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There is extensive interest in mining data from full text. We have built a system

called SLIF (for Subcellular Location Image Finder), which extracts information on
one particular aspect of biology from a combination of text and images in journal

articles. Associating the information from the text and image requires matching

sub-figures with the sentences in the text. We introduce a stacked graphical model,
a meta-learning scheme to augment a base learner by expanding features based on

related instances, to match the labels of sub-figures with labels of sentences. The
experimental results show a significant improvement in the matching accuracy of

the stacked graphical model (81.3%) as compared with a relational dependency

network (70.8%) or the current algorithm in SLIF (64.3%).

1. Introduction

The vast size of the biological literature and the knowledge contained
therein makes it essential to organize and summarize pertinent scientific
results. Biological literature mining has been increasingly studied to ex-
tract information from huge amounts of biological articles 1–3. Most of the
existing IE systems are limited to extracting information only from text.
Recently there has been great interest in mining from both text and image.
Yu and Lee4 designed BioEx that analyses abstract sentences to retrieve
the image in an article. Rafkind et al5 explored the classification of general
bioscience images into generic categories based on features from both text
(image caption) and image. Shatkay et al6 described a method to obtain
features from images to categorize biomedical documents. We have built
a system called SLIF7–8 (for Subcellular Location Image Finder) that ex-
tracts information about protein subcellular locations from both text and
images. SLIF analyzes figures in biological papers, which include both
images and captions. In SLIF, a large corpus of articles is fully analyzed
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Fig. 5. Double immunofluorescence confocal 
microscopy using mouse mAb against cPABP 
and affinity-purified rabbit antibodies against 

mrnp 41. Methanol-permeabilized and fixed 
HeLa cells were incubated with affinity-purified 
rabbit anti-mrnp 41 antibodies (a) and with 
monoclonal anti-cPAPB antibodies (b), and the 
bound antibodies were visualized with 
fluorescently labeled secondary antibodies. 

(Bar = 10 µm.) 

Figure 1. A figure caption pair reproduced from the biomedical literature.

and the results of analysis steps are stored in an SQL database as trace-
able assertions. An interface to the database (http://slif.cbi.cmu.edu) has
been designed such that images and text of interest can be retrieved and
presented to users7.

In a system mining both text and images, associating the information
from the text and the image is very challenging since usually there are
multiple sub-figures in a figure and we must match sub-figures with the
sentences in the text. In the initial version of SLIF, we extracted the labels
for the sub-figures and sentences separately and matched them by finding
equal-value pairs. This naive matching approach ignores much context in-
formation, i.e., the labels for sub-figures are usually a sequence of letters
and people assign labels in a particular order rather than randomly, and
could only achieve a matching accuracy of 64.3%. To obtain a satisfactory
matching accuracy the naive approach requires high-accuracy image anal-
ysis and text analysis to get the labels. However, extracting labels from
image is non-trivial. Inferring the label sequences and improving image
processing allowed us to increase the F1 for panel label extraction to 78%9.
In this paper, we introduce a stacked graphical model to match the labels of
sub-figures with labels of sentences. The stacked model can take advantage
of the context information and achieves an 81.3% accuracy.

In the following, we give a brief review of SLIF in Section 2. Section 3
describes the stacked model used for the matching. Section 4 summarizes
the experimental results and Section 5 concludes the paper.

2. SLIF Overview

SLIF applies both image analysis and text interpretation to figures. Fig-
ure 1a is a typical figure that SLIF can analyse.

aThis figure is reproduced from the article “mRNA binding protein mrnp 41 localizes to

both nucleus and cytoplasm”, by Doris Kraemer and Günter Blobel, Cell Biology Vol.
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Figure 2. Overview of the image and text processing steps in SLIF.

Figure 2 shows an overview of the steps in the SLIF system with refer-
ences to publications in which they are described in more details.

Image processing includes several steps: Decomposing images into
panels. For images containing multiple panels, the individual panels are
recovered from the image. Identifying fluorescence microscope im-
ages. Panels are classified as to whether they are fluorescence microscope
images, so that appropriate image processing steps can be performed. Im-
age preprocessing and feature computations. Firstly the annotations
such as labels, arrows and indicators of scale contained within the image
are detected, analyzed, and then removed from the image. In this step,
panel labels are recognized by Optical Character Recognition (OCR). Panel
labels are textual labels which appear as annotations to images, for exam-
ple, “a” and “b” printed in panels in Figure 1. Recognizing panel labels
is very challenging. Even after careful image pre-processing and enhance-
ment the F1 accuracy is only about 75%. The OCR results are used as
candidate panel labels and after filtering candidates an F1 accuracy of 78%
is obtained9. Secondly, the scale bar is extracted, and finally subcellular
location features (SLFs) are produced and the localization pattern of each
cell is determined.

Caption Processing is done as follows. Entity name extraction. In
the current version of SLIF we use an extractor trained on conditional ran-
dom fields10 and an extractor trained on Dictionary-HMMs11 to extract the
protein name. The cell name is extracted using hand-coded rules. Image

94, pp. 9119-9124, August 1997.
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pointer extraction. The linkage between the panels and the text of cap-
tions is usually based on textual labels which appear as annotations to the
images (i.e., panel labels), and which are also interspersed with the caption
text. We call these textual labels appearing in text image pointers, for ex-
ample, “(a)” and “(b)” in the caption in Figure 1. In our analysis, image
pointers are classified into four categories according to their linguistic func-
tion: Bullet-style image pointers, NP-style image pointers, Citation-style
image pointers, and other12. The image-pointer extraction and classifica-
tion steps are done via a machine learning method12. Entity to image
pointer alignment. The scope of an image pointer is the section of text
(sub-caption) that should be associated with it. The scope is determined
by the class assigned to an image pointer.12

3. A Stacked Model to Map Panel Labels to Image Pointers

3.1. Stacked Graphical Models for Classification

Stacked graphical models are a meta-learning scheme to do collective
classification13, in which a base learner is augmented by expanding one
instance’s features with predictions on other related instances. Stacked
graphical models work well on predicting labels for relational data with
graphical structures (Kou and Cohen, in preparation). The inference con-
verges much faster than the traditional Gibbs sampling method and it has
been shown empirically that one iteration of stacking is able to achieve
good performance on many tasks. The disadvantage of stacking is that it
requires more training time to achieve faster testing inference.

Figure 3 shows the inference and learning methods for stacked graphical
models. In a stacked graphical model, the relational template C finds the
related instances. For instance xi, C(xi) retrieves the indices i1, ..., iL of
instances xi1 , ..., xiL

that are related to xi. Given predictions ŷ for a set of
instances x, C(xi, ŷ) returns the predictions on the related instances, i.e.,
ŷi1 , ..., ŷiL

.
The idea of stacking is to take advantage of the dependencies among in-

stances, or the relevance between inter-related tasks. In our application in
this paper, we conjecture that panel label extraction and image pointer ex-
traction are inter-related, and design a stacked model that combines them.

3.2. A Stacked Model for Mapping

In the previous version of SLIF, we map panel labels to image pointers by
finding the equal-value pair. Below we apply the idea of stacked graphical
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• Parameters: a relational template C and a cross-validation param-
eter J.

• Learning algorithm: Given a training set D = {(x,y)} and a base
learner A:

– Learn the local model, i.e., when k = 0:
Return f0 = A(D0). Please note that D0 = D,x0 = x,y0 =
y.

– Learn the stacked models, for k = 1...K:

(1) Construct cross-validated predictions ŷk−1 for x ∈ D as
follows:
(a) Split D into J equal-sized disjoint subsets D1...DJ .
(b) For j = 1...J , let fk−1

j = A(Dk−1 −Dk−1
j ).

(c) For x ∈ Dj , ŷk−1 = fk−1
j (xk−1).

(2) Construct an extended dataset Dk = (xk,y) by con-
verting each instance xi to xk

i as follows: xk
i =

(xi, C(xi, ŷk−1)), where C(xi, ŷk−1) will return the pre-
dictions for examples related to xi such that xk

i =
(xi, ŷ

k−1
i1

, ..., ŷk−1
iL

).
(3) Return fk = A(Dk).

• Inference algorithm: given x :

(1) ŷ0 = f0(x).

For k = 1...K,

(2) Carry out Step 2 above to produce xk.
(3) yk = fk(xk).

Return yK .

Figure 3. Stacked Graphical Learning and Inference

models to map the panel labels and image pointers.
In SLIF the image pointer finding was done as follows. Most image

pointers are parenthesized, and relatively short. We thus hand-coded an
extractor that finds all parenthesized expressions that are (a) less than 15
characters long and (b) do not contain a nested parenthesized expression,
and replaces X-Y constructs with the equivalent complete sequence. (E.g.,
constructs like “B-D” are replaced with “B,C,D”.) We call the image point-
ers extracted by this hand-coded approach candidate image pointers. The
hand-coded extractor has high recall but only moderate precision. Using
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a classifier trained with machine learning approaches, we then classify the
candidate image pointers as bullet-style, citation-style, NP-style, or other.
Image pointers classified as “other” are discarded, which compensates for
the relatively low precision of the hand-coded extractor.12

In SLIF the panel label extraction was done as follows. Image processing
techniques and OCR techniques are applied to find the labels printed within
the panel. That is, firstly candidate text regions are computed via image
processing techniques, and OCR is run on these candidate regions to get
candidate panel labels. This approach has a relatively high precision yet
low recall. We call the panel labels recognized by image processing and
OCR candidate panel labels. A strategy based on grid analysis (a procedure
which analyzes how many panels there are in a figure and finds out how the
panels are ranged) is applied to the candidate panel labels to get a better
accuracy.9

The match between panels labels and image pointers can be formulated
as a classification problem. We construct a set of pairs < oi, pj > for
all candidate panel labels oi’s and candidate image pointers pj ’s from the
same figure. That is, for a panel with li representing the real label, oi

representing the panel label recognized by OCR, and pj ’s representing the
image pointers in the same figure, we construct a set of pairs < oi, pj >.
We label the pair < oi, pj > as positive only if li = pj , otherwise negative.
For example, in Figure 1, the real label li for panel a is “a”. If OCR
recognizes oi where oi =“a”, image pointers for the figure are “a” and “b”,
we construct two pairs, < a, a > labelled as positive and < a, b > labeled as
negative. Note that the pair is labelled according to the real label and the
image pointers. If unfortunately, OCR recognizes oi incorrectly for panel a
in Figure 1, for example oi =“o”, we have two pairs, < o, a > labelled as
positive and < o, b > labeled as negative.

We design features based on oi’s and pj ’s. For a base feature set, there
are 3 binary features: one boolean value indicating whether oi = pj , one
boolean value indicating whether oi left = pj − 1 or oi upper = pj − 1, and
another boolean value indicating whether oi right = pj + 1 or oi downpj + 1,
where i left is the index of the left panel of panel i in the same row, i upper

is the index of the upper panel of panel i in the same column, pj + 1 is the
successive letter of pj and pj−1 is the previous letter of pj . This feature set
takes advantage of the context information by comparing oi left to pj−1 and
so on. The second and third features capture the first-order dependency.
That is, if the neighboring panel (an adjacent panel in the same row or the
same column) is recognized as the corresponding “adjacent” letter, there is
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Figure 4. Second-order dependency.

a higher chance that oi is equal to pj .
In the inference step for the base learner in the stacked model, if a

pair < oi, pj > is predicted as positive, we set the value of oi to be pj

since empirically the image pointer extraction has a higher accuracy than
the panel label recognition. That is, the predicted value ôi is pj for a
positive pair and ôi remains as oi for a negative pair. After obtaining
ôi, we recalculate the features via comparing ôi’s and pj ’s. We call the
procedure of predicting < oi, pj >, updating ôi, and re-calculating features
“stacking”. We choose MaxEnt as the base learner to classify < oi, pj >

and in our experiments we implement one iteration of stacking.
Besides the basic features, we also include another feature that captures

the “second-order context”, i.e., consider the spatial dependency among all
the “sibling” panels, even though they are not adjacent. In general the
arrangement of labels might be complex: labels may appear outside panels,
or several panels may share one label. However, in the majority of cases,
panels are grouped into grids, each panel has its own label, and labels
are assigned to panels either in column-major or row-major order. The
“panels” shown in Figure 4 are typical of this case. For such cases, we
analyze the locations of the panels in the figure and reconstruct this grid,
i.e., the number of total columns and rows, and also determine the row and
column position of each panel. We compute the second-order feature as
follows: for a panel located at row r and column c with label o, as long as
there is a panel located at row r

′
and column c

′
with label o

′
(r
′ 6= r and

c
′ 6= c) and according to either row-major order or column-major order the

label assigned to panel (r
′
, c

′
) is o

′
given the label for panel (r, c) is o, we

assign 1 to the second-order feature. For example, in Figure 4, recognizing
the panel label “a” at row 1, column 1 would help to recognize “e” at row
2, column 2 and “h” at row 3, column 2.

With the first order-features and second-order features, it increases the
chance of a missing or mis-recognized label to be matched to an image
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pointer.

4. Experiments

4.1. Dataset

To evaluate the stacked model for panel label and image pointer matching,
we collected a dataset of 200 figures which includes 1070 sub-figures. This
is a random subsample of a larger set of papers from the Proceedings of
the National Academy of Sciences. Our current approach can only analyse
labels contained within panels (internal labels) due to the limitations on
the image processing stage therefore in our dataset we only collected figures
with internal labels. Though our dataset does not cover all the cases, panels
with internal labels are the vast majority in our corpus.

We hand-labeled all the image pointers in the caption and the label for
each panel. The match between image pointers and panels is also assigned
manually.

4.2. Baseline algorithms

The approaches to find the candidate image pointers and panel labels have
been described in Section 3.2. In this paper, we take the hand-code ap-
proach and machine learning approach12 as the baseline algorithms for
image pointer extraction. The OCR-based approach and grid analysis
approach9 are baseline algorithms for panel label extraction.

We also compare the stacked model to relational dependency networks
(RDNs).14 RDNs are an undirected graphical model for relational data.
Given a set of entities and the links between them, a RDN defines a full
joint probability distribution over the attributes of the entities. Attributes
of an object can depend probabilistically on other attributes of the object,
as well as on attributes of objects in its relational neighborhood. We build
an RDN model as shown in Figure 5.

In the RDN model there are two types of entities, image pointer and
panel label. For an image pointer, the attribute pj is the value of the
candidate image pointer and oi is the candidate panel label. p tru and o tru

are the true values to be predicted. The linkage L pre and L next capture
the dependency among the sequence of image pointers: L pre points to the
previous letter and L next points to the successive letter. P left, P right,
P upper, and P down point to the panels to the left, right, upper and down
direction respectively. The RDN model takes the candidate image pointers
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Figure 5. An RDN model

and panel labels as input and predicts their true values. The match between
the panel label and the image pointer is done via finding the equal-value
pair.

4.3. Experimental Results

We used 5-fold cross validation to evaluate the performance of the stacked
graphical model for image pointer to panel label matching. The evalua-
tion was reported in two ways; the performance on the matching and the
performance on image pointer and panel label extraction. To determine
the matching is the “real” problem, i.e., what we really care about are the
matches, not getting the labels correctly. Evaluation on the image pointer
and panel label extraction is a secondary check on the learning technique.

Table 1 shows the accuracy of image pointer to panel label matching.
For the baseline algorithms, the match was done by finding the equal-value
pair. Baseline algorithm 1 was done by comparing the candidate image
pointers to the candidate panel labels. Baseline algorithm 2 was done by
comparing the image pointers extracted by the learning approach to the
panel labels obtained after grid analysis. The stacked graphical model takes
the same input as Baseline algorithm 2, i.e., the candidate image pointers
extracted by the hand-coded algorithm and the candidate panel labels ob-
tained by OCR. We observe that the stacked graphical model improves the
accuracy of matching. Both the first-order dependency and second-order
dependency help to achieve a better performance. RDN also achieved a
better performance than the two baseline algorithms. Our stacked model
achieves a better performance than RDN, because in stacking the depen-
dency is captured and indicated “strongly” by the way we design features.
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Table 1. Accuracy of image pointer to panel label matching.

Image pointer to

panel label matching

Baseline algorithm 1 48.7%

Baseline algorithm 2 (current algorithm in SLIF) 64.3%

RDN 70.8%

Stacked model (first-order) 75.1%

Stacked model (second-order) 81.3%

Table 2. Performance on image pointer extraction and panel label extraction.

Image pointer Panel label

extraction extraction

Baseline algorithm 1 60.9% 52.3%

Baseline algorithm 2 89.7% 65.7%

RDN 85.2% 73.6%

Stacked model with first order dependency - 77.8%

Stacked model with second order dependency - 83.1%

That is, the stacked model can model the matching as a binary classifica-
tion of < oi, pj > and capture the first-order dependency and second-order
dependency directly according to our feature definition. However, in RDNs,
the data must be formulated as types of entities described with attributes
and the dependency is modeled with links among attributes. Though RDNs
can model the dependency among data, the matching problem is decom-
posed to a multi-class classification problem and a matching procedure.
Besides that, the second-order dependency can not be modeled explicitly
in the RDN.

Table 2 shows the performance on the sub-task of image pointer ex-
traction and panel label extraction. The results are reported with F1-
measurement. Since during the stacked model we update the value of oi

and set it to be pj when finding a match, the stacking also improves the
accuracy of panel label extraction. The accuracy for image pointer extrac-
tion remains the same since we do not update the value of pj . Baseline
algorithm 1 is the approach of finding candidate image pointers or candi-
date panel labels. Baseline algorithm 2 for image pointer extraction is the
learning approach, and the grid analysis strategy for panel label extraction.
The inputs for the stacked graphical model are candidate image pointers
and candidate panel labels. We observe that by updating the value of oi,
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Figure 6. Cases where current algorithms fail

we can achieve a better performance of panel label extraction, i.e., pro-
vide more “accurate” features for stacking. RDN also helps to improve the
performance yet the best performance is obtained via stacking.

4.4. Error Analysis

As mentioned in Section 2, OCR on panel labels is very challenging and we
suffer a low recall of baseline algorithm 1. Most errors occur when there are
not enough oi recognized from the baseline algorithm to obtain information
of the first-order and second-order dependency. Figure 6(a) shows a case
where the current OCR fails. Figure 6(b) shows a case where there is not
enough contextual information to determine the label for the upper-left
panel.

5. Conclusions

In this paper we briefly reviewed the SLIF system, which extracts infor-
mation on one particular aspect of biology from a combination of text and
images in journal articles. In such a system, associating the information
from the text and image requires matching sub-figures in a figure with the
sentences in the text. We used a stacked graphical model to match the la-
bels of sub-figures with labels of sentences. The experimental results show
that the stacked graphical model can take advantage of the context infor-
mation and achieve a significant improvement in the matching accuracy
of the stacked graphical model as compared with a relational dependency
network or the current algorithm in SLIF. In addition to accomplish the
matching at a higher accuracy, the stacked model helps to improve the
performance of finding labels for sub-figures as well.
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The idea of stacking is to take advantage of the context information, or
the relevance between inter-related tasks. Future work will focus on apply-
ing stacked models to more tasks in SLIF, such as protein name extraction.
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