   
{Substance} INTERACTS_WITH OR INHIBITS OR STIMULATES  {Substance} 
20)  Pharmacological Effects:  
{Substance} AFFECTS OR DISRUPTS OR AUGMENTS {Anatomy OR Process} 
21)  Clinical Actions:  
{Substance} ADMINISTERED_TO {Living Being}   
{Process} MANIFESTATION_OF {Process} 
{Substance} TREATS {Living Being OR Pathology } 
22)  Organism Characteristics:  
{Anatomy OR Living Being} LOCATION_OF, {Substance} 
{Anatomy} PART_OF {Anatomy OR Living Being} 
{Process} PROCESS_OF  {Living Being} 
23)  Co-existence: 
{Substance} CO-EXISTS_WITH {Substance}  
{Process} CO-EXISTS_WITH {Process}  

3.2. Empty Heads 

“Empty” heads [27,28] are a pervasive phenomenon in pharmacogenomics text. 
An example is variants in (24).   

24)  We saw differential activation of CYP2C9 variants by dapsone. 
Nearly 80% of the 400 sentences in the training set contain at least one empty 
head. These structures impede the process of semantic interpretation. In SemRep 
the semantic type of the Metathesaurus concept corresponding to the head of a 
noun phrase qualifies that noun phrase for use as an argument. For example, 
from (24) we want to use the noun phrase CYP2C9 variant as an argument of 
STIMULATES, which requires that the semantic type of its object be a member 
of the Substance group. However, the semantic type of the head concept 
“Variant”  is ‘Qualitative Concept’.  

As has been noted (e.g. [28]), such words are not really empty (in the sense 
of having no semantic content). A complete interpretation would take the 
meaning of empty heads into account. However, that is beyond the present 
capabilities of the Enhanced SemRep system. It is possible to get a partial 
interpretation of structures containing this phenomenon by ignoring the empty 
head [27].  
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We enumerated several categories of terms which we identified as 
semantically empty heads. These include general terms for genetic and genomic 
phenomena (allele, mutation, polymorphism, and variant), measurements 
(concentration, levels), and processes (synthesis, expression, metabolism). 
During processing in Enhanced SemRep, words from these lists that have been 
labeled as heads are hidden and the word to their left is relabeled as head. After 
this processing, CYP2C9 becomes the head (with semantic type ‘Gene or 
Genome’, a member of the Substance group)  in CYP2C9 variants above, thus 
qualifying as an argument of STIMULATES. 

3.3. Evaluation 

Enhanced SemRep was tested for recall and precision using a gold standard of 
300 sentences  randomly generated from the set of 36,577 sentences containing 
drug and gene co-occurrences found on the Web site [29] referenced by Chang 
and Altman [7].  These sentences were annotated by three physicians (CBA, 
DD-F, MF) for the predications discussed in the methods section. That is, we 
did not mark up all assertions in the sentences, only those representing a 
predication defined in Enhanced SemRep. A total of 850 predications were 
assigned to these 300 sentences by the annotators.  

4. Results 

Enhanced SemRep generated 623 predications from the 300 sentences in the test 
collection.  Of these, 455 were true positives, 168 were false positives, and 375 
were false negatives, reflecting recall of  55% (95% confidence interval 49% to 
61%) and precision of 73% (95% confidence interval 65% to 81%).    

We also calculated results for the groups of  predications defined in the 
categories (18-22) above. Recall and precision for the predications in the five 
categories  are: Genetic Etiology (ASSOCIATED_WITH, CAUSES, PREDISPOSES): 
74% 74%; Substance Relations (INTERACTS_WITH, INHIBITS, STIMULATES): 50% 
73%; Pharmacological Effects (AFFECTS, DISRUPTS, AUGMENTS): 41% 68%; 
Clinical Actions (ADMINISTERED_TO, MANIFESTATION_OF, TREATS): 54% 84%; 
Organism Characteristics (LOCATION_OF, PART_OF, PROCESS_OF): 63% 71%.    

5. Discussion 

5.1. Error Analysis 

We assessed the etiology of errors separately for recall and precision. In 
considering both false negatives and false positives for Enhanced SemRep, the 
etiology of error was almost exclusively due to characteristics in SemRep before 
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enhancement, not to changes introduced for Enhanced SemRep. Word sense 
ambiguity was responsible for almost a third (28%) of all errors. For example, in 
interpreting (25), inhibition was wrongly mapped to the Metathesaurus concept 
“Psychological Inhibition,” thus allowing the system to generate the false 
positive “CYP2C19 AFFECTS Psychological Inhibition.”  

25)  Ticlopidine inhibition of phenytoin metabolism mediated by potent 
inhibition of CYP2C19. 

Difficulty in processing coordinate structures caused more than a third 
(35%) of the false negatives seen in our evaluation. For example, in processing 
(26), although Enhanced SemRep identified the predication “Fluorouracil 
INTERACTS_WITH DPYD gene,” it missed “mercaptopurine 
INTERACTS_WITH thiopurine methyltransferase.” 

26)  The cytotoxic activities of mercaptopurine and fluorouracil are 
regulated by thiopurine methyltransferase (TPMT) and 
dihydropyrimidine dehydrogenase (DPD), respectively. 

5.2. Processing Medline citations on CYP2D6 

We processed 2849 Medline citations containing variant forms of CYP2D6 with 
Enhanced SemRep, which produced 36,804 predications, 22,199 of which were 
unique. 5219 total and 2310 unique predications contained CYP2D6 as an 
argument, with the remaining predications representing assertions about other 
genes, drugs, and diseases.  The 5219 total predications containing CYP2D6 
were analyzed according to two predication categories (Genetic Etiology and 
Substance Relations), and the results were compared with relations listed for 
this gene on the PharmGKB Web site [30]. 

Genetic Etiology: 267 total predications represented CYP2D6 as an 
etiologic agent (CAUSES, PREDISPOSES, or ASSOCIATED_WITH) for a 
disease. The most frequent of these are the following: Parkinson’s disease (35 
occurrences), carcinoma of the lung (21), tardive dyskinesia (15), Alzheimer’s 
disease (9),  bladder carcinoma (8). All of the above relations were judged to be 
true positives. Only carcinoma of the lung occurs in PharmGKB. Of the 4 
PharmGKB CYP2D6-disease relations not obtained by SemRep (hepatitis C, 
ovarian carcinoma, pain, and bradycardia), two were found not to contain the 
disease name in the referenced citation (ovarian carcinoma and pain).   

Substance Relations: Enhanced SemRep retrieved 1128 total predications 
involving CYP2D6 and a drug. Sixty-nine drugs occurred 3 or more times in 
those predications. Forty-one of the 69 were in PharmGKB and 28 were not.  
Sixty-eight were true positives. For example, The following drugs (all true 
positives) were interpreted by Enhanced SemRep as inhibiting CYP2D6: 
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quinidine (45 occurrences in 1128 predications with CYP2D6), paroxetine (34), 
fluoxetine (27), fluvoxamine (8), sertraline (8). Quinidine and sertraline are not 
in PharmGKB. SemRep also retrieved predications that the following drugs (all 
true positives) interact with CYP2D6: bufuralol (27), antipsychotic agents (25) 
dextromethorphan (21 occurrences), venlafaxine (19), debrisoquin (18). 
Bufuralol is not in PharmGKB. The PharmGKB relations SemRep failed to 
capture were CYP2D6 interactions with cocaine, levomepromazine, maprotiline, 
trazodone, and yohimbine.  Two of these entries (levomepromazine and 
maprotiline) were found not to be based on the content of Medline citations.  

6. Conclusion 

We discuss the adaptation of an existing NLP system to apply in the 
pharmacogenomics domain. The major changes for developing Enhanced 
SemRep from SemRep involved modifying the semantic space stipulated by the 
UMLS Semantic Network. The output of Enhanced SemRep is in the form of 
semantic predications that represent assertions from Medline citations 
expressing a range of specific relations in pharmacogenomics. The information 
provided by Enhanced SemRep has the potential to contribute to systems that go 
beyond traditional information retrieval to support advanced information 
management applications for pharmacogenomics research and clinical care. In 
the future we intend to adapt the summarization and visualization techniques 
developed for clinical text [31] to the pharmacogenomic predications generated 
by Enhanced SemRep. 
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