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Identification of ligand-receptor interactions is important for drug design and the 
treatment of diseases. Difficulties in detecting these interactions using high-throughput 
experimental techniques motivate the development of computational prediction methods. 
We propose a novel threading algorithm, LTHREADER, which generates accurate local 
sequence-structure alignments and integrates statistical and energy scores to predict 
interactions within ligand-receptor families. LTHREADER uses a profile of secondary 
structure and solvent accessibility predictions with residue contact maps to guide and 
constrain alignments. Using a decision tree classifier and low-throughput experimental 
data for training, it combines information inferred from statistical interaction potentials, 
energy functions, correlated mutations and conserved residue pairs to predict likely 
interactions. The significance of predicted interactions is evaluated using the scores for 
randomized binding surfaces within each family. We apply our method to cytokines, 
which play a central role in the development of many diseases including cancer and  
inflammatory and autoimmune disorders. We tested our approach on two representatives 
from different structural classes (all-alpha and all-beta proteins) of cytokines. In 
comparison with the state-of-the-art threader RAPTOR, LTHREADER generates on 
average 20% more accurate alignments of interacting residues. Furthermore, in cross-
validation tests, LTHREADER correctly predicts experimentally confirmed interactions 
for a common binding mode within the 4-helical long chain cytokine family with 75% 
sensitivity and 86% specificity. For the TNF-like family our method achieves 70% 
sensitivity with 55% specificity. This is a dramatic improvement over existing methods. 
Moreover, LTHREADER predicts several novel potential ligand-receptor cytokine 
interactions.   
Supplementary website: http://theory.csail.mit.edu/lthreader 

1. Introduction 

Proteins are essential for the proper operation of living cells and viruses, 
performing a wide variety of functions.  Most often, they do so by interacting 
with other proteins.  The study of these interactions is extremely important, as 
many diseases can be traced to undesirable or malfunctioning protein-protein 
interactions (PPIs).  Currently, methods exist for predicting PPIs that have 
achieved some degree of success, relying mostly on data obtained from high-
throughput (HTP) experiments such as yeast-two-hybrid screens. 

Receptors are proteins embedded within the cell membrane. Interactions 
with their extra-cellular ligands occupy a central role in inter-cellular signaling 
and biological processes that lead to the development and progression of many 
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diseases. Of particular importance to human diseases are cytokines. Cytokine 
interactions with their receptors are responsible for innate and adaptive 
immunity, hematopoiesis and cell proliferation. Etiology of cancer and 
autoimmune disorders can be attributed in part to cytokine signaling through 
their receptors. For example, long-chain 4-helical bundle cytokines, 
erythropoietin and human growth hormone, are already used for the treatment of 
cancer and growth disorders.  Many other therapies altering cytokine-receptor 
interactions are in clinical development [1].  

However, ligand-receptor (L-R) interactions are much more difficult to 
predict than general PPIs, and methods that work well for PPIs often fail when 
applied to L-R binding pairs.  In particular, the lack of high-throughput 
experimental data for these interactions makes it difficult to apply existing 
prediction methods that depend on this information (see Related Work). 

We consider the problem of predicting whether a ligand and receptor 
interact, given only their sequence information and several confirmed L-R PPIs 
among members of the same structural SCOP family [2].  Even when one or 
more complex structures are available within an L-R family it is often a 
challenge to effectively use this information to predict interactions among other 
members of the family. One reason is the difficulty in identifying the interacting 
residues that are common among distant family members. The conformational 
differences that often occur at the interface of bound proteins make such 
identification non-obvious.  

Our approach is to thread the sequences onto the binding interface of a 
solved L-R complex and to evaluate the complementarity of the resulting 
surface. In so doing, we face four challenges: (1) identifying the residues at the 
binding interface that are common to an L-R family; (2) threading the query 
sequences onto the binding interface; (3) scoring the resulting threaded 
sequences in order to differentiate between binding and non-binding partners; 
and (4) evaluating the significance of the predicted interaction scores.   
Related Work.  Many computational approaches have been applied to 
prediction of PPIs such as: threading of structural complexes [3] and scoring 
them with statistical potentials [4]; correlated mutations [5-8]; and docking 
methods using physical force fields [9, 10]. However, the performance of all of 
these methods is highly dependent on the accuracy of the alignment to the 
structural template, and for distantly related proteins is more prone to errors.  
For example, the PPI predictor InterPrets [11] cannot find a confident match for 
any of the sequences from the cytokine families that we consider.  Integrative 
machine learning methods also have been applied to prediction of PPIs and 
networks [12, 13]. Many of these approaches rely on HTP experimental PPI data 
itself as a predictor and this information is scarce for L-R pairs. 
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Contributions.  This paper proposes a novel threading algorithm, 
LTHREADER, which first incorporates secondary structure (SS) and relative 
solvent accessibility (RSA) predictions with residue contact maps to guide and 
constrain alignments. While existing threading algorithms (e.g. RAPTOR [3]) 
are not so successful at aligning interacting residues in sequences with low 
homology [15], LTHREADER achieves much higher accuracy (see Section 3.1). 
Given interaction data from gold-standard low-throughput experiments, 
LTHREADER predicts L-R interactions using statistical and energy scores.   

 We apply our algorithm to the cytokines, performing significantly better 
than existing in silico methods (see section 3). We investigate two structurally 
distinct cytokine families: 4-helical bundle cytokines and the TNF-like family 
belonging to the all-beta structural class. Cytokine interactions with receptors 
are particularly difficult to predict because they display a high level of structural 
similarity but almost no sequence similarity, preventing the effective use of 
simple homology-based methods or general threading techniques.  Furthermore, 
little experimental interaction data exists for cytokine interactions, and the 
structures for only a few cytokine-receptor complexes have been determined.  
Therefore, accurate prediction of cytokine interactions is a good indicator of the 
success we can achieve with our algorithm.  Finally, our method predicts 
previously undocumented cytokine interactions which may have implications for 
disease. We evaluate the significance of our predictions by comparing them to 
those of randomized interaction surfaces. 

2. Algorithm 

Overview.  LTHREADER threads two given protein sequences onto a 
representative template complex in order to determine and score the putative 
interaction surface. Our interaction prediction algorithm is divided into three 
stages (Figure 1).  In the first stage (Figure 1, Stage 1), from the set (at least 
two) of template complexes, we determine the residues that are most likely to be 
involved with L-R binding.  We do this by generating a multiple alignment of 
clusters of interacting residues from each complex and determining the positions 
that are most conserved. We build a generalized profile for each position in the 
alignment of interacting residues [16]. In the second stage (Stage 2), the profile 
is used to identify the most likely location of interacting residues in the query 
sequences.  The locations of the interacting residues in the query sequences 
define the putative interaction surface. In the third stage, this surface is scored 
using several methods and an interaction prediction is made using a decision tree 
classifier (Stage 3). The significance of the classification is then evaluated by 
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estimating the probability of predicting an interaction between the L-R pair 
using a randomized interaction surface. 

Figure 1: Schematic of LTHREADER. In Stage 3, CM is the compensatory mutation score, SP the 
statistical potential score, FF the force field score, and CR the conserved residue score. 

2.1. Stage 1:  Generation of Localized Profiles for Interaction Cores 

In this stage, we assume that if a set of ligands and receptors have similar 
structures and binding orientation, then their corresponding interface surfaces 
will have good alignment.  We first examine the L-R pairs that have solved 
structures for their bound complex and align the ligand and receptor structures 
separately using POSA [17]. Then, clusters of interacting residues are identified 
within these complexes and mapped to their corresponding ligand and receptor 
sequences, thus delimiting core regions of interaction within each sequence.  
Given a set (minimum two) of complexes, the positions of the cores are then 
optimized to ensure that the locations of the interactions contained in the clusters 
overlap as much as possible between complexes.  Finally, generalized profiles 
are computed for each residue in the core regions of all pairs of L-R sequences.   
Clustering of Residue Interactions. For two interacting domains in a complex 
structure we define the interface residues as those in contact with residues from 
the other domain. We define two residues to be in contact if the distance 
between any two of their heavy atoms is less then 4.5Å. This cutoff is the same 
as that used by Lu et al. [4] to determine statistical potentials for contacting 
residues.  

We define a contact map as a matrix C such that ci,j = 1 if the ith residue of 
the ligand and the jth residue of the receptor interact, and ci,j = 0 if they do not. 
Given a contact map C, we group together clusters of interacting pairs (non-zero 
entries of C) by using a simple index-based distance function to determine 
inclusion. The distance between two interacting pairs {i1,j1} and {i2, j2} in C, 
where i1 and j1 are the ligand and receptor indices respectively for the first 
interacting pair, and i2 and j2, for the second pair, is defined as follows:  
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Interacting residue pairs that are separated by a distance, dist, less than three are 
considered members of the same cluster. A cluster in contact map C implies a 
corresponding sub-matrix whose non-zero entries are members of that cluster. 
Note that cluster edges delimit a contiguous sequence stretch on both the ligand 
and receptor sequences, referred to as a core (see Figure 2). Thus we can define 
a notation for indexing a cluster by the index of its corresponding cores in the 
ligand and receptor.   

Given contact map C, we denote lk ,
C

 as the sub-matrix containing the 
cluster indexed by the kth core in the ligand and the lth core in the receptor.  The 
size and position of lk ,

C  within C can vary as long as the requirement that only 
one cluster can be contained within lk ,

C  is not violated. 

Figure 2:  An illustration of how ligand (red) and receptor ( blue) cores are derived from a clustering 
of interactions within the interaction map (at right).  The yellow dots correspond to interacting 
residues and the green dots in the interaction map indicate an interaction.  A black line in the cartoon 
on the left denotes that an interaction occurs between the residues at its endpoints. 
Alignment of Clusters for a Pair of Ligand-Receptor Complexes. The next 
step of our algorithm optimizes the length and location of cores within a pair of 
L-R complexes so that the similarity score of corresponding clusters is 
maximized.  Let C be the contact map for the first complex, and D be the 
contact map for the second complex.  Let m be the number of cores in the 
ligands for both complexes, and n the number of cores in the receptor for both 
complexes. Let lk ,

C refer to the k,l-th cluster in C, and lk ,
D  to the 

corresponding k,l-th cluster in D.  We set the height and width of both sub-
matrices to the maximum of the height and width of each sub-matrix.  (Note that 
this accounts for the rare case when two clusters in one complex map to a single 
larger cluster in another.) 

The precise alignment of the interaction cores is the goal of the following 
optimization procedure. For the k,l-th cluster we fix the starting position of lk ,

C , 
but allow the starting position of lk ,

D  to vary.  Let lk
qp
.

,D  be equal to lk ,
D  offset 

by p along the first dimension of D and offset by q along the second dimension. 
Our goal then is to maximize the objective function, 
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subject to the following constraints: 4,...,4 1 !!" mpp  and 4,...,4 1 !!" nqq . 
sim(A, B) is the measure of similarity between matrices A and B (both of 
dimension m x n) and is defined by the sum of all entries in the Hadamard 
product of the two matrices: sim(A, B) = ! jiji ba ,, . Since there are only a few 
cores in the ligand and receptor (<5 in most cases), we use a brute-force iteration 
over all possible values of the offset variables p,q in order to maximize .f  
Multiple Alignment of Interaction Cores.  The above method allows us to find 
the location of cores in the ligand and receptor sequences that maximizes the 
overlap of interacting residues between a pair of complexes.  For more than two 
complexes in the training set, we extend the pairwise-alignment method in a 
way that optimizes their multiple alignment using a variant of the neighbor-
joining method of Saitou and Nei [18].  At each step of the neighbor-joining 
procedure, we create a new contact matrix from the union of the Hadamard 
products of the contact matrices from each complex. The final result is a contact 
matrix representing the interaction surface common to all complexes. 

From the multiple alignment of core regions, we construct a generalized 
profile from relative solvent accessibility (RSA), secondary structure (SS) and 
sequence at each interaction core position.  RSA and SS values are calculated 
using DSSP [19]. 

2.2. Stage 2: Threading of Query Sequences onto the Template   

In this stage we determine which residues in the query sequence pair would be 
part of the putative interaction surface by threading their sequences onto a 
template complex.  To do this, we devise a localized threading algorithm that 
aligns sequences to the generalized profile of the interaction cores.  

In order to reduce errors, we first limit the search space to the region in 
the query sequence most likely to contain the core. In the template structure, the 
interaction cores are localized to specific regions on the sequence delimited by 
the secondary structure (SS) elements: α-helices (H), β-strands (B) and loops 
(L). Aligning the predicted (SS) elements (using SABLE [20]) to the template 
structure elements identifies the likely positions of interaction cores. Specifically 
the alignment of secondary structure tags, where tag=(HLHLBLB…) and a 
score for a match is 1 and a mismatch -1, between the template and the predicted 
SS determines the position of the interaction cores in the query sequence.  

Next, we predict RSAs for residues in the query ligand and receptor 
sequences using SABLE. Finally, the generalized profile of the core calculated 
in the previous stage is used to search the query sequence using the predicted 
RSAs and SSs [16].  The search is performed by sliding a window, of length 
equal to that of the core, along the query sequence.  The position, p, at which the 
window best matches the profile defines the location of the putative core. We 
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search for interaction cores (ICs) within five residues before and after a 
predicted SS element that contains the core to account for SS prediction errors.  
We define ps and pe to be the start and end position, respectively, of a predicted 
SS element within the query sequence. We compute p, the position of the 
predicted IC within the query sequence restricted to positions between ps-5 and 
pe+5 as follows:  

! 

p = argmaxp"[ ps #5,pe +5] 2 $
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SEQ(aai+ p ,aaci
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where aai+p is the amino acid, ssi+p is the predicted SS and sai+p is the RSA of the 
residue at position i+p in the query sequence.

i
µ  and 

i
!  are the mean and 

standard deviation, respectively, of the RSA at position i within the IC multiple 
alignment, and ssci is the SS of the core position and aact

i  is the amino acid 
from the template complex structure t. δ is an indicator function for equality. N 
is the length of the IC multiple alignment profile and T is the total number of 
complex structures used as templates. For the sequence similarity matrix, SEQ, 
we use BLOSUM62 [21]. We have adopted the relative weights of different 
score contributions, sequence (SEQ) versus structure (SS and RSA), as 
previously determined by others [16]. 

2.3. Stage 3:  Scoring the Interaction Surface 

After the interaction surface is determined for the L-R complex, it is scored 
using the CM, SP, FF and CR algorithms.  The scores are then normalized and 
integrated using a decision tree classifier.  Each is described in detail below. 
Correlated Mutations (CM). In order to calculate this score, we first obtain a 
multiple sequence alignment (MSA) for each L-R sequence SL, SR  from a set of 
orthologous species common to both the ligand and receptor. We then compute 
the Pearson correlation between positions i and j in SL and SR  respectively, as in 
[7]. Since we are interested in evaluating the likelihood of interaction, we only 
sum the correlation scores over all pairs (i,j) within SL and SR that are within the 
putative interaction surface (based on the threading results from stage 2).  We 
assign this sum to the score CM. 
Statistical Potentials (SP). For each residue pair located in the interaction 
surface, we assign a pairwise-potential energy from Lu et al. [4].  This energy is 
statistically derived from a set of known pairwise interactions between residues 
in solved structures. To compute the SP score, we sum the potentials 
corresponding to all interacting residue pairs. 
AMBER Force-Fields (FF). This score is equal to the calculated energy of the 
putative interface surface within the threaded complex. We use the SCWRL 3.0 
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side-chain packing program [22] to first determine the coordinates for all the 
side-chain atoms in the ligand and receptor. Second, we fix atom positions for 
all residues that do not belong to the interface. Third, allowing the flexibility of 
interacting residues we perform 20 steps of conjugated gradient minimization 
using the molecular dynamics package BALL [23]. The energy values typically 
reach a stable minimum after a few steps of minimization. As the last step we 
compute the energy, FF, of the interface surface by applying BALL’s AMBER 
force-field function.  
Conserved Residues (CR). This is a sequence-based scoring method for 
determining whether the conservation across species of the interacting residues 
in the threaded complex plays a predictive role. It is based on the assumption 
that residues that are contained within an interaction region are less likely to 
mutate than those outside of the region [24]. We compute the percentage 
conservation at each residue position within the ligand and receptor from an 
MSA.  The percentages are averaged over all residues within the putative 
interaction surface and assigned to the final CR score. 
Normalization of Scores.  The examination of the raw scores of the interaction 
surface showed that for some receptors the scores are consistently high across all 
putative ligands. In order to put scores across all receptors and ligands on the 
same scale, we introduce the following formula to determine new normalized 
values for the scores. For each pair of ligand L and receptor R from the family 
we have the raw score S(L,R) calculated by one of the  above methods S={CM, 
SP,FF,CR}. The normalized scores are then given by:  

! 

S(L,R) =
S(L,R)

( S(L,R)) " ( S(L,R))
R# family

$
L# family

$

 

Decision Tree Classifier.  For classification purposes we associate with the pair 
L and R, a vector of scores SLR = (s1,...,s4) that are generated from each of the 
scoring methods described in Stage 3 (when applied to L and R).  We then use 
experimentally determined positive and negative interactions, to train a decision 
tree DT.  DT is then used to classify each pair based on SLR. We used decision 
trees because they provide a very intuitive understanding of the contributions 
and relative strengths of the different scoring variables used for prediction. 
Significance of the Classifier Predictions. In order to estimate the significance 
of the predicted interaction for any L-R pair we have implemented the following 
probabilistic procedure. From all ligands and receptors within a family we create 
pools of ligand, 

  

! 

PL = rll" familyU , and receptor, 
  

! 

PR = rrr" familyU , residues 
where 

l
r and 

r
r  belong to the putative binding interface as defined in section 

2.2. For each L-R pair we generate 100 randomized interaction surfaces by 
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grafting onto the interaction cores amino acids randomly drawn from pools PL 
and PR. We then score and classify them to determine f, the frequency at which 
the randomized surfaces are predicted to interact. 1-f is the significance of 
predicted interactions within the L-R family for the non-randomized surfaces. 

3. Results 

We applied LTHREADER to cytokine-receptor interactions belonging to all-
alpha and all-beta structural families.  There are over 100 cytokines and a 
comparable number of corresponding receptors identified in the human genome. 
The interactions among cytokines and their receptors play a central role in the 
etiology of many human diseases and have been the focus of many 
investigations [1]. Cytokines are a challenging test case for our algorithm due to 
their low level of sequence similarity, and unavailability of high-throughput PPI 
data. 
Datasets. We chose a subset of cytokines that contained the most solved 
complexes and had substantial experimental interaction data: the hematopoietins 
from the SCOP family long-chain 4-helical bundle and TNF-like all-beta 
cytokines and their corresponding receptor families.   

In the 4-helical bundle family we focused on a receptor binding site (site II) 
that is common to all cytokines and is the major determinant of binding. The 4-
helical bundle cytokine data set includes 12 ligands and 7 receptors. Our set of 
template cytokine-receptor complexes consisted of the following structures from 
the Protein Data Bank (PDB) [25]: 1cd9, 1cn4, 1hwg, 1pvh, and 1p9m.  Our 
gold-standard positive interaction set was obtained from the KEGG database 
(http://www.genome.ad.jp/kegg). The training set consisted of 12 positive 
interactions derived from low-throughput experiments and 14 putative negative 
interactions based on membership in different subfamilies.  

In the TNF-like family we focused on the 90’s loop binding site on the 
receptor common to known structural complexes [26]. The TNF-like cytokine 
dataset includes 13 ligands and 21 receptors. Our template complexes consisted 
of the five PDB structures: 1d0g, 1oqd, 1oqe, 1xu1 1xu2. The gold standard 
positive and negative interaction set was taken from the results of the flow-
cytometry assays reported in [27]. The training set consisted of 20 positive and 
20 negative interactions determined experimentally.  

For both families, the set of non-interacting pairs was chosen from the same 
ligands and receptors as those in the set of known interacting pairs to ensure that 
the classifier distinguishes complementarily of the interfaces rather than their 
composition. The detailed list of ligands and receptors in our datasets is 
available at the supplementary website. 
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3.1. Alignment of Interacting Residues 

We applied LTHREADER (Sections 2.1 and 2.2) to the 4-helical bundle and 
TNF-like cytokine datasets. Due to the high sequence similarity and low loop 
length variability of the 4-helical bundle receptors, the main challenge in this 
case was accurately aligning the ligands.  In the case of the TNF-like cytokines, 
identifying the location of interaction cores in the receptors was more difficult.  

When threading the low-similarity cytokine sequences onto the template, 
we achieved significantly better results with LTHREADER than RAPTOR 
despite the fact that RAPTOR uses the same structural templates and SS and 
RSA information. Table 1 shows how successful each algorithm was at 
identifying the locations of interacting residues. We see that even with low 
sequence similarity (between 15 to 25%), LTHREADER performs well at 
identifying interacting residues while RAPTOR struggles. This was not 
surprising as RAPTOR’s accuracy, like most general threaders, decreases as the 
sequence similarity to the template decreases [15].  
Table 1: Comparison of threading accuracy between the RAPTOR and LTHREADER algorithms. 
We threaded L-R pairs onto other known template complexes (for RAPTOR, L and R were threaded 
separately) and determined accuracy by the percentage of positively identified interactions out of all 
interacting pairs in the query complex. 

Cytokine Family % similarity 
to templates 

% accuracy 
(RAPTOR) 

% accuracy 
(LTHREADER) 

4-Helical Ligands 21 35 56 
TNF-like Receptors 35 43 63 

3.2. Prediction of Ligand-Receptor Interactions 

As expected, the combination of standalone scoring methods results in higher 
prediction accuracy than the individual scoring methods, even when the latter 
are given correct alignments of the interaction surface.  In order to measure the 
improvement of the integrated solution over the individual scoring methods, we 
compared the sensitivity and specificity of each one to that of the integrated 
solution using 1-fold cross-validation (see Table 2). While the integrated 
solution had comparable specificity to the single-score-based methods, it had 
higher sensitivity for the 4-helical bundle and TNF-like cytokines (75% and 
70% respectively). For 4-helical bundles, the predicted interactions have a 
significance of 0.62 and for TNF-like cytokines, 0.81, also higher than 
standalone methods. Individual L-R scores are available at the supplementary 
website. 

We verified that normalizing scores for the interaction surface greatly 
improved the performance of the method for both the individual and the 
combined scores (see supplementary website).   
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Table 2: Comparison of single and combined scoring methods using 1-fold cross validation on 
experimentally confirmed binding and non-binding pairs of ligands and receptors. See section 2.3 for 
definitions of the CM, SP, FF and CR scoring methods. 

Cytokine Family Scoring Function 
 CM SP FF CR Combined 
4-Helical Bundles      

Sensitivity (%) 58 67 33 50 75 
Specificity (%) 93 50 100 64 86 
Significance 0.40 0.32 0.55 0.45 0.62 

TNF-Like      
Sensitivity (%) 10 30 30 55 70 
Specificity (%) 35 35 70 30 55 
Significance  0.35 0.28 0.46 0.64 0.81 

3.3.  Novel Predictions 

LTHREADER identified previously unidentified cytokine-receptor pairs as 
likely binding partners.  These are osm-lepr, il6-ghr, epo-csf3r, cntf-lepr and lif-
prlr out of the 4-helical bundle family and tnfsf1-tnfrsf11a, tnfsf1-tnfrsf11b, 
tnfsf4-tnfrsf6b, tnfsf4-tnfrsf12a, tnfsf10-tnfrsf1a, tnfsf10-tnfrsf1b, tnfsf13-
tnfrsf6b and tnfsf15-tnfrsf1b out of the TNF-like family (see supplementary 
website for abbreviations). 

4. Conclusions 

We have shown that more accurate localized threading, and integrating several 
existing methods for L-R interaction prediction, can greatly improve accuracy. 
The strength of our method comes, partially, from leveraging a novel threading 
algorithm that circumvents low-sequence similarity. By integrating the high-
quality threading results with various kinds of statistical and physical 
interaction-prediction methods we can achieve high prediction accuracy and 
statistical significance. However, the success of our approach depends on the 
availability of structural templates and orthologous sequences. This method 
helps fill a void in predicting traditionally challenging L-R interactions. We 
hope to further improve the prediction accuracy with a new scoring function that 
utilizes randomized surfaces to better separate signal from noise. Given the 
improved alignments we hope that LTHREADER will enhance structure-based 
PPI predictors [13] by refining the homology models of the interaction regions. 
We are currently applying LTHREADER to other L-R families and PPIs in 
general and will make the program available to the broader community.   
Acknowledgements. Thanks to Andrew Macdonnell, Rohit Singh, and Jinbo Xu 
for helpful discussions and computational assistance. 
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