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A common approach for identifying pathways from gene expression data is to clus-
ter the genes without using prior information about a pathway, which often identi-
fies only the dominant coexpression groups. Recommender systems are well-suited
for using the known genes of a pathway to identify the appropriate experiments
for predicting new members. However, existing systems, such as the GeneRecom-
mender, ignore how genes naturally group together within specific experiments.
We present a collaborative filtering approach which uses the pattern of how genes
cluster together in different experiments to recommend new genes in a pathway.
Clusters are first identified within a single experiment series. Informative clusters,
in which the user-supplied query genes appear together, are identified. New genes
that cluster with the known genes, in a significant fraction of the informative clus-
ters, are recommended. We implemented a prototype of our system and measured
its performance on hundreds of pathways. We find that our method performs as
well as an established approach while significantly increasing the speed and scal-
ability of searching large datasets. [Supplemental material is available online at
sysbio.soe.ucsc.edu/cluegene/psb07.]

1. Introduction

We developed an approach that efficiently searches the growing body of

functional genomics data for new genes that act in a pathway of interest.

For many pathways, the cell must coordinate the expression of the par-

ticipating genes so that their products are present at the same time and

place. The functional similarity of these genes may be detectable in gene

expression data, if the context under which the pathway is activated has

been assayed. As the results of DNA microarray studies continue to be

contributed to public repositories such as the Gene Expression Omnibus1,

the chance that such a context exists in the database becomes more likely.

∗corresponding author.
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However, finding this context among the many irrelevant experiments can

be as challenging as finding a needle in a haystack.

Existing recommendation systems for gene pathway discovery, such as

the GeneRecommender2 and the Signature Algorithm3, have shown promise

for finding genes of related function. However, these approaches do not take

advantage of the natural clustering of genes in different experiment series.

Rather than using pre-existing clusters, they build a cluster around the

given query genes using microarray hybridizations under which the query

genes are most strongly up- or down-regulated. Because of this, they can

miss correlations present across multiple hybridizations where the absolute

levels of the query genes are different but where their expression changes are

still highly similar. In addition, these approaches can be computationally

intensive since the algorithms must compute the correlation of every gene

compared to the input query set. Therefore, we expect these approaches to

scale poorly as the number of microarray hybridizations increases.

The task of identifying new genes that act in a pathway is analogous

to the task of making product recommendations for customers of online

stores. We have developed a collaborative filtering-based gene recommen-

dation system4, ClueGene, which uses pre-computed clusters of genes to

recommend new genes for a query pathway.

In online shopping, recommendations for additional purchases are based

on the contents of a customer’s shopping cart and on the purchasing history

of previous customers5. In gene pathway prediction, recommendations for

additional genes in a pathway are based on the known genes of the path-

way (the query genes) and on clusters of coexpressed genes computed from

experimental data. The ClueGene system precomputes clustering solutions

for multiple data sets and stores each identified cluster in a database re-

ferred to as the Cluster Compendium (see Figure 1). Storing clusters pro-

vides a more compact representation of gene regulation groups compared

to storing the entire set of microarray results. Given a query, consisting

of a set of genes, the ClueGene recommender algorithm scans the Cluster

Compendium for clusters containing a significant proportion of the query

genes. It scores each gene in the genome using a weighted vote across these

clusters. ClueGene returns its recommendation as a list of all the genes in

the genome ranked by score.

Using a method analogous to e-commerce recommender systems, Clue-

Gene quickly and accurately predicts members for a large number of path-

ways. We conclude that collaborative filtering approaches may provide an

efficient and accurate methodology for scanning large amounts of functional
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Figure 1. ClueGene method overview. A. Datasets from Stanford Microarray Database
and Gene Expression Omnibus are collected. B. Clusters are derived from each dataset
by forming a network from all significant pairwise Pearson correlations from which dense
subnetworks are identified with MODES. C. The grouping of clusters by dataset is main-
tained in the Cluster Compendium. D. A list of genes is supplied as the input query. E.
All genes are scored according to their degree of co-clustering with the query. F. The
top-scoring genes are returned as the recommendations.

genomics data to predict gene function.

2. Construction of the Cluster Compendium

To test the ClueGene system, we clustered 44 different Saccharomyces cere-

visiae experiment series collected from the Stanford Microarray Database6

and the Gene Expression Omnibus. The datasets represent a diverse collec-

tion of experiments ranging from perturbations such as from various stresses

and deletions to normative conditions such as cycling cells and regulation of

general transcription. To increase the diversity of clusters in our search, we

included two datasets in which the binding of specific transcription factors

were assayed with genome-wide chromatin immunoprecipitation 7,8. For a

full list of the datasets and their references, please see Supplemental Table

1.

To find clusters of coregulated genes within each data series, we first

constructed a coexpression network and then identified clusters as dense

subnetworks in the network. A coexpression network was constructed by

connecting any two genes whose Pearson correlation was equal to or greater

than four standard deviations above what was expected by chance (based

on randomly permuting gene vectors). The MODES (Mining Overlapping

DEnse Subgraphs) algorithm9 was used to identify highly-connected sets

of genes in the resulting network. MODES clusters genes into overlapping

subsets, allowing a gene to belong to multiple clusters.

In total, 6900 clusters from the 44 datasets were identified and loaded

into a yeast Cluster Compendium from which recommendations could be
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computed. Clusters derived from the gene expression study represent sets

of genes whose relative changes in expression across a single dataset are

highly similar. Clusters derived from the chromatin-immunoprecipitation

experiments represent sets of genes that are bound by a common set of

transcription factors. Thus, clusters from both types of dataset group genes

according to shared regulatory information. Note that the clustering step

does not depend on a particular query and therefore was pre-computed.

3. Scoring Genes Based on Co-clustering with a Pathway

ClueGene is given a set of genes, called the query, Q, that are thought

to be functionally related. It then scores each gene, g, in the genome, G,

based on how often the gene appears in clusters with the genes in Q. We

define a function that assigns higher scores to genes that appear in clusters

containing a high proportion of query genes.

Let D be a set of clustering solutions where each element of D is a set of

clusters. Define Ngd to be the number of clusters in data set d that contain

g and at least one gene from Q. The co-clustering score C(g) of gene g ∈ G

is:

C(g) =
∑

d∈D

[

1

Ngd

∑

c∈d

|Q ∩ c|

|Q ∪ c|
I(g ∈ c)

]

where I is the indicator function that returns 1 if its argument is true

and 0 otherwise.a

The intuition underlying the choice of scoring function is to identify

genes that occur in small and specific clusters with the query genes. If g

belongs to a large cluster that also happens to have several of the query

genes, this observation is down-weighted because the co-occurrence of gene

g with the query may arise by chance if the cluster is large enough. On

the other hand, if g belongs to a small cluster that also contains several

of the query genes, this observation receives a high weight because the

co-occurrence is less likely to be serendipitous.

Dividing by Ngd corrects for the number of clusters that a gene appears

in. Without this correction, high scores could be assigned to genes that

aThe time complexity of ClueGene is O(|D|), where |D| is the number of data sets. The
time complexity of GeneRecommender is O(|D| × e), where e is the average number of

experiments per data set. We expect e to grow over time as high-throughput techniques
become less costly and more common. For details of the scoring algorithm and time
complexity analysis see Supplemental Appendix A.
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are ”central” in the coexpression network simply because they appear in

several clusters. Note that one could also consider including an additional

normalization term to correct for missing data.b

4. Results on Positive Control Pathways

To estimate the accuracy of a search, either from ClueGene or the GeneRe-

commender, we used a leave-half-out strategy. Half of the original genes in

the pathway were used as the query to search for the remaining half. We

refer to the withheld members as the expected set of genes. We obtain a

conservative estimate of the accuracy of the search by using only the ranks

of the expected genes while ignoring the ranks of the query genes.

A single leave-half-out search results in a list of genes, sorted by their

co-clustering scores, C(g). At a given score cutoff z, the precision and the

recall of the search are measured. Expected genes with scores of at least z

are considered to be recommended, while the rest are not. The precision is

defined to be p/n where p is the number of expected genes with scores of

at least z, and n is the number of total genes with scores of at least z. The

recall is defined to be p/t where t is the total number of expected genes, and

p is the same as before. Sweeping through a range of cutoff levels produces

various precision levels as a function of recall.

For positive control testing, we selected four functionally-related groups

of genes defined by KEGG10: the Cell Cycle category—containing genes

involved in the actuation and regulation of the cell cycle, the Oxidative

Phosphorylation category—containing genes involved in the final stage of

cellular respiration, the Proteasome category—containing genes encoding

subunits of the 26S or 19S components of the proteasome, and the Ribosome

category—containing genes that encode subunits of the small and large

cytosolic ribosome. These pathways were previously shown in Stuart et

al. 11 to contain genes with highly correlated expression profiles conserved

across multiple species.

As a negative control, we created four sets of genes selected at random

from the entire yeast genome; these random sets contained 10, 25, 50, and

100 genes. ClueGene and GeneRecommender were both run on the posi-

bDividing by Mg , the number of datasets in which g appears, would allow genes with
differing amounts of missing data to be directly compared. We found that dividing by

Mg had little effect on our results, presumably because the yeast data contains very little
missing data. However, we suggest including a division by Mg if applied to other species
in which more missing data is expected.
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tive control pathways and the randomly constructed sets of genes. Figure

2 shows the precision-recall curves for the Cell Cycle, Oxidative Phospho-

rylation, Proteasome, and Ribosome categories.

Figure 2. Estimates of the precision at various levels of recall for the four test pathways.

Black lines, accuracies for ClueGene; gray lines, accuracies for GeneRecommender. Error
bars show +/−1 standard deviations from 10 leave-half-out runs. A. Ribosomal subunits.
B. Oxidative phosphorylation. C. Proteasomal subunits. D. Cell cycle related genes.

As expected, ClueGene and GeneRecommender perform equally well

for the Ribosome and Oxidative Phosphorylation categories. ClueGene and

GeneRecommender both cannot identify members of the Cell Cycle cat-

egory. Since the KEGG Cell Cycle category contains genes that act at

different stages of the cell cycle, we tested whether the performance could

be improved by dividing up the category into gene groups that are known

to act at the same phase. However, we found that all subsets of the Cell

Cycle category, corresponding to different phases of the cell cycle, also per-

formed poorly on the searches (see Supplemental Table 3). This suggests

that the yeast Cluster Compendium does not contain informative clusters

for identifying genes involved in this process.

ClueGene appears to perform better than the GeneRecommender on

predicting subunits of the proteasome. To assess whether the difference

between the performance of the two methods was significant, we measured

the area under the curve (AUC) of the precision-recall plot to summarize
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the overall performance of a search method.c The average and standard

deviation across ten leave-half-out tests was calculated. Table 1 summarizes

the results of testing on four positive control pathways.

Table 1. Control Test Results.

KEGG Category ClueGene GeneRecom- CG Randoma z-scoreb

category size AUC mender AUC AUC

Cell Cycle 87 0.0373 0.0444 0.0082 -0.5139

Oxidative 64 0.3941 0.3058 0.0057 0.4549
Phosphorylation

Proteasome 32 0.7149 0.5631 0.0028 0.2827

Ribosome 147 0.8579 0.7942 0.0147 0.2387

Note: a ClueGene run on random pathways of size 10, 25, 50 and 100; the AUCs of
three runs were averaged for each size. Reported values derived by linear interpolation.
b Mann-Whitney z-score.

The AUCs matched our intuitive sense of the performance as observed

in Figure 2. In addition, the results on the negative controls yielded AUCs

expected from uniformly distributed ranks (Table 1 shows the negative con-

trol results for ClueGene only; the results on negative controls were nearly

identical for GeneRecommender). The AUC can be used as a single mea-

sure to evaluate a large collection of pathways to identify those pathways

associated with high ClueGene performance. To detect pathways with sig-

nificant accuracy, one could perform a t-test between the AUCs obtained on

the random controls compared to a specific pathway. Our focus, however,

was to identify any pathways for which the two search algorithms produced

significantly different precision levels.

To test whether the search results were statistically comparable or dif-

ferent for a particular pathway, a Mann-Whitney test was performed to

compare the ranks of the expected genes returned by ClueGene to those

returned by GeneRecommender.d We used the z-score returned by the

cThe AUC was estimated using the trapezoid rule, commonly used in discrete integration.
The final AUC was normalized by dividing by the theoretical maximum: 1 − 1

t
.

dFor a pathway of size 2t, let the ranks assigned by ClueGene to the t expected genes

be X1,X2, . . . , Xt, and the ranks assigned by GeneRecommender be Y1, Y2, . . . , Yt. X
and Y were combined into a single vector W and sorted. The Mann-Whitney statistic
was computed as t2 + 0.5(t + 1) − U , where U is the sum of the new ranks of X in W .
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Mann-Whitney test as a measure of the difference in prediction accuracy

between the two search engines. z-scores larger than 2 indicated ClueGene

found a significantly more accurate result than GeneRecommender. Con-

versely, z-scores less than −2 indicated the GeneRecommender performed

more accurately for a pathway than ClueGene. For each pathway, we calcu-

lated the Mann-Whitney z-score for each of the 10 different leave-half-out

tests. We reported the median z-score from these 10 runs. Note that this

is equivalent to calling a difference between the two methods significant if

a majority of the leave-half-out tests yield significantly different rankings.

For the positive control pathways, we found that ClueGene and GeneRe-

commender returned statistically similar results. For example, even though

the difference in AUC between the two methods is higher for ClueGene

(0.71) compared to the GeneRecommender (0.56) for the Proteasome, the

rankings assigned to the expected genes were not found to be significantly

different (0.28 standard deviations) (Table 1). Thus, the ClueGene search

engine was found to perform as accurately as the GeneRecommender using

the Mann-Whitney test for the four positive control pathways. To gauge

the general performance of ClueGene, we next set out to test it on a large

set of pathways.

5. Results On Diverse Pathways

To compare the performance of ClueGene and GeneRecommender, the ac-

curacy of each method was measured on 1441 functionally-related groups of

genes defined by Gene Ontology12, 80 defined by KEGG10, and 180 defined

by MIPS13, for a total of 1701 pathways (see Supplemental Table 2 for the

complete results). Figure 3A shows the distribution of AUCs computed for

ClueGene and GeneRecommender.

The Mann-Whitney z-scores were centered on 1 (Figure 3A). This was

surprising because it indicated that, in general, ClueGene had higher, al-

though not significantly higher, performance across the pathways compared

to the GeneRecommender. Few extreme z-scores were observed, indicating

the two methods perform comparably on the set of pathways.

We collected five pathways with the highest and five with the lowest

Mann-Whitney z-scores (see Table 2). The results indicate the ClueGene

method performed better for pathways specific to energy generation. For

example, ClueGene obtained significantly better rankings for GO categories

A z-score was computed as z = (U − 1

2
t2)/(t

q

1

12
(2t + 1)).
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Figure 3. Performance comparison of ClueGene to GeneRecommender on diverse path-
ways. A. Distribution of AUCs for ClueGene and GeneRecommender on a non-redundant
set of pathways for which at least one of the methods had an AUC of 0.20 or better. B.
Each pathway’s precision at the 50% recall rate is plotted for ClueGene against GeneRe-
commender. Open diamonds, pathways with absolute Mann-Whitney z-scores less than
2; black diamonds, pathways with absolute z-scores of at least 2.

Table 2. Selected Pathways with Extreme Mann-Whitney z-scores.

Top ClueGene Categories z-scorea Top GeneRecommender z-score
Categories

membrane-bound organelle (GO) 2.8 protein binding (GO) -5.1

carboxylic acid metabolism (GO) 2.6 DNA recombination (GO) -4.2

respiratory chain complex III (GO) 2.6 DNA metabolism (GO) -3.7

oxidoreductase activity, acting 2.6 DNA transposition (GO) -2.9
on heme group of donors (GO)

aminoacyl-tRNA-synthetases (MIPS) 2.2 nucleic acid binding (GO) -2.9

Note: a Mann-Whitney derived z-score. Higher z-scores indicate ClueGene ranked query
genes toward the top compared to GeneRecommender.

carboxylic acid metabolism and respiratory chain complex III. The GeneRe-

commender outperformed ClueGene on pathways directly involved in the

generation and manipulation of DNA (e.g. the GO categories DNA recom-

bination and DNA metabolism). The ClueGene algorithm had a higher pre-

cision for several pathways, including the MIPS aminoacyl tRNA synthetase

category (Figure 3B), but the significance compared to GeneRecommender

was borderline. To identify datasets that contributed significantly to the

high-ranking of the top-scoring genes, for the 25 highest scoring genes we

summed the contributions from each dataset. This assigns each dataset a
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score relative to its contribution. In the case of the aminoacyl tRNA syn-

thetases, ClueGene was able to find a significant coregulation pattern in

the datasets of Brem et al. and Yvert et al. (see Supplemental Table 1 for

the references). We plotted the expression levels of the query genes for a

subset of the conditions (see Supplemental Figure 1). Visual inspection of

the expression levels reveals that, while the shape of the expression levels of

the aminoacyl tRNA synthetases change in a coordinate fashion, their ab-

solute levels of expression are very low. The GeneRecommender therefore

assigned these experiments low scores and therefore missed the coordinate

expression changes of this group of functionally-related genes.

The GeneRecommender had high accuracy on the GO DNA Transposi-

tion category, and identified a significant coexpression pattern within the

dataset published by Hughes et al.14. The transposons had extremely high

levels of expression with very little variance across this dataset (data not

shown). The shape of the expression levels relative to each other look dis-

similar. Thus, clustering based on centered Pearson correlation fails to

capture the pattern of coregulation of the transposons in this dataset.

6. Discussion

We have found that a collaborative-filtering-based strategy for predicting

new members of a pathway from gene expression data gains speed and scal-

ability without sacrificing search performance. The ClueGene search engine

uses pre-computed clustering solutions to identify patterns of coregulation

between novel and known genes of a pathway. In general, the ClueGene

search engine performed comparably and, in some cases, better than the

GeneRecommender on a diverse collection of categories from MIPS, Gene

Ontology, and KEGG.

The current implementation of ClueGene has several limitations. For

example, we only considered positive correlation in our search for related

genes. In the future, we plan to test the hypothesis that including anti-

correlation can improve pathway prediction. We will build a new Cluster

Compendium using absolute Pearson correlation. ClueGene could use these

new clusters either alone or together with the original clusters. By mea-

suring AUCs associated with each Cluster Compendium, the search engine

could identify which compendium is more predictive for a specific pathway.

ClueGene could be used to predict the function of unknown proteins. A

single gene of unknown function could be supplied as the query and its

function inferred from the functions of known genes that sort to the top of
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the search result. In our study, we focused on assessing the performance of

the search algorithm for identifying known genes of well-defined pathways.

To facilitate these additional uses, we have made the source code available

from our website.

ClueGene was designed to extend to a diversity of organisms and

datasets. The advantage of using clusters rather than the primary data

is that ClueGene avoids the problem of having to normalize across different

microarray platforms. The approach can accommodate new datasets in an

online fashion: when a new dataset is available, clusters can be identified

and added to the compendium from which updated recommendations can

be made.

Generalizing over species and data types will broaden the range of ge-

netic processes that can be searched. The speed of ClueGene enables it to

be applied to a large number of datasets for which the application of the

GeneRecommender would be prohibitively slow, or have datasets too large

to load into computer memory. Extending the Cluster Compendium to ad-

ditional organisms will allow searches to be performed in organisms where

predicted gene sequences (but possibly not the entire genome sequence) are

available. ClueGene could be generalized by extending the cluster database

to additional organisms, as well as by developing a method that identifies

patterns of conservation in gene co-clustering.

Genes recommended from coexpression clusters on several organisms

may correspond to either ancient members of the pathway or to more newly

evolved participants. For example, a gene may co-cluster with a pathway

in humans and mice, but not in non-mammals. The co-clustering pattern

in this case suggests the gene was recruited into the pathway sometime

after the mammals diverged from the other animals. Finding such a pat-

tern indicates the gene’s regulation program (cis- or trans-acting regulatory

factors) may have undergone recent adaptations rather than a slower fine-

tuning over a larger evolutionary period, which may provide clues about the

gene’s function. We envision computing a co-clustering score at each node

in the phylogenetic tree that relates the set of organisms for which a Cluster

Compendium is available. In this way, the ClueGene algorithm could make

explicit use of the complementary information present in experimental data

collected from a variety of organisms.
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