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The assumption on the mass error distribution of fragment ions plays a crucial role in 
peptide identification by tandem mass spectra. Previous mass error models are the 
simplistic uniform or normal distribution with empirically set parameter values. In this 
paper, we propose a more accurate mass error model, namely conditional normal model, 
and an iterative parameter learning algorithm. The new model is based on two important 
observations on the mass error distribution, i.e. the linearity between the mean of mass 
error and the ion mass, and the log-log linearity between the standard deviation of mass 
error and the peak intensity. To our knowledge, the latter quantitative relationship has 
never been reported before. Experimental results demonstrate the effectiveness of our 
approach in accurately quantifying the mass error distribution and the ability of the new 
model to improve the accuracy of peptide identification. 

1. Introduction  

Tandem mass spectrometry is playing an increasingly important role in current 
proteomics research [1]. In an experiment of tandem mass spectrometry, 
peptides digested from protein mixture are first protonized and isolated 
according to their mass-to-charge ratios. Peptide ions of a specific mass-to-
charge ratio then undergo the low-energy collision-induced dissociation to break 
into fragment ions. Fragment ions are detected and their masses (or rather mass-
to-charge ratios) and intensities are recorded. The ion intensity at one mass 
value forms an observed mass peak. All the mass peaks corresponding to the 
detected fragment ions of the same peptide constitute the experimental tandem 
mass spectrum of this peptide. 

To identify the peptide corresponding to a tandem mass spectrum, database 
searching is the most widely used approach. Popular database searching tools 
are SEQUEST [2] and Mascot [3]. Another approach is the de novo sequencing, 
e.g. the Lutefisk [4], PEAKS [5] and PepNovo [6] algorithms. A third approach 
is the sequence tag query, e.g. the pioneer work by Mann and Wilm [7], and the 
recent GutenTag [8] and Popitam [9] algorithms.  
                                                           
†To whom correspondence should be addressed. E-mail: yfu@ict.ac.cn. 

Pacific Symposium on Biocomputing 12:421-432(2007) 



A key ingredient of peptide identification algorithms is the scoring function 
that measures the likelihood of a candidate peptide producing the experimental 
spectrum. In a peptide-scoring algorithm, observed mass peaks in the 
experimental spectrum are matched to the fragment ions predicted from a 
candidate peptide according to their mass values. Due to the imprecision of 
mass measurement, an error window on mass values is commonly used to 
tolerate mass match errors in a certain range. The error window plays a very 
important role in peptide-scoring algorithms. An error window inconsistent with 
the actual mass error distribution can lead to increased random matches or 
reduced true matches, thus degrading the performance of a peptide-scoring 
algorithm. Moreover, in the de novo or sequence tag approach to peptide 
identification, the allowed maximal mass error can greatly affect the number of 
candidate peptides or sequence tags.  

Ion trap mass spectrometers have been quite attractive in proteomics 
research, due to their relatively high sensitivity and low cost. However, 
compared to higher-resolution mass spectra, such as the Q-TOF spectra, the 
mass error of ion trap spectra is in general much larger and is less exploited in 
the computational proteomics area. Therefore, this paper focuses on ion trap 
spectra. The mass error models assumed for ion trap spectra in current peptide 
identification algorithms are quite simple. The most common assumption is that 
the mass error is uniformly distributed within the ±ε error window around the 
theoretical mass value [2, 3, 6, 10-18]. For ion trap spectra, the width of error 
window ε is often empirically set to 0.5 u, e.g. [6, 11, 12]. Another assumption 
is the normal distribution of mass error [19-22].  

Previous mass error models used in ion-trap spectra analysis and peptide 
identification algorithms can be characterized as follows: 
1. The mass error is centered at zero, 
2. The mass error is independent of both the mass and the intensity of 

fragment ions; 
3. The parameters in the mass error distribution are empirically set. 

A notable exception to (1) and (3) is the recent work due to Wan and Chen 
[21], in which the mean and standard deviation of the normally distributed mass 
errors are learned from training data. However, all existing error models have 
assumed so far that all mass errors in a given dataset of spectra come from an 
identical distribution regardless of ion masses and intensities. Although peptide-
identification tools based on these simple error models often work well, a large 
proportion (eighty to ninety percentage) of spectra cannot be successfully 
interpreted in current proteomic experiments due to either known or unknown 
reasons. A mass error model lacking of enough accuracy has to be responsible 
for some of these un-interpreted spectra.  
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In this paper, we statistically investigate the distribution of mass errors of 
singly charged fragment ions in ion trap tandem mass spectra. By visualizing 
mass errors in various ways, we first illustrate that there is a linear correlation 
between the mass error and the ion mass, and there is an approximate log-log 
linearity between the standard deviation (SD) of mass error and the peak 
intensity. To our knowledge, the latter quantitative relationship has never been 
reported in the literature. Based on these observations, we model the mass error 
of a fragment ion by a conditional normal distribution, whose mean and SD are 
the functions of ion mass and peak intensity, respectively. We also propose an 
iterative algorithm, named PMED, to accurately estimate the parameter values 
in the conditional mean and SD functions. Experimental results demonstrate that 
the PMED algorithm converges very fast and the learned parameter values 
match real data very well. Experiment also shows that the new mass error model 
can considerably improve the accuracy of peptide identification. 

The rest of the paper is organized as follows. Section 2 describes the used 
datasets of tandem mass spectra. In Section 3, we first qualitatively illustrate the 
distribution trends of mass errors and then propose the conditional normal 
model of mass error. The iterative parameter learning algorithm, PMED, is 
presented in Section 4. Section 5 gives experimental results. We finally 
conclude the paper and point out future work in Section 6. 

2. Datasets 

We have analyzed several datasets of ion trap mass spectra. However, due to the 
limited space, we report results on our own dataset in this paper. Results on 
several published datasets [23-26] are given in Supplementary Information 
online (http://www.jdl.ac.cn/user/yfu/pmed/index.html).  

The steps to generate our dataset (denoted by SIBS dataset) are briefly 
described below. A total of 300 μg protein sample from whole-cell lysate of 
mouse liver were digested with trypsin. Five LC-MS/MS runs were performed 
on the digested mixture with a linear ion trap (Thermo Finnigan, San Jose, CA) 
using different concentrations in salt steps. The mass spectrometer was set so 
that one full MS scan was followed by ten MS/MS scans on the ten most intense 
ions from the MS spectrum. The acquired spectra were searched against the 
mouse database (SwissProt) using the SEQUEST program. The resulting 
assignments of database peptides to experimental spectra were filtered 
according to their Xcorr and DeltCn scores (Xcorr≥1.9 and 2.2 for [M+1] and 
[M+2] spectra, respectively, and DelCN≥0.1). In addition, to reduce duplicate 
peptides, only the spectrum of the largest Xcorr was retained among a certain 
number of consecutive MS/MS scans on the same peptide ion. This finally 
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resulted in a total of 1,505 [M+1] and [M+2] spectra with high-confidence 
peptide assignments. [M+3] spectra were not included, since doubly charged 
fragment ions are often dominant in these spectra while our analysis focuses on 
the mass error of singly charged fragment ions. 

3. Conditional Distribution of Mass Error 

Our purpose is to study how the mass errors are distributed. Especially, we 
are interested in whether the mass error correlates with the ion mass and the 
peak intensity. 

3.1. Visualization of Mass Error Distribution  

To visualize and analyze the mass error, the mass peak produced by each 
expected fragment ion must be identified in advance. To this end, we first use a 
common strategy to match observed peaks to expected fragment ions - the most 
intense peak within the error window of ±ε around the theoretical mass value of 
an expected fragment ion is assigned to this fragment ion. This criterion for 
determining peak-ion matches certainly lacks accuracy, since the error window 
is set empirically and is fixed for all the fragment ions, regardless of their 
masses and intensities. Fortunately, we find that the training data obtained with 
the above criterion are adequate already for the qualitative analysis of mass 
error at this stage. In the next section, we will develop an iterative learning 
algorithm, based on the observations in this section, to quantify the mass error 
distribution and revise the criteria for determining peak-ion matches.  

We use monoisotopic masses of amino acid residues to calculate the 
theoretical mass and set ε to 0.5 u. Without loss of generality, we illustrate the 
analysis results only for y ions in this paper. Results for other fragment ion types, 
e.g. b ions, show a similar trend to y ions and are not given. Figure 1 gives the 
frequency histogram of mass errors. It shows that the mass error has a bell-
shaped distribution. A similar trend is also observed on other datasets (See 
Figures S1-1, S2-1, S3-1 and S4-1 in Supplementary Information). In addition, 
depending on the instrument calibration, the center of the mass error distribution 
may deviate from zero (See Figure S3-1 for example in Supplementary 
Information). This is called systematic error. 

Figure 2 plots all the mass errors of y ions against their corresponding ion 
masses. From Figure 2, we can see that the mass errors display a trend of 
descending linearly with increasing ion masses, although, at a given value of ion 
mass, the mass errors spread fairly abroad. For well calibrated instruments, such 
a phenomenon may not be apparent (See Figure S4-2 in Supplementary 
Information for example). However, we did observe the linear relationship 
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between the mass error and the ion mass on several real datasets (See Figures 
S1-2, S2-2 and S3-2 in Supplementary Information). This relationship has rarely 
been taken into account by peptide identification algorithms.  
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Figure. 1. Frequency histogram of mass errors. Figure. 2. Mass errors versus ion masses. 
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Figure. 3. Mass errors versus the logarithms of 
their corresponding peak intensities. 

Figure. 4. Log-log plot of the standard deviation 
(SD) of mass errors versus the peak intensity.  

 
Figure 3 plots all the mass errors of y ions against the logarithms of their 

corresponding peak intensities. Raw intensities are used here. It shows that the 
mass error distribution is dramatically correlated with the peak intensity. The 
more intense the peaks are, the more concentrated the mass errors tend to be. 
This is intuitively understandable - the more ions are detected, the more accurate 
the measured mass value should be.  

Further analysis reveals that the logarithm of the standard deviation (SD) of 
mass errors goes down approximately linearly as the logarithm of the peak 
intensity increases (see Figure 4). The data in Figure 4 are obtained by grouping 
the intensities into a number of bins and calculating the mass error SD of 
fragment ions falling in each bin (sampling equal number of data points from 
each bin results in the same phenomenon). On other datasets, a similar trend is 
also observed (See Figures S1-3, S1-4, S2-3, S2-4, S3-3, S3-4, S4-3 and S4-4 in 
Supplementary Information). 
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To the best of our knowledge, the above quantitative relationship between 
the mass error and the peak intensity has never been discussed in the literature. 
It provides a new important constraint for determining peak-ion matches; that is, 
scaled rather than fixed size of error window should be used for peaks of 
different intensities.   

3.2. Conditional Normal Model of Mass Error 

Based on the above observations, we model the mass error Ef of a fragment ion f 
as a random variable following a normal distribution, whose mean and SD are 
determined by the theoretical mass value M(f) and the observed raw peak 
intensity I(f), respectively; that is, 
 ( )( ) ( )( )( )2~ ,fE n M f I fμ σ , (1) 

where 
 ( )( ) ( )M f u M f vμ = ⋅ + , (2) 

 ( )( ) ( )( )a
I f b I fσ = ⋅ , (3) 

and u, v, a and b are parameters to be determined. The conditional mean and SD 
functions (2) and (3) directly follow from the observations in Section 3.1 
(Figures 2 and 4). Notice that by fixing the value of parameter u (or a) at zero, 
the mass error mean (or SD) becomes unconditional on the ion mass (or peak 
intensity), which leads to variant formats of the conditional normal model.  

4. Iterative Parameter Learning Algorithm 

Generally speaking, given a dataset of spectra of known peptide sequences, the 
parameter values in the conditional mean and SD functions can be roughly 
learned from the mass-error data generated in Section 3. However, since such 
training data are derived from a less accurate peak-ion matching criterion, the 
accuracy of parameter estimation could be accordingly affected. This problem 
may become significantly serious, when actual mass errors are distributed out of 
the expected range. To overcome this difficulty, we develop an iterative 
algorithm for more accurate parameter estimation. 

Intuitively, the algorithm, which we name PMED (Peaks’ Mass Error 
Model), for learning the values of parameters, u, v, a and b is performed in the 
following iterative manner. In one step, according to the mass error distribution 
determined by the current parameter values, probable peak-ion matches are 
selected to generate a training dataset. In another step, the parameters are re-
estimated on this training dataset. These two steps are carried out alternately 
until the learned parameter values do not change any more. By this iterative 
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procedure, the learned parameter values are expected not to be sensitive to the 
prior assumption on mass error distribution. 

Let {<S1, P1>, <S2, P2>, …, <SN, PN>} denote a set of tandem mass spectra 
labeled with corresponding peptide sequences. A spectrum Si is a set of peaks, 
{ }1 2, , ,

ii i ims s s… , each associated with a mass value M(sij) and an intensity value 
I(sij). A peptide Pi is a sequence of amino acid residues. Let { }1 2, , ,

ii i inf f f…  
denote the set of expected fragment ions of peptide Pi, each associated with a 
theoretical mass value M(fik).  

 
Algorithm PMED 
Input: A set of tandem mass spectra labeled with peptide sequences, {<S1, P1>, 

<S2, P2>, …, <SN, PN>}. 
Output: Estimated parameter values in the mass error distribution i.e. u, v, a 

and b in Equations (2) and (3). 
Step 1. Initialize the values of u, v, a and b in the conditional mean and SD 

functions (Equations (2) and (3)), according to the prior knowledge about 
the mass error distribution. 

Step 2. For each possible combination of i, j and k, compute the z-score zijk of 
the mass error of fragment ion fik, under the assumption that fik produced 
peak sij, based on the current values of u, v, a and b: 

 
( ) ( )( ) ( )( )

( )( )
ij ik ik

ijk
ij

M s M f M f
z

I s

μ

σ

− −
= , (4) 

where μ(M(f)) and σ(I(s)) are as defined in Equations (2) and (3), 
respectively. 

Step 3. Generate the training dataset D by selecting those peak-ion matches 
whose absolute z-scores are smaller than a given threshold zt:  

 ( ){ },ij ik ijk tD s f z z= < . (5) 

Step 4. Update the values of u, v, a and b with the maximum likelihood (ML) 
estimates for them based on the training dataset D; that is, 

 
( ), , , ,

, , , arg max
ij ik

ijk
u v a b s f D

u v a b p
∈

← ∏ , (6) 

where 

 
( )( )

( ) ( )( ) ( )( )

( )( )( )

2

2

1 exp
2 2

ij ik ik

ijk

ij ij

M s M f M f
p

I s I s

μ

πσ σ

⎛ ⎞− −⎜ ⎟
= ⎜ ⎟

−⎜ ⎟
⎝ ⎠

. (7) 

Step 5. Terminate the algorithm and return the learned values of u, v, a and b if 
they remain stable; otherwise, go to Step 2. 
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In Step 2, the absolute value of a z-score (or standard score) measures the 
deviation of a mass error from its expected value under the current assumption 
about the conditional mean and SD of the mass error distribution. If a peak-ion 
match is not due to chance, the deviation should be within a reasonable range. In 
Step 4, the ML estimates for u, v, a and b are not analytically tractable but can 
be numerically resolved efficiently. During the learning process, the parameters 
u and/or a can be fixed at zero to obtain variant versions of the error model. We 
implemented the PMED algorithm in MATLAB.  

The PMED algorithm, as an iterative ML estimator, was inspired by the 
Expectation-Maximization (EM) algorithm. Although it is not a rigorous EM 
algorithm, experiments in the next section demonstrate its convergence. 

5. Results and Discussions 

The results given in this section are obtained on the SIBS dataset described in 
Section 2. Those obtained on other datasets are presented in Supplementary 
Information online. 

5.1. Parameter Learning 

The values of u, v and a are initialized to zero, and the value of b is initialized to 
0.1. These initialized parameter values reflect the weakest prior assumptions 
about the mass error distribution - centered at zero (v=0), independent of the ion 
mass (u=0), and independent of peak intensity (a=0). Such assumptions are 
most common in current peptide identification algorithms. 

Figure 5 depicts the learned values for u, v, a and b against the number of 
iterations. The learning process converges after four iterations and takes less 
than one minute. We made small changes to the initialized parameter values and 
found that the learning results are not sensitive to the initialized values. The 
learned results are also quite stable, when the z-score threshold zt in Equation (5) 
is set to about three. 
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Figure. 5. Learned parameter values versus the number of iterations 
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It is also shown in Figure 5 that the learned parameter values after the first 
iteration, which correspond to the direct ML estimates on the initial training data, 
are significantly different from the finally learned values. This justifies the 
necessity of the PMED algorithm. 

Figures 6 and 7 plot the learned conditional mass error mean and SD 
respectively. We can see that the learned results of the PMED algorithm are 
quite consistent with real data. In the case that the parameters u and/or a are 
fixed at zero, other parameters can also be accurately learned (results not given). 
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Figure. 6. Learned conditional mean (dashed 
line) of the mass error distribution, plotted 
together with mass error data (dots) 

Figure. 7. Learned conditional standard 
deviation (dashed curve) of the mass error 
distribution, plotted together with residuals 
(dots) of mass errors from the learned mean. 

 

Due to the differences in instrument type, setup and calibration, the learned 
parameter values vary with instruments (See Figures S1-6, S1-7, S21-6, S2-7, 
S3-6, S3-7, S4-6 and S4-7 in Supplementary Information).  

5.2. Application to Peptide Identification 

To test the usefulness of our proposed conditional normal model of mass error 
for improving the accuracy of peptide identification, we use a simple peptide-
scoring function defined on mass match errors. Given a mass error model, the 
score of a candidate peptide is the sum of probability densities of all mass match 
errors. This scoring function is in fact a weighted version of the SPC (Shared 
Peak Counts) with each peak-ion match weighted by the probability density of 
the corresponding mass match error. Notice that the high intensity of a matched 
peak does not necessarily mean a high score. In fact, the situation can be the 
contrary if the mass match error (residual from learned mean) is large. This is 
illustrated in Figure 8.  

Several mass error models are compared, including the uniform distribution, 
the normal distribution, and several variants of conditional normal distribution. 
Parameter values in each model are either set empirically or learned from data. 
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In the latter case, five-fold cross validation is used for performance evaluation. 
Further, when parameters are learned from data, they may be either conditional 
or fixed. 
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Figure. 8. The score of a match is determined by both the mass match error and the peak intensity. 

 
Spectra are searched using the pFind program [17, 27, 28] against a large 

database containing 127,432 protein sequences (SwissProt database of all 
species entries, appended with the peptide sequences of test spectra). For 
simplicity, b and y ion series are predicted. Trypsin is used for theoretical 
digestion with up to two missed cleavage sites allowed. 

Table 1 compares the search results on the SIBS dataset using the above 
defined peptide-scoring function equipped with various mass error models. 
Percentages of spectra with the correct peptide sequence ranked top one and top 
ten are used to measure the identification accuracy. 

 
Table 1. Comparison of search results with various mass error models 

Parameters Mass error 
model μ (mean) σ (SD) or ε (width) 

Top1(%)1 Top10(%)2 

ε = 0.3 87.0 95.9 
ε = 0.5 75.6 90.1 Uniform 0 
ε = 0.7 60.0 78.8 
σ = 0.3/zt 73.2 90.4 
σ = 0.5/zt 87.1 97.3 0 
σ = 0.7/zt 90.2 98.3 
Fixed/learned 90.2 98.3 Fixed/learned Conditional 97.8 99.7 
Fixed/learned 91.6 98.4 

Normal 

Conditional Conditional  98.1 99.7 
1Percentage of spectra with the correct peptide sequence ranked top one.  
2Percentage of spectra with the correct peptide sequence ranked top ten. 

 
It is shown in Table 1 that compared to the unconditional uniform and 

normal models, either the introduction of conditional mean or the introduction 
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of condition SD can independently increase the identification accuracy. The 
improvement caused by the introduction of conditional SD is particularly 
significant - seven percentage points in Top1 performance. The best results are 
obtained with the fully conditional normal model. On the Top10 performance, 
the conditional normal model is also superior to unconditional models. On other 
datasets, the increases are remarkable too (See Tables S1, S2, S3 and S4 in 
Supplementary Information).  

6. Conclusions 

The proposed mass error model and the associated parameter learning algorithm 
provide an automated method for quantifying the mass error distribution of 
fragment ions in ion trap tandem mass spectra. Compared to previous mass error 
models, the new model has several advantages: 
1. Systematic error of mass measurement is taken into account; 
2. Fragment ions of different masses and intensities are of different mass error 

distributions; 
3. Parameters can be automatically learned from data. 

Experiments demonstrated the effectiveness of the parameter learning 
algorithm and the usefulness of the new mass error model for peptide 
identification. In the future, we expect to develop more sophisticated peptide 
scoring functions to take full advantage of the new mass error model.  

The analysis in this paper is limited to singly charged fragment ions. Due to 
the disturbance of isotopic peaks in the low-resolution ion trap spectra, the mass 
errors of doubly charged fragment ions are more complex and the analysis of 
them is more challenging and will be our future work. 
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