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Post-genomic advances in bioinformatics have refined drug-design strategies, by focusing on
the reduction of serious side-effects through the identification of enzymatic targets. We con-
sider the problem of identifying the enzymes (i.e., drug targets), whose inhibition will stop the
production of a given target set of compounds, while eliminating minimal number of non-target
compounds. An exhaustive evaluation of all possible enzyme combinations to find the optimal
solution subset may become computationally infeasible for very large metabolic networks. We
propose a scalable iterative algorithm which computes a sub-optimal solution within reasonable
time-bounds. Our algorithm is based on the intuition that we can arrive at a solution close to the
optimal one by tracing backward from the target compounds. It evaluates immediate precursors
of the target compounds and iteratively moves backwards to identify the enzymes whose inhi-
bition will stop the production of the target compounds while incurring minimum side-effects.
We show that our algorithm converges to a sub-optimal solution within a finite number of such
iterations. Our experiments on the E.Coli metabolic network show that the average accuracy of
our method deviates from that of the exhaustive search only by 0.02 % . Our iterative algorithm
is highly scalable. It can solve the problem for the entire metabolic network of Escherichia Coli
in less than 10 seconds.

1. Introduction
Traditional drug development approaches focused more on the efficacy of drugs
than their toxicity (untoward side effects). Lack of predictive models that account
for the complexity of the inter-relationships between the metabolic processes often
leads to drug development failures. Toxicity and/or lack of efficacy can result if
metabolic network components other than the intended target are affected. This is
well-illustrated by the example of the recent failure ofTolcapone(a new drug de-
veloped for Parkinson’s disease) due to observed hepatic toxicity in some patients
9. Post-genomic drug research focuses more on the identification of specific bio-
logical targets (gene products, such as enzymes or proteins) for drugs, which can
be manipulated to produce the desired effect (of curing a disease) with minimum
disruptive side-effects20,24. The main phases in such a drug development strategy
are target identification, validation and lead inhibitor identification7.
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Enzymes catalyze reactions, which produce metabolites (compounds) in the
metabolic networks of organisms. Enzyme malfunctions that result in the accu-
mulation of certain compounds may result in diseases. We term such compounds as
Target Compoundsand the remaining compounds asNon-Target compounds. For
instance, the malfunction of enzymephenylalanine hydroxylasecauses buildup of
the amino acid, phenylalanine, resulting in phenylketonuria23, a disease that causes
mental retardation. Hence, it is intuitive to identify the optimal enzyme set that
can be manipulated by drugs to prevent the excess production of target compounds,
with minimal side-effects. We term the side-effects of inhibiting a certain enzyme
combination as thedamagecaused to the metabolic network. Formally, we define
damageof inhibiting an enzyme as the number of non-target compounds whose
production is stopped by the inhibition of that specific enzyme.
In our earlier work22, we developed a graph model for metabolic networks based
on the boolean network model21. In our model,R, C, andE denote the set of
reactions, compounds, and enzymes respectively. The node set consists of all the
members ofR∪C ∪E. A node is labeled as reaction, compound, or enzyme based
on the entity it refers to. Edges represent the interactions in the network. A directed
edge from vertexx to vertexy is drawn if one of the following three conditions
holds: (1)x represents an enzyme that catalyzes the reaction represented byy. (2)
x corresponds to a reactant for the reaction represented byy. (3) x represents a
reaction that produces the compound mapped toy. We assume that the inputs to all
reactions and compounds are already present in the network and that there are no
external inputs.
Figure 1(a) illustrates a small hypothetical metabolic network. A directed edge
from an enzyme to a reaction implies that the enzyme catalyzes that reaction. For
instance,E1 catalyzesR1 andR2. A directed edge from a compound to a reac-
tion implies that the compound is a reactant (input compound). A directed edge
from a reaction to a compound implies that the compound is a product (output com-
pound). In this figure,C1 is the target compound (i.e., the production ofC1 should
be stopped). In order to stop its production, we have to preventR1 from taking
place. This can be accomplished in two ways: (1) By disrupting one of its catalyz-
ing enzymes (E1 in this case). Figure 1(b) shows the effects of disruptingE1. The
resulting damage is calculated as the number of non-target compounds whose pro-
duction is stopped. Since the production ofC2, C3 andC4 is stopped, the damage
due to the disruption ofE1 is 3. (2) By stopping the production of one of its reactant
compounds (C5 in this case). To stop the production ofC5, we need to recursively
look for the enzyme combination which is indirectly responsible for its production
(E2 andE3). The combined damage ofE2 andE3 is 1. Thus, the production of the
target compound can be stopped by manipulating eitherE1 or a combination ofE2

andE3. The optimal solution is the enzyme combination whose disruption has the
minimum damage on the network (E2 andE3 in this case).
Problem: Given a large metabolic network and a set of target compounds, we con-
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Figure 1. (a)A graph constructed for a metabolic network with four reactionsR1, · · · , R4,
three enzymesE1, E2 andE3, and five compoundsC1, · · · , C5. Circles, rectangles, and tri-
angles denote compounds, reactions, and enzymes respectively. Here,C1 (shown by double
circle) is the target compound. (b)Effect of inhibitingE1. Dotted lines indicate the subgraph
removed due to inhibition of enzymeE1.

sider the problem of identifying the set of enzymes whose inhibition eliminates
all the target compounds and inflicts minimum damage on the rest of the network.
Evaluating all enzyme combinations is not feasible for metabolic networks with a
large number of enzymes. This is because, the number of enzyme combinations,
i.e., 2|E| − 1, increases exponentially with the number of enzymes. Efficient and
precise heuristics are needed to tackle this problem.
Note that different enzymes and compounds may have varying levels of importance
in the metabolic network. Our model simplistically considers all the enzymes and
compounds to be of equal importance. It can be extended by assigning weights to
enzymes and compounds based on their roles in the network. However, we do not
discuss these extensions in this paper.
Contribution: In this paper, we develop a scalable iterative algorithm as an ap-
proximation to the optimal enzyme combination detection problem. Our algorithm
is based on the intuition that we can arrive at a solution close to the optimal one
by tracing backward from the target compounds. It starts by finding the damage
incurred due to the removal of each reaction or compound by evaluating its imme-
diate precursors. It then iteratively improves the damage by considering the damage
computed for the immediate precursors. It converges when the damage values can-
not be improved any further. We prove that the number of iterations is at most the
number of reactions on the longest path from any enzyme to the target compounds
in the underlying pathway. To the best of our knowledge, this is the first polynomial
time solution for a metabolic-network based drug target identification problem.
The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 presents the proposed iterative algorithm for determining the enzyme
combination whose inhibition achieves the desired effect of inhibiting the produc-
tion of target compounds. Section 4 presents a theoretical analysis of the algorithm.
Section 5 discusses experimental results. Section 6 concludes the paper.
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2. Related work
Traditional pharmacological drug discovery approaches involve the incorporation
of a large number of hypothetical targets into cell-based assays and automated high
throughput screening (HTS) of vast chemical compound libraries7. Post-genomic
advances in bioinformatics have fostered the development of rational drug-design
strategies, that seek to reduce serious side-effects8,4,3. This era has brought about
the concept ofreverse pharmacology, in which, the first step is the identification of
protein targets, that may be critical intervention points in a disease process24,20,1.
Since this method is driven by the mechanics of the disease, it is expected to be
more efficient than the classical approach24.
Rapid identification of enzyme (or protein) targets needs a thorough understand-
ing of the underlying metabolic network of the organism affected by a disease.
The availability of fully sequenced genomes has enabled researchers to integrate
the available genomic information to reconstruct and study metabolic networks17.
These studies have revealed important properties of metabolic networks10,2,15. The
potential of an enzyme to be an effective drug target is considered to be related to
its essentiality in the corresponding metabolic network13. Lemke et. al proposed
the measureenzyme damageas an indicator of enzyme essentiality14,16. Recently,
a computational approach to prioritize potential drug targets for antimalarial drugs
was developed18. A choke-point analysis ofP.falciparcumwas performed to iden-
tify essential enzymes which are potential drug targets. The possibility of using en-
zyme inhibitors as antiparasitic drugs is being investigated through stoichiometric
analysis of the metabolic networks of parasites5,6. These studies show the effec-
tiveness of computational techniques in reverse pharmacology.
A combination of gene-knockout and micro-array time-course data was used to
study the effects of a chemical compound on a gene network12. An investiga-
tion of metabolite essentiality was carried out with the help of stoichiometric analy-
sis 11. These approaches underline the importance of studying the role of com-
pounds (metabolites) during the pursuit of computational solutions to pharmaco-
logical problems.

3. Iterative algorithm
In this section, we develop a scalable iterative algorithm that finds a sub-optimal so-
lution to the enzyme-target identification problem quickly. Our algorithm is based
on the intuition that we can arrive at a solution close to the optimal one, by trac-
ing backwards from the target compounds. We evaluate the immediate precursors
of the target compounds and iteratively move backwards to identify the enzymes,
whose inhibition will stop the production of the target compounds while incurring
minimum damage. Our algorithm consists of an initialization step followed by itera-
tions, until some convergence criteria is satisfied. LetE, R andC denote the sets of
enzymes, reactions and compounds of the metabolic network respectively. Let|E|,
|R| and|C| denote the number of enzymes, reactions and compounds respectively.
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The primary data structures are three vectors, namely anenzyme vectorVE = [e1,
e2, · · · , e|E|], a reaction vectorVR = [r1, r2, · · · , r|R|], and acompound vector
VC = [c1, c2, · · · , c|C|]. Each value,ei, in VE denotes the damage of inhibition of
enzyme,Ei ∈ E. Each value,ri, in VR denotes the damage incurred by stopping
the reactionRi ∈ R. Each value,ci, in VC denotes the damage incurred by stopping
the production of the compoundCi ∈ C.
Initialization: Here, we describe the initialization of vectorsVE , VR, andVC . We
initialize VE first, VR second, andVC last.
Enzyme vector:The damageei, ∀i, 1 ≤ i ≤ |E|, is computed as the number of non-
target compounds whose productions stop after inhibitingEi. We find the number of
such compounds by doing a breadth-first traversal of the metabolic network starting
fromEi. We calculate the damageei associated with every enzymeEi ∈ E, ∀i, 1 ≤
i ≤ |E|, and store it at positioni in the enzyme vectorVE .
Reaction vector:The damagerj is computed as the minimum of the damages of
the enzymes that catalyzeRj , ∀j, 1 ≤ j ≤ |R|. In other words, letEπ1 , Eπ2 ,
· · · , Eπk

be the enzymes that catalyzeRj . We compute the damage ofrj asrj =
mink

i=1{eπi
}. This computation is intuitive since a reaction can be disrupted by

inhibiting any of its catalyzers. We calculaterj associated with every reactionRj ∈
R, ∀j, 1 ≤ j ≤ |R| and store it at positionj in the reaction vectorVR. Let E(Rj)
denote the set of enzymes that produced the damagerj . Along with rj , we also
storeE(Rj). Note that in our model, we do not consider back-up enzyme activities
for simplicity.
Compound vector:The damageck, ∀k, 1 ≤ k ≤ |C|, is computed by considering
the reactions that produceCk. LetRπ1 , Rπ2 , · · · , Rπj

be the reactions that produce
Ck. We first compute a set of enzymesE(Ck) for Ck asE(Ck) = E(Rπ1) ∪
E(Rπ2)∪· · ·∪E(Rπj

). We then compute the damage valueck as the number of non-
target compounds that is deleted after the inhibition of all the enzymes inE(Ck).
This computation is based on the observation that a compound disappears from the
system only if all the reactions that produce it stop. We calculateck associated with
every compoundCk ∈ C, 1 ≤ k ≤ |C| and store it at positionk in the compound
vectorVC . Along with ck, we also storeE(Ck).
Column I0 in Table 1 shows the initialization of the vectors for the network in
Figure 1. The damagee1 of E1 is three, as inhibitingE1 stops the production of
three non-target compoundsC2, C3 andC4. Since the disruption ofE2 or E3 alone
does not stop the production of any non-target compound, their damage values are
zero. Hence,VE = [3, 0, 0]. The damage values for reactions are computed as the
minimum of their catalyzers (r1 = r2 = e1 andr3 = r4 = e2). Hence,VR =[3, 3, 0,
0]. The damage values for compounds are computed from the reactions that produce
them. For instance,R1 andR2 produceC2. E(R1) = E(R2) = {E1}. Therefore,
c2 = e1. Similarly c5 is equal to the damage of inhibiting the setE(R3)∪E(R4) =
{E2, E3}. Thus,c5 = 1.
Iterative steps: We iteratively refine the damage values in vectorsVR andVC in a
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Table 1. Iterative Steps:I0 is the initialization step;I1 andI2 are the iterations.VR andVC

represent the damage values of reactions and compounds respectively computed at each iteration.
VE = [3, 0, 0] in all iterations.

I0 I1 I2

VR, VC [3, 3, 0, 0], [3, 3, 3, 3, 1] [1, 3, 0, 0], [1, 3, 3, 3, 1] [1, 3, 0, 0], [1, 3, 3, 3, 1]

number of steps. At each iteration, the values are updated by considering the dam-
age of the precursor of the precursors. Thus, atnth iteration, the precursors from
which a reaction or a compound is reachable on a path of length up ton are con-
sidered. We define the length of a path on the graph constructed for a metabolic
network as the number of reactions on that path (see Definition 4.2). There is no
need to updateVE since the enzymes are not affected by the reactions or the com-
pounds. Next, we describe the actions taken to updateVR andVC at each iteration.
We later discuss the stopping criteria for the iterations.
Reaction vector:Let Cπ1 , Cπ2 , · · · , Cπt

be the compounds that are input toRj . We
update the damage ofrj asrj = min{rj ,mint

i=1{cπi
}}.

The first term of themin function denotes the damage value calculated forRj during
the previous iteration. The second term provides the damage of the input compound
with the minimum damage found in the previous iteration.
This computation is intuitive since a reaction can be disrupted by stopping the pro-
duction of any of its input compounds. The damage of all the input compounds are
already computed in the previous iteration (say(n − 1)th iteration). Therefore, at
iterationn, the second term of themin function considers the impact of the reactions
and compounds that are away fromRj by n edges in the graph for the metabolic
network. LetE(Rj) denote the set that contains the enzymes that produced the new
damagerj . Along with rj , we also storeE(Rj). We update allrj ∈ VR using the
same strategy. Note that the valuesrj can be updated in any order, i.e., the result
does not depend on the order in which they are updated.
Compound vector:The damageck, ∀k, 1 ≤ k ≤ |C|, is updated by considering the
damage computed forCk in the previous iteration and the damages of the reactions
that produceCk. Let Rπ1 , Rπ2 , · · · , Rπj

be the reactions that produceCk. We first
compute a set of enzymes asE(Rπ1) ∪ E(Rπ2) ∪ · · · ∪ E(Rπj ). Here,E(Rπt),
1 ≤ t ≤ j, is the set of enzymes computed forRt after the reaction vector is
updated in the current iteration. We then update the damage valueck as ck =
min{ck, damage(

⋃j
i=1 E(Rπi))}.

The first term here denotes the damage value computed forCk in the previous iter-
ation. The second term shows the damage computed for all the precursor reactions
in the current step. Along withck, we also storeE(Ck), the set of enzymes which
provides the current minimum damageck.
Condition for convergence: At each iteration, each value inVR and VC either
remains the same or decreases by an integer amount. This is because amin function

Pacific Symposium on Biocomputing 12:88-99(2007) 



September 24, 2006 23:36 Proceedings Trim Size: 9in x 6in sridhar

is applied to update each value as the minimum of the current value and a function
of its precursors. Therefore, the values ofVR andVC do not increase. Furthermore,
a damage value is always an integer since it denotes the number of deleted non-
target compounds. We stop our iterative refinement steps when the vectorsVR and
VC do not change in two consecutive iterations. This is justified, because, if these
two vectors remain the same after an iteration, it implies that the damage values in
VR andVC cannot be minimized any more using our refinement strategy.
ColumnsI1 andI2 in Table 1 show the iterative steps to update the values of the
vectorsVR andVC . In I0, we compute the damager1 for R1 as the minimum of its
current damage (three) and the damage of its precursor compound,c5 = 1. Hence,
r1 is updated to 1 and its associated enzyme set is changed to{E2, E3}. The other
values inVR remain the same. When we compute the values forVC , c1 is updated
to 1, as its new associated enzyme set is{E2, E3} and the damage of inhibiting
bothE2 andE3 together is 1. Hence,VR = [1, 3, 0, 0] andVC = [1, 3, 3, 3, 1]. In
I2, we find that the values inVR andVC do not change anymore. Hence, we stop
our iterative refinement and report the enzyme combinationE2, E3 as the iterative
solution for stopping the production of the target compound,C1.
Complexity analysis:
Space Complexity: The number of elements in the reaction and compound vectors
is (|R|+ |C|). For each element, we store an associated set of enzymes. Hence, the
space complexity isO((|R| + |C|) ∗ |E|).
Time Complexity: The number of iterations of the algorithm isO(|R|) (see Sec-
tion 4). The computational time per iteration isO(G ∗ (|R|+ |C|)), whereG is the
size of the graph. Hence, the time complexity isO(|R|G ∗ (|R| + |C|)).
4. Maximum number of iterations
In this section, we present a theoretical analysis of our proposed algorithm. We
show that the number of iterations for the method to converge is finite. This is
because the number of iterations is dependent on the length of the longest non-self-
intersecting path (see Definitions below) from any enzyme to a reaction or com-
pound.

Definition 4.1. In a given metabolic network, anon-self-intersecting pathis a path
which traces any vertex on the path exactly once.

For simplicity, we will use the termpath instead ofnon-self-intersecting pathin the
rest of this section.

Definition 4.2. In a given metabolic network, thelength of a pathfrom an enzyme
Ei to a reactionRj or compoundCk is defined as the number of unique reactions
on that path.

Note that the reactionRj is counted as one of the unique reactions on the path from
enzymeEi to Rj .
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Definition 4.3. In a given metabolic network, thepreceding pathof a reactionRj

(or a compoundCk) is defined as the length of the longest path from any enzyme in
that network toRj (or Ck).

Theorem 4.1. Let VE = [e1, e2, · · · , e|E|], VR = [r1, r2, · · · , r|R|], andVC =
[c1, c2, · · · , c|C|] be the enzyme, reaction and compound vectors respectively (see
Section 3). Letn be the length of the longest path (see Definitions 4.2 and 4.1) from
any enzymeEi to a reactionRj (or a compoundCk). The valuerj (or ck) remains
constant after at mostn iterations.

Proof: We prove this theorem by an induction on the number of reactions on the
longest path (see Definitions 4.2 and 4.1) from any enzyme inEi corresponding to
ei ∈ VE to Ck.
Basis: The basis is the case when the longest path from an enzymeEi is of length
1 (i.e., the path consists of exactly one reaction). LetRj be such a reaction. This
implies that there is no other reaction on a path from anyEi to Rj . As a result,
the valuerj remains constant after initialization. LetCk be a compound such that
there is at most one reaction from any enzyme toCk. LetRπ1 , Rπ2 , · · · , Rπj

be the
reactions that produceCk. Because of our assumption there is no precursor reaction
to any of these reactions. Otherwise, the length of the longest path would be greater
than one. Therefore, the valuesrπ1 , rπ2 , · · · , rπj

and the setsE(Rπ1), E(Rπ2), · · · ,
E(Rπj ) do not change after initialization. The valueck is computed as the damage
of E(Ck) = E(Rπ1)∪E(Rπ2)∪ · · · ∪E(Rπj

). Thus,ck remains unchanged after
initialization and the algorithm terminates after the first iteration.
Inductive step:Assume that the theorem is true for reactions and compounds that
have a preceding path with at mostn−1 reactions. Now, we will prove the theorem
for reactions and compounds that have a preceding path withn reactions. Assume
thatRj andCk denote such a reaction and a compound. We will prove the theorem
for each one separately.
Proof for Rj : Let Cπ1 , Cπ2 , · · · , Cπt

be the compounds that are input toRj . The
preceding path length of each of these input compounds, sayCπs is at mostn. Oth-
erwise, the preceding path length ofRj would be greater thann.
Case 1:If the preceding path length ofCπs

is less thann, by our induction hypoth-
esis,cπs would remain constant after(n− 1)th iteration. Thus, the input compound
Cπs

will not change the value ofrj afternth iteration.
Case 2:If the preceding path length ofCπs is n, thenRj is one of the reactions on
this path. In other words,Cπs

andRj are on a cycle of lengthn. Otherwise, the
preceding path length ofRj would be greater thann. Recall that at each iteration,
the algorithm considers a new reaction or a compound on the preceding path start-
ing from the closest one. Thus, atnth iteration of computation ofrj , the algorithm
completes the cycle and considersRj . This however will not modifyrj . This is
because the value ofrj monotonically decreases (or remains the same) at each it-
eration. Thus, the initial damage value computed fromRj is guaranteed to be no
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better thanrj after n − 1 iterations. We conclude thatrj will remain unchanged
afternth iteration.
Proof for Ck: Let Rπ1 , Rπ2 , · · · , Rπj

be the reactions that produceCk. The pre-
ceding path length of each of these reactions, sayRπs is at mostn. Otherwise, the
preceding path length ofCk would be greater thann.
Case 1:If the preceding path length ofRπs

is less thann, by our induction hypoth-
esisrπs would remain constant after(n−1)th iteration. Thus, the reactionRπs will
not change the value ofck afternth iteration.
Case 2:If the preceding path length ofRπs

is n, then from our earlier discussion
for proof ofRj , rπs remains unchanged afternth iteration. ThereforeRπs will not
change the value ofck afternth iteration. Hence, by induction, we show that the
Theorem 4.1 holds.

5. Experimental results
We evaluate our proposed iterative algorithm using the following three criteria:
Execution time: The total time (in milliseconds) taken by the method to finish ex-
ecution and report if a feasible solution is identified or not.
Number of iterations: The number of iterations performed by the method to arrive
at a steady-state solution.
Average damage: The average number of non-target compounds that are elimi-
nated when the enzymes in the result set are inhibited.
We extracted the metabolic network information of Escherichia Coli (E.Coli) from
KEGG 19 (ftp://ftp.genome.jp/pub/kegg/pathways/eco/ ). The
metabolic network in KEGG has been hierarchically classified into smaller net-
works according to their functionality. We performed experiments at different lev-
els of hierarchy of the metabolic network and on the entire metabolic network, that
is an aggregation of all the functional subnetworks. We devised a uniform label-
ing scheme for the networks based on the number of enzymes. According to this
scheme, a network label begins with ‘N’ and is followed by the number of enzymes
in the network. For instance, ‘N20’ indicates a network with 20 enzymes. Table 2
shows the metabolic networks chosen, along with their identifiers and the number of
compounds (C), reactions (R) and edges (Ed). The edges represent the interactions
in the network. For each network, we constructed query sets of sizes one, two and
four target compounds, by randomly choosing compounds from that network. Each
query set contains 10 queries each.
We implemented the proposed iterative algorithm and an exhaustive search algo-
rithm which determines the optimal enzyme combination to eliminate the given set
of target compounds with minimum damage. We implemented the algorithms in
Java. We ran our experiments on an Intel Pentium 4 processor with 2.8 GHz clock
speed and 1-GB main memory, running Linux operating system.
Evaluation of Accuracy: Table 3 shows the comparison of the average damage
values of the solutions computed by the iterative algorithm versus the exhaustive
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Table 2. Metabolic networks from KEGG with identifier (Id). C, R and Ed denote the number of compounds,
reactions and edges (interactions) respectively.

Id Metabolic Network C R Ed Id Metabolic Network C R Ed

N08 Polyketide 11 11 33 N42 Other amino acid 69 63 208
biosynthesis

N13 Xenobiotics 47 58 187 N48 Lipid 134 196 654
biodegradation

N14 Citrate or TCA cycle 21 35 125 N52 Purine 67 128 404
N17 Galactose 38 50 172 N59 Energy 72 82 268
N20 Pentose phosphate 26 37 129N71 Nucleotide 102 217 684
N22 Glycan Biosynthesis 54 51 171 N96 Vitamins and 145 175 550

Cofactors
N24 Glycerolipid 32 49 160 N170 Amino acid 54 378 1210
N28 Glycine, serine 36 46 151 N180 Carbohydrate 247 501 1659

and threonine
N32 Pyruvate 21 51 163 N537 Entire Network 988 1790 5833

Table 3. Comparison of average damage values of solutions determined by
the iterative algorithm versus the exhaustive search algorithm.

Pathway Id N14 N17 N20 N24 N28 N32

Iterative Damage 2.51 8.73 1.63 3.39 1.47 0.59

Exhaustive Damage 2.51 8.73 1.63 3.17 1.47 0.59
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Figure 2. Evaluation of iterative algorithm. (a)Average execution time in milliseconds. (b)Average
number of iterations

search algorithm. We have shown the results only uptoN32, as the exhaustive
search algorithm took longer than one day to finish even forN32. We can see that
the damage values of our method exactly match the damage values of the exhaustive
search for all the networks exceptN24. ForN24, the average damage differs from
the exhaustive solution by only 0.02%. This shows that the iterative algorithm is a
good approximation of the exhaustive search algorithm which computes an optimal
solution. The slight deviation in damage is the tradeoff for achieving the scalability
of the iterative algorithm (described next).
Evaluation of Scalability: Figure 2(a) plots the average execution time of our it-
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erative method for increasing sizes of metabolic networks. The running time in-
creases slowly with the network size. As the number of enzymes increases from 8
to 537, the running time increases from roughly 1 to 10 seconds. The largest net-
work,N537, consists of 537 enzymes, and hence, an exhaustive evaluation inspects
2537−1 combinations (which is computationally infeasible). Thus, our results show
that the iterative method scales well for networks of increasing sizes. This property
makes our method an important tool for identifying the right enzyme combination
for eliminating target compounds, especially for those networks for which an ex-
haustive search is not feasible.
Figure 2(b) shows a plot of the average number of iterations for increasing sizes
of metabolic networks. The iterative method reaches a steady state within 10 iter-
ations in all cases. The various parameters (see Table 2) that influence the number
of iterations are the number of enzymes, compounds, reactions and especially the
number of interactions in the network (represented by edges in the network graph).
Larger number of interactions increase the number of iterations considerably, as
can be seen for networksN22, N48, N96, N537, where the number of iterations is
greater than 5. This shows that, in addition to the number of enzymes, the number
of compounds and reactions in the network and their interactions also play a signifi-
cant role in determining the number of iterations. Our results show that the iterative
algorithm can reliably reach a steady state and terminate, for networks as large as
the entire metabolic network of E.Coli.

6. Conclusion
Efficient computational strategies are needed to identify the enzymes (i.e., drug tar-
gets), whose inhibition will achieve the required effect of eliminating a given target
set of compounds while incurring minimal side-effects. An exhaustive evaluation
of all possible enzyme combinations to find the optimal subset is computationally
infeasible for large metabolic networks. We proposed a scalable iterative algorithm
which computes a sub-optimal solution to this problem within reasonable time-
bounds. Our algorithm is based on the intuition that we can arrive at a solution close
to the optimal one by tracing backward from the target compounds. We evaluated
the immediate precursors of a target compound and iteratively moved backwards,
to identify the enzymes, whose inhibition stopped the production of the target com-
pound while incurring minimum damage. We showed that our method converges
within a finite number of such iterations. In our experiments on E.Coli metabolic
network, the accuracy of a solution computed by the iterative algorithm deviated
from that found by an an exhaustive search only by 0.02 %. Our iterative algorithm
is highly scalable. It solved the problem for even the entire metabolic network of
E.Coli in less than 10 seconds.
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