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Text analytics is becoming an increasingly important tool used in biomedical

research. While advances continue to be made in the core algorithms for entity
identification and relation extraction, a need for practical applications of these
technologies arises. We developed a system that allows users to explore the US

Patent corpus using molecular information. The core of our system contains
three main technologies: A high performing chemical annotator which identi-
fies chemical terms and converts them to structures, a similarity search engine
based on the emerging IUPAC International Chemical Identifier (InChI) stan-

dard, and a set of on demand data mining tools. By leveraging this technology
we were able to rapidly identify and index 3, 623, 248 unique chemical struc-
tures from 4, 375, 036 US Patents and Patent Applications. Using this system
a user may go to a web page, draw a molecule, search for related Intellectual

Property (IP) and analyze the results. Our results prove that this is a far more
effective way for identifying IP than traditional keyword based approaches.
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1. Introduction

The US Patent corpus is an invaluable resource for any scientist with a

need for prior art knowledge. Since patents need to clearly document all

aspects of an invention, they contain an plethora of information. Unfortu-

nately, much of this information is buried within pages upon pages of legal

verbiage. Additionally, current search applications are designed around key-

word queries which prove ineffective when searching for chemically related

information.

Consider the drug discovery problem of finding a replacement molecule
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for fluoro alkane sulfonic acid (CF3CF2SO3H). This molecule appears in

everyday products like Scotchgard R©, floor wax, Teflon R©, and in electronic

chip manufacturing materials like photo resists etc. The problem is that this

molecule is a bioaccumulator and is a potential carcinogen (substance that

causes cancer). Furthermore, it has made its way through the food chain,

and can now be found in polar bears and penguins. Companies are pro

actively trying to replace this acid with other more environmentally friendly

molecules. The sulfonic acid fragment, SO3H, is the critically necessary

element. The harmful fragment is anything that looks like CF3(CF2)n. The

problem then is to find molecules that have the SO3H fragment, and perhaps

a benzene ring which would allow the synthetic chemist to replace an alkyl

group with something that accounts for the electron withdrawing property

of CF3CF2. The chemist would like to look for a candidate molecule based

on its similarity to the molecular formula of the fragment, or the structure

of the benzene or some weighted combination of both.

It is quite possible that the needed information exists in literature al-

ready, but may be costly and time consuming to discover. A system that

would allow users to search and analyze documents, such as patents, at the

molecular level could be a tremendously useful tool for biomedical research.

In this paper we describe a system that leverages text mining techniques to

annotate and index chemical entities, provide graphical document search-

ing and discover biomedical/molecular relationships on demand. We prove

the viability of such a system by indexing and analyzing the entire US

Patent corpus from 1976-2005 and we present comparative results between

molecular searching and traditional keyword based approaches.

2. Extracting Chemicals

The first step in the process is to extract chemical compounds from the

Patent corpus. We developed two annotators which automatically parsed

text and extracted potential chemical compounds. All of the potential

chemicals were then fed through a name-to-structure program such as the

name=struct R©program from CambridgeSoft Corporation. Name=Struct

makes no value judgments, focusing only on providing a structure that

the name accurately describes.1 The output of Name=Struct in our sys-

tem is a connection table. Using the openly available InChI code,10 these

connection tables are converted into InChI strings.

Due to the page limits, this paper focuses on the similarity search tech-

nology. We have built a machine learning and dictionary based chemical

annotator that can extract chemical names out of text and convert them
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into structures. The similarity search capability is built on top of such

annotation results, but is not tied to any specific underlying annotator im-

plementation.

3. Indexing

As the new IUPAC International Chemical Identifier (InChI) standard con-

tinues to emerge, there is an increasing need to use the InChI codes beyond

that of compound identification. Given our background in text analytics,

we reduced the problem down to finding similar compounds based on the

textual representation of the structure. Our experiments focused on the use

of the InChI’s as a method for identifying similar compounds. Using our

annotators we were able to extract 3, 623, 248 unique InChI’s from the US

Patent database (1976-2005) and Patent Applications (2001-2005). From

this collection of InChI’s an index was constructed using text mining tech-

niques. We employed a traditional vector space model14 as our underlying

data structure.

3.1. Vector Representation

InChI’s are unique for each molecule and they consist of multiple layers that

describe different aspects of the molecule as depicted in Figure 1. The first

three layers (formula, connection and hydrogen) are considered the main

layers (see15) and are the layers we used for our experiments. Using the

main layers, we extracted unique features from a collection of InChI codes.

Fig. 1. A compound and its InChI description

We defined features as one to three unique character phrases in the con-

nection and hydrogen layers and unique atoms or symbols in the formula

layer. Features from each layer are proceeded by a layer identifier. For the

Pacific Symposium on Biocomputing 12:304-315(2007) 



September 25, 2006 13:33 Proceedings Trim Size: 9in x 6in Rhodes

connection and hydrogen layers, features for an InChI i with characters cj

can be defined as unique terms cj , cj+cj+1, cj+cj+1+cj+2. These terms

are added to the overall set of terms T which include unique cj from the

formula layer. Given a collection of InChI’s Ii with terms Tj , each InChI is

represented by the vector

Ii = (di1, di2...dij)

where dij represents the frequency to the jth term in the InChI. For exam-

ple, the two InChI’s InChI=1/H2O/h1H2 and InChI=1/N2O/c1-2-3 would

produce the following features

H, O, h1, h1H, h1H2, hH, hH2, h2, N, c1, c1-, c1-2, c-, c-2, c-2-, c2, c2-,

c2-3, c-3, c3

with the following vector representations

{2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} for water, and

{0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1} for nitrous oxide.

In our experiments, the formula, connection and hydrogen layers pro-

duced 963, 69334 and 55256 features respectively. This makes the com-

bined dimensionality of the dataset T=125, 553. Feature values are always

nonnegative integers. To take into account the frequency of features when

computing the similarity distance calculation, we represented the vectors

in unary notation where each of the three feature spaces is expanded by

the maximum value of a feature in that space. This causes the dimension-

ality to exploded to 31, 288, 976 features and the sparsity increases propor-

tionally. Of course, this unary representation is implicit and need not be

implemented explicitly.

Each InChI is processed by building for it three vectors which are then

added to the respective vector space model. The results are three vector

space models of size 309MB, 950MB and 503MB for the formula (F1),

connection (F2) and hydrogen (F3) layers.

Each vector space model Fj defines a distance function Dj by taking the

Tanimoto19 coefficient between the corresponding vectors. Consequently,

for every two molecules x and y there are 3 distances defined between

them, namely D1(x, y), D2(x, y) and D3(x, y).
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3.2. Index Implementation

For indexing of the vector space models we implemented the Locality Sen-

sitive Hashing (LSH) technique of Indyk and Motwani .9 A major benefit

of the algorithm is the relative size of the index compared to the overall

vector space.

In our implementation the objects (and their feature vectors) do not

need to be replicated. Vectors are computed for each InChI and stored only

in a single repository. Each index maintains a selection of k vector positions

and a standard hash function for producing an actual bucket numbers.

The buckets themselves are individual files on the file system, and they

contain pointers to (or serial numbers of) vectors in the aforementioned

single repository. This allows both the entire index as well as each bucket

to remain small. This implementation is of course useful because this single

large repository still fits in our computer’s main memory (RAM).

During index creation, not all hash buckets are populated. Additionally,

the number of data points per hash bucket may also vary quite a bit. In

our implementation, buckets were limited to a maximum of B = 1000. The

end result is a LSH index Lj for each of the 3 layers of the InChI.

3.3. Query Processing

For each query molecule Q, vectors dj are created from each vector space

model Fj . Each vector is then processed by the LSH index Lj which corre-

sponds to a given layer. The LSH index provides a list of potential candidate

Ci which are then evaluated against the query vectors using the Tanimoto

Coefficient. The total similarity for each candidate Ci is computed by

Si =

∑n

j=1
D(dj , Cij)

n
(1)

where n is the total number of vector space models.

The Tanimoto Coefficient has been widely used as an effective measure of

intermolecular similarity in both the clustering and searching of databases.6

While Willet et al.19 discuss six different coefficients for chemical similarity,

we found that the Tanimoto Coefficient was the most widely recognized

calculation with our users.

The results are then aggregated so each vector with the same S is merged

into a set of synonyms. By dereferencing the vectors to the InChI’s they

represent and further dereferencing the InChI to the original text within

the corpus, a list of the top K matching chemical names and the respective

documents that contain those names is returned.
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4. Experimental Results

In order to explain the experimental results, an overview of the application

as it is currently implemented is required. We will conclude with a full

description of the experimental process and its results.

4.1. Graphical Similarity Search

To use the Chemical Search Engine, a user may either draw the chemical

structure of the molecule to be searched, enter an InChI or smile which

represents the molecule into a text field, or open a file which stores a smile

or InChI value in the corresponding field. The engine converts the query

into an InChI and returns of a listing of molecules and their similarity

values. Beside the molecule image is its similarity to the search molecule

entered, its IUPAC name, an expandable list of synonyms, and the number

of patents that were found containing that molecule as seen in Fig. 2. Not

surprisingly for a query of a sketch of caffeine, the engine returned over

8,500 patents that contained a molecule with a similarity of 1.0, meaning

that there was an exact match, and over 52 synonyms for that molecule. Six

molecules with a similarity above .8 were rendered. For the experimental

results, the canonical smile for the tested drug in the PubChem database

was entered into the text field.

Fig. 2. Search results
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4.2. Molecular Networks

In the upper right hand corner of the results page, the user may click on

three different links to view selected molecules and their patents either as a

graph using Graph Results, as a listing of hyper-linked patents with View

Patents, or as an analysis of claims with Claim Analysis. In this section, we

will describe and illustrate the usefulness of the Graph Results page and in

the following, the Claim Analysis.

The value of a graphical representation of the selected molecules and

their corresponding patents is most evident if we select the molecules with

similar affinities to caffeine, but not exact matches to caffeine. The graph in

Fig. 3 is a graph of the four molecules with the closest similarity to caffeine

less than 1.

In the graph, the search node is fixed as the center node and molecular

representations of the other nodes surround it. In the future, the graph will

also display each molecule’s similarity to the search node as indicted by

the thickness of its edge to the center(search) node. When the user rolls

over the center node, the comment ”Search Node” is viewed whereas for

the other nodes the name of the molecule is displayed. Note that some of

the same molecules have different names.

The leaf nodes are the patents and patent applications associated with

each molecule. If double-clicked the node will launch a browser window

displaying the corresponding patent or application. A mouseover of these

nodes will render the name of the assignee of the document. The nodes are

color-coded by assignees.

A researcher may use this graph to view which molecules are most like

the search node and of those molecules which have the greatest number of

patents associated with them. It is also very useful for determining which

assignees have the greatest number of patents for a particular molecular

structure.

4.3. Affinity Analysis

The Claim Analysis page examines the claims of the patents associated with

the selected molecules on the previous page to determine which medical

conditions were found in the greatest number of patents. The more patents

that mention a particular condition, the higher the condition’s affinity to

the molecule. Notice in Fig. 4, that for caffeine, migraine and headache have

a high affinity, nausea and anxiety a moderate one, and burns and cough a

low affinity.
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Fig. 3. Graph of selected molecules

The conditions were derived from a dictionary of proteins, diseases,

and biomarkers. A dictionary based annotator annotates the full text of

the selected patents in real time to extract the meaningful terms. A Chi-

squared test was used referencing the number of patents that contained

the conditions to determine the affinity between the molecules and the

conditions.

On expanding a condition in the Claim Analysis page, a listing of the

patents mentioning the condition in its text is rendered. The patent names

are links to the actual patents. Thus, a researcher looking to patent a drug

may do a search on the molecule and uncover what other uses the molecule

has been patented for before. Such data may also serve to discover unex-

pected side effects or complications of a drug for the purposes of testing its

safety.

4.4. Results

To evaluate the engine’s effectiveness, we used a listing of the top 50 brand-

name drugs prescribed in 2004 as provided by Humana.8 We acquired a
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Fig. 4. Claims analysis of selected molecules

canonical smile value associated with each of the 25 top prescribed drugs

from the PubChem database.7 PubChem could not provide the smiles for

two of the drugs, Yasmin 28 and OrthoEvra. If more than one molecule was

returned from the database, we used the canonical smile value of the first

one listed except in the case of three of the drugs, Tropol XL, Premarin, and

Plavix. In these cases, we used the smile string that returned the greatest

number of matches when we performed a search on the chemical search

engine. With the generic name of the drug, we performed a search on one of

the most sophisticated patent databases known, Delphion, using a boolean

query that examined the abstracts, titles, claims, and descriptions of the

patents for the name on patents from January 1, 1976 to December 31,

2005. The results can be seen in Fig. 5.

On acquiring the 25 drug names, the first obstacle was that 2 of the

drugs could not be found in the PubChem database so that the canonical

smile for these drugs could not be determined. Out of the 23 drugs that

remained, our results indicate that for 19 of them more patents associated

with the drug were found on our system than on Delphion. In the instances

where the engine found more matches, the number of matches that it found

was in some cases up to 10 times more, because the search was based on
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the molecular structure of the match and not on the generic name.

The number of times that a text based search outperformed the molec-

ular search may be attributed a miss-selection of the smile string from the

PubChem database. Thus, one of the greatest limitations of the chemical

search engine is finding an accurate smile string for a given drug. Neverthe-

less, our experimental results demonstrate the enormous potential of being

able to search the patent database based on a molecular structure.

Fig. 5. A graph comparing the results of searching for the top 25 drugs listed by Hu-

mana8 on the Chemical Search Engine using a molecular search and on DELPHION

performing a text search of the compound’s name.

5. Conclusion

We developed a practical system which leverages text analytics for index-

ing, searching and analyzing documents based on molecular information.

Our results demonstrate that graphical structure search is a far more ef-

fective way to explore a document corpus than traditional keyword based

queries when searching for biomedical related literature. The system is flex-

ible and may be expanded to include other data sources besides Patents.

These additional data sources would allow for meta-data information to
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be tied to Patents through chemical annotations. Future versions may al-

low researchers to explore data sets based on chemical properties such as

toxicity or molecular weight. In addition to discovering literature for an

exact match, this tool can be used for identifying practical applications of

a compound or possible negative side effects by examining the literature

surrounding similar compounds.
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